
SAS® 9.2
Intelligence Platform
Data Administration Guide

TW9790_bidsag_colortitlepg.indd 1 1/22/09 1:52:38 PM

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009.
SAS ® 9.2 Intelligence Platform: Data Administration Guide. Cary, NC: SAS Institute Inc.

SAS® 9.2 Intelligence Platform: Data Administration Guide
Copyright © 2009, SAS Institute Inc., Cary, NC, USA
ISBN-13: 978-1-59994-313-8
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, February 2009
1st printing, March 2009
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New v

Overview v

New Data Surveyors v

Documentation Enhancements v

Chapter 1 � Overview of Common Data Sources 1
Overview 1

Accessibility Features in the SAS Intelligence Platform Products 1

SAS Data Sets 2

Shared Access to SAS Data Sets 2

Local and Remote Access to Data 3

External Files 5

XML Data 6

Message Queues 6

Relational Database Sources 7

Scalable Performance Data Server and Scalable Performance Data Engine 10

ERP and CRM Systems 13

Change Data Capture 14

DataFlux Integration Server and SAS Data Quality Server 15

Chapter 2 � Connecting to Common Data Sources 17
Overview of Connecting to Common Data Sources 18

Overview of SAS/ACCESS Connections to RDBMS 18

Establishing Connectivity to a Library of SAS Data Sets 19

Establishing Shared Access to SAS Data Sets 22

Establishing Connectivity to a Composite Information Server 24

Establishing Connectivity to an Excel File 30

Establishing Connectivity to a Flat File 32

Establishing Connectivity to XML Data 34

Establishing Connectivity to a SAS Information Map 35

Establishing Connectivity to an Oracle Database 37

Establishing Connectivity to an Oracle Database by Using ODBC 41

Establishing Connectivity to a Microsoft Access Database by Using ODBC 45

Establishing Connectivity to a Scalable Performance Data Server 48

Establishing Connectivity to an SAP Server 51

Registering and Verifying Tables 54

Read-only Access for Reporting Libraries 55

Setting UNIX Environment Variables for SAS/ACCESS 56

Troubleshooting SAS/ACCESS Connections to RDBMS 56

Chapter 3 � Assigning Libraries 59
Overview of Assigning Libraries 59

iv

Using Libraries That Are Not Pre-assigned 62

Pre-assigning Libraries Using Engines Other Than the Metadata Engine 65

Pre-assigning Libraries to Use the Metadata Engine 68

Verifying Pre-assignments by Reviewing the Logs 69

Chapter 4 � Managing Table Metadata 71
Overview of Managing Table Metadata 71

Creating Table Metadata for a New Library 72

Assessing Potential Changes in Advance 73

Updating Your Table Metadata to Match Data in Your Physical Tables 75

Chapter 5 � Optimizing Data Storage 79
Overview of Optimizing Data Storage 79

Compressing Data 80

Indexing Data 82

Sorting Data 83

Buffering Data for Base SAS Tables 85

Buffering Data for DB2 (UNIX and PC), ODBC, OLE DB, Oracle, SQL Server, and
Sybase Tables 86

Using Threaded Reads 87

Validating SPD Engine Hardware Configuration 87

Setting LIBNAME Options That Affect Performance of SAS Tables 88

Setting LIBNAME Options That Affect Performance of SAS/ACCESS Databases 89

Setting LIBNAME Options That Affect Performance of SPD Engine Tables 91

Grid Computing Data Considerations 93

Application Response Monitoring 94

Chapter 6 � Managing OLAP Cube Data 95
Introduction to Managing OLAP Cube Data 95

Data Storage and Access 95

Exporting and Importing Cubes 96

About OLAP Schemas 96

Create or Assign an OLAP Schema 97

Building a Cube 97

Making Detail Data Available to a Cube for Drill-Through 99

Making Detail Data Available to an OLAP Server for Drill-Through 100

Making Detail Data Available to an Information Map for Drill-Through 102

Display Detail Data for a Large Cube 102

Appendix 1 � Recommended Reading 105
Recommended Reading 105

Glossary 107

Index 111

v

What’s New

Overview
The SAS Intelligence Platform: Data Administration Guide focuses on the SAS

Intelligence Platform and third-party products that you need to install and the
metadata objects that you need to create in order to establish connectivity to your data
sources (and data targets). It also contains information about setting up shared access
to SAS data and explains how using different data-access engines affects security.

New Data Surveyors
In previous releases, SAS integrated data from ERP and CRM systems by accessing

the underlying database with SAS/ACCESS software. In this release, SAS has
partnered with Composite Software to provide data integration with ERP and CRM
systems from PeopleSoft, Oracle Applications, Siebel, and Salesforce.com. These new
Data Surveyors access data by using the vendor API and certified interfaces, and they
comply with the security of the application. A detailed example of connecting to
Salesforce.com is provided.

Documentation Enhancements
The following enhancements were made for this release:
� added more information about SPD Server and dynamic clusters.
� added information about Change Data Capture.
� added information about application response monitoring logging.
� added more information about establishing connectivity to Oracle.
� removed information about registering database schemas because the SAS

Management Console no longer has a database schema wizard. Schemas are
associated with a data library by typing the schema name in a text field.

� removed the task for making column labels available for drill-through tables on an
OLAP server. This task is not necessary in this release.

vi What’s New

� added information about setting libraries to be read-only for reporting applications.

1

C H A P T E R

1
Overview of Common Data
Sources

Overview 1
Accessibility Features in the SAS Intelligence Platform Products 1

SAS Data Sets 2

Shared Access to SAS Data Sets 2

Local and Remote Access to Data 3

External Files 5
XML Data 6

Message Queues 6

Relational Database Sources 7

SAS/ACCESS 7

ODBC Sources 8

Scalable Performance Data Server and Scalable Performance Data Engine 10
Overview of Scalable Performance Data Server and Scalable Performance Data Engine 10

Symmetric Multiprocessing 10

Dynamic Clustering 11

ERP and CRM Systems 13

Overview of ERP and CRP Systems 13
New Data Surveyors 13

Data Surveyor for SAP 14

Change Data Capture 14

DataFlux Integration Server and SAS Data Quality Server 15

Overview
This chapter describes the features of the most common data sources that you

encounter as you perform administrative tasks. In addition, a simple diagram is
provided for each data source that shows how the data flows as connections are
established between source storage, SAS engines and servers, and SAS applications.

Accessibility Features in the SAS Intelligence Platform Products
For information about accessibility for any of the products mentioned in this book,

see the documentation for that product. If you have questions or concerns about the
accessibility of SAS products, send e-mail to accessibility@sas.com.

2 SAS Data Sets � Chapter 1

SAS Data Sets
SAS data sets (tables) are the default SAS storage format. You can use them to store

data of any granularity. A SAS table is a SAS file stored in a SAS library that SAS
creates and processes. A SAS table contains data values that are organized as a table of
observations (rows) and variables (columns) that can be processed by SAS software. A
SAS table also contains descriptor information such as the data types and lengths of
the columns, as well as which engine was used to create the data. For more information
about using default SAS storage, see SAS Language Reference: Concepts and SAS
Language Reference: Dictionary. The following figure shows how connectivity to SAS
data sets is configured.

Figure 1.1 Establishing Connectivity to SAS Data Sets

SAS Data
Integration Studio

Client SAS Application Server Data (Local or Remote)

Workspace Server

Base SAS Engine Library of
SAS Data Sets

For a detailed example of a SAS data set connection, see “Establishing Connectivity
to a Library of SAS Data Sets” on page 19.

Shared Access to SAS Data Sets
SAS/SHARE software provides concurrent update access to SAS files for multiple

users. SAS/SHARE is often required for transaction-oriented applications where
multiple users need to update the same SAS data sets at the same time. Data entry
applications where multiple users are entering data to the same data set are a good
example of this type of usage. SAS/SHARE software provides both member-level locking
and record-level locking. Therefore, two or more users can update different observations
within the same data set, and other users can print reports from the same data set.

SAS/SHARE supports multi-user read and write access to both SAS data files and
SAS catalogs. Multi-user access to SAS catalogs simplifies the maintenance of
applications by allowing users and developers to share the same program libraries.
Users can execute applications at the same time that developers update the source
programs.

SAS/SHARE software also acts as a data server that delivers data to users for their
processing needs. This capability provides data administrators both a centralized point
of control for their data and a secure environment to control who accesses the data.
SAS/SHARE is also designed to be a reliable data server that functions as long as the
system that the server is running on is operational.

Overview of Common Data Sources � Local and Remote Access to Data 3

Finally, SAS/SHARE enables you use SAS software to define views of your data. This
allows administrators to restrict certain users to subsets of data for security or
efficiency purposes. Access to rows and columns in SAS tables can be defined using this
technique. The following figure shows shared access to SAS data sets. Note that the
data server in the figure can be a different operating system and architecture from the
SAS Application Server, if the site is licensed for that configuration.

Figure 1.2 Establishing Shared Access to SAS Data Sets

SAS Data
Integration Studio

Client SAS Application Server Data Server

Workspace Server

SAS/SHARE
REMOTE Engine

SAS/SHARE
Server

Base SAS Engine

Library of
SAS Data Sets

For a detailed example of a shared SAS data set connection, see “Establishing
Shared Access to SAS Data Sets” on page 22.

Local and Remote Access to Data
To access data you must register the data as a library in SAS Management Console.

The procedures for accessing data and registering data are explained later in this
document. However, one of the important details for file-based data, such as SAS data
sets, is that you need to specify the file system path to the data. This path is needed so
a SAS Application Server can access it. As shown in the following figure, SAS data sets
that are local to the SAS Application Server have a fully qualified path such as
C:\data\sourcetables:

4 Local and Remote Access to Data � Chapter 1

Figure 1.3 SAS Workspace Server Accessing Local Data Sets

Often, file-based data is stored on a host that is remote from the SAS Application
Server. When the hosts have a network path for shared directories such as a Windows
UNC path or UNIX NFS, then that path is used. The following figure shows an
example of a SAS Workspace Server accessing a UNC path,
\\dataserver\sourcetables, on a data server.

Figure 1.4 SAS Workspace Server Accessing Remote Data Sets

SAS Data
Integration Studio

Client SAS Application Server Data Server

represents
remote data
and uses a network
path (for example,
\\datasvr\source)

Workspace Server

Base SAS Engine Library of
SAS Data Sets

Note: This figure shows a SAS Workspace Server accessing data over a shared file
system. To access data over network connection (without the file system), use
SAS/SHARE as described in this document. �

Overview of Common Data Sources � External Files 5

External Files

An external file is a file that is maintained by the machine operating environment or
by a software product other than SAS. A flat file with comma-separated values is one
example. SAS Data Integration Studio provides three source designer wizards that
enable you to create metadata objects for external files:

� the delimited external file wizard for external files in which data values are
separated with a delimiter character. This wizard enables you to specify multiple
delimiters, nonstandard delimiters, missing values, and multi-line records.

� the fixed-width external file wizard for external files in which data values appear
in columns that are a specified number of characters wide. This wizard enables
you to specify non-contiguous data.

� the user-written external file wizard for complex external files that require
user-written SAS code to access their data.

The external file source designer wizards enable you to do the following:

� display a raw view of the data in the external file

� display a formatted view of the data in the external file, as specified in the SAS
metadata for that file

� display the SAS DATA step and SAS INFILE statement that the wizard generates
for the selected file

� display the SAS log for the code that is generated by the wizard

� specify options for the SAS INFILE statement that is generated by the wizard,
such as National Language Support (NLS) encoding

� override the generated SAS INFILE statement with a user-written statement

� supply a user-written SAS DATA step to access an external file

The following figure shows establishing connectivity to external files:

Figure 1.5 Establishing Connectivity to External Files

SAS Data Integration
Studio

Base SAS Code

Client SAS Application Server Files

Workspace Server

For a detailed example of an external file connection, see “Establishing Connectivity
to a Flat File” on page 32.

6 XML Data � Chapter 1

XML Data
The XML LIBNAME engine works in a way similar to other SAS engines. A

LIBNAME statement is executed so that a libref is assigned and an engine is specified.
That libref is then used throughout the SAS session.

Instead of the libref being associated with the physical location of a SAS library, the
libref for the XML engine is associated with a physical location of an XML document.
When you use the libref that is associated with an XML document, SAS either
translates the data in a SAS data set into XML markup or translates the XML markup
into SAS format.

The XML LIBNAME engine can read input streams from a Web service input and
write an output stream to a Web service output. The XML LIBNAME engine supports
reading XML files in complex structures using XMLMaps. An XMLMap is a
user-defined file that contains XML tags that tell the XML LIBNAME engine how to
interpret an XML document. XMLMaps are defined using the SAS XML Mapper
product. For additional information, see the SAS XML LIBNAME Engine User’s Guide.

XML files are written by the XML Writer transformation provided by SAS Data
Integration Studio. The XML LIBNAME engine supports Output Delivery System
(ODS) tag sets; XMLMaps are not supported for writing. The XML Writer
transformation in SAS Data Integration Studio ships with a sample ODS tag set, if
needed. An output XML document can either be:

� used by a product that processes XML documents
� moved to another host for the XML LIBNAME engine to process by translating the

XML markup back to a SAS data set

Because the XML LIBNAME engine is designed to handle tabular data, all the data
sent to or from a Web service must be in table form.

The following figure shows connectivity to XML files:

Figure 1.6 Establishing Connectivity to XML Files

Message Queues
Message queues are collections of data objects that enable asynchronous

communication between processes. These processes are typically applications that run

Overview of Common Data Sources � SAS/ACCESS 7

on different computers, and might be configured in a heterogenous network. Queue
management software ensures that messages are transmitted without error. SAS Data
Integration Studio can perform messaging jobs to read and write messages to Microsoft
MSMQ as well as IBM WebSphere MQ. For more information about administering
message queues, see SAS Intelligence Platform: Desktop Application Administration
Guide. For more information about creating messaging jobs, see SAS Data Integration
Studio: User’s Guide.

Relational Database Sources

SAS/ACCESS
Data also can be stored in third-party hierarchical and relational databases such as

DB2, Oracle, SQL Server, and Teradata. SAS/ACCESS interfaces provide fast, efficient
reading and writing of data to these facilities.

Several of the SAS/ACCESS engines support threaded reads. This enables you to
read entire blocks of data on multiple threads instead of reading data just one record at
a time. This feature can reduce I/O bottlenecks and enables thread-enabled procedures
to read data quickly. These engines and DB2 on z/OS also have the ability to access
database management system (DBMS) data in parallel by using multiple threads to the
parallel DBMS server.

The following SAS/ACCESS engines support this functionality:
� Oracle
� Sybase
� DB2 (UNIX and PC)
� SQL Server
� Teradata

For more information about using the SAS/ACCESS interfaces, see SAS/ACCESS
for Relational Databases: Reference. The following figure shows how connectivity to
Oracle databases is configured:

Figure 1.7 Establishing Connectivity to Oracle Databases

SAS Data Integration
Studio

Client SAS Application Server Data Server

Workspace Server

SAS/ACCESS
Interface to Oracle

Oracle Client

Oracle Server

Schema of
Oracle Tables

8 ODBC Sources � Chapter 1

For a detailed example of an Oracle connection, see “Establishing Connectivity to an
Oracle Database” on page 37.

ODBC Sources
Open database connectivity (ODBC) standards provide a common interface to a

variety of databases such as DB2, Microsoft Access, Oracle, and Microsoft SQL Server
databases. Specifically, ODBC standards define application programming interfaces
(APIs) that enable an application to access a database if the ODBC driver complies with
the specification.

Note: If a SAS/ACCESS engine is available for a database, then performance is
better with the SAS/ACCESS engine rather than with the ODBC interface. �

The basic components and features of ODBC include the following:
� ODBC functionality is provided by three components: the client interface, the

ODBC driver manager, and the ODBC driver. SAS provides the SAS/ACCESS
interface to ODBC, which is the client interface. For PC platforms, Microsoft
developed the ODBC Administrator, which is used from the Windows Control
Panel to perform software administration and maintenance activities. The ODBC
driver manager also manages the interaction between the client interface and the
ODBC driver. On UNIX platforms, a default ODBC driver manager does not exist
and SAS does not provide a driver manager with SAS/ACCESS to ODBC. For
UNIX platforms, you should obtain an ODBC driver manager from your ODBC
driver vendor.

� The ODBC administrator defines a data source as the data that is used in an
application and the operating system and network that are used to access the
data. You create a data source by using the ODBC Administrator in the Windows
Control Panel and then selecting an ODBC driver. You then provide the
information (for example, data source name, user ID, password, description, and
server name) that is required by the driver to make a connection to the desired
data. The driver displays dialog boxes in which you enter this information. During
operation, a client application usually requests a connection to a named data
source, not just to a specific ODBC driver.

� An ODBC Administrator tool is not available in a UNIX environment such as
HP-UX, AIX, or Solaris. During an install, the driver creates a generic .odbc.ini
file that can be edited to define your own data sources.

The following figure shows how ODBC is used to establish connectivity to Oracle
databases:

Overview of Common Data Sources � ODBC Sources 9

Figure 1.8 Establishing Connectivity to Oracle Databases by Using ODBC

SAS Data Integration
Studio

Client SAS Application Server Data Server

Workspace Server

ODBC Driver
Manager

SAS/ACCESS
Interface to ODBC

ODBC Driver

Schema of
Oracle Tables

Oracle Server

For a detailed example of an ODBC-based Oracle connection, see “Establishing
Connectivity to an Oracle Database by Using ODBC” on page 41. The following figure
shows how ODBC is used to establish connectivity to Access databases:

Figure 1.9 Establishing Connectivity to Access Databases by Using ODBC

SAS Data Integration
Studio

Client SAS Application Server Data Server

Workspace Server

ODBC Driver
Manager

SAS/ACCESS
Interface to ODBC

ODBC Driver

Microsoft Access
Database

Database Tables

For a detailed example of an ODBC-based Access connection, see “Establishing
Connectivity to a Microsoft Access Database by Using ODBC” on page 45.

10 Scalable Performance Data Server and Scalable Performance Data Engine � Chapter 1

Scalable Performance Data Server and Scalable Performance Data
Engine

Overview of Scalable Performance Data Server and Scalable
Performance Data Engine

Both the SAS Scalable Performance Data Engine (SPD Engine) and the SAS Scalable
Performance Data Server (SPD Server) are designed for high-performance data delivery.
They enable rapid access to SAS data for intensive processing by the application. The
SAS SPD Engine and SAS SPD Server deliver data to applications rapidly by
organizing the data into a streamlined file format that takes advantage of multiple
CPUs and I/O channels to perform parallel input and output functions.

The SAS SPD Engine is included with Base SAS software. It is a single-user data
storage solution that shares the high-performance parallel processing and parallel I/O
capabilities of SAS SPD Server, but it lacks the additional complexity of a full-blown
server. The SAS SPD Server is available as a separate product or as part of the SAS
Intelligence Storage bundle. It is a multi-user parallel-processing data server with a
comprehensive security infrastructure, backup and restore utilities, and sophisticated
administrative and tuning options. SAS SPD Server libraries can be defined using SAS
Management Console.

SAS SPD Engine and SAS SPD Server use multiple threads to read blocks of data
very rapidly and in parallel. The software tasks are performed in conjunction with an
operating system that enables threads to execute on any of the machine’s available
CPUs.

Although threaded I/O is an important part of both product offerings’ functionality,
their real power comes from the way that the software structures SAS data. They can
read and write partitioned files and, in addition, use a specialized file format. This data
structure permits threads, running in parallel, to perform I/O tasks efficiently.

Although not intended to replace the default Base SAS engine for most tables that do
not span volumes, SAS SPD Engine and SAS SPD Server are high-speed alternatives
for processing very large tables. They read and write tables that contain billions of
observations.

The SAS SPD Engine and SAS SPD Server performance are boosted in these ways:
� support for terabytes of data
� scalability on symmetric multiprocessing (SMP) machines
� parallel WHERE selections
� parallel loads
� parallel index creation
� partitioned tables
� parallel I/O data delivery to applications
� implicit sorting on BY statements

The SAS SPD Engine runs on UNIX, Windows, z/OS (on HFS and zFS file systems only),
and OpenVMS for Integrity Servers (on ODS-5 file systems only) platforms. The SAS
SPD Server runs on Tru64 UNIX, Windows Server, HP-UX, and Sun Solaris platforms.

Symmetric Multiprocessing
The SAS SPD Server exploits a hardware and software architecture known as

symmetric multiprocessing (SMP). An SMP machine has multiple CPUs and an

Overview of Common Data Sources � Dynamic Clustering 11

operating system that supports threads. An SMP machine is usually configured with
multiple disk I/O controllers and multiple disk drives per controller. When the SAS
SPD Server reads a data file, it launches one or more threads for each CPU; these
threads then read data in parallel. By using these threads, a SAS SPD Server that is
running on an SMP machine provides the quick data access capability that is used by
SAS in an application.

For more information about using the SAS SPD Server, see SAS Scalable
Performance Data Server: Administrator’s Guide and support.sas.com/rnd/
scalability/spds.

The following figure shows how connectivity to SPD Servers is established:

Figure 1.10 Establishing Connectivity to a SAS SPD Server

SAS Data Integration
Studio

Client SAS Application Server Data Server

Workspace Server

SPDS Engine SAS Scalable
Performance Data Server

SPDS Tables

For a detailed example of a SAS SPD Server connection, see “Establishing
Connectivity to a Scalable Performance Data Server” on page 48.

Dynamic Clustering

The SAS SPD Server provides a virtual table structure called a clustered data table.
A cluster contains a number of slots, each of which contains a SAS SPD Server table.
The clustered data table uses a layer of metadata to manage the slots.

This virtual table structure provides the SAS SPD Server with the architecture to
offer flexible storage to allow a user to organize tables based on values contained in
numeric columns, including SAS date, time, or datetime values. This new type of
organization is called a dynamic cluster table. Dynamic cluster tables enable parallel
loading and selective removal of data from very large tables, making management of
large warehouses easier. These unique capabilities provide organizational features and
performance benefits that traditional SAS SPD Server tables cannot provide.

Dynamic cluster tables can load and process data in parallel. Dynamic cluster tables
provide the flexibility to add new data or to remove historical data from the table by
accessing only the slots affected by the change, without having to access the other slots,
thus reducing the time needed for the job to complete. Additionally, a complete refresh
of a dynamic cluster table requires a fraction of the disk space that would otherwise be
needed, and can be divided into parallel jobs to complete more quickly. All of these
benefits can be realized using simple SPDO procedure commands to create and alter a
cluster.

12 Dynamic Clustering � Chapter 1

The two most basic commands are CLUSTER CREATE and CLUSTER UNDO. Two
additional commands are ADD and LIST. You execute each of these commands within
PROC SPDO.

The CLUSTER CREATE command requires three options:

� the name of the cluster table (cluster-table-name) that will be created

� a list of SAS Scalable Performance Data Server tables that will be included in the
cluster (using the MEM= option)

� the number of slots (using the MAXSLOT= option), for member tables, that the
cluster will have

The following example shows the syntax for PROC SPDO with a CLUSTER CREATE
command:

PROC SPDO LIBRARY=domain-name;
SET ACLUSER user-name;
CLUSTER CREATE cluster-table-name
MEM = SPD-Server-table1
MEM = SPD-Server-table2
MEM = SPD-Server-table3
MEM = SPD-Server-table4
MEM = SPD-Server-table5
MEM = SPD-Server-table6
MEM = SPD-Server-table7
MEM = SPD-Server-table8
MEM = SPD-Server-table9
MEM = SPD-Server-table10
MEM = SPD-Server-table11
MEM = SPD-Server-table12
MAXSLOT=24;
QUIT;

Here is the syntax for the UNDO command:

PROC SPDO LIBRARY=domain-name;
SET ACLUSER user-name;
CLUSTER UNDO sales_hist;
QUIT;

This example shows the syntax for the ADD command:

PROC SPDO LIBRARY=domain-name;
SET ACLUSER user-name;
CLUSTER ADD sales_hist
MEM = 2005sales_table1
MEM = 2005sales_table2
MEM = 2005sales_table3
MEM = 2005sales_table4
MEM = 2005sales_table5
MEM = 2005sales_table6;
QUIT;

Finally, here is the syntax for the LIST command:

PROC SPDO LIBRARY=domain-name;
SET ACLUSER user-name;
CLUSTER LIST sales_hist;
QUIT;

Overview of Common Data Sources � New Data Surveyors 13

These operations run quickly. These features reduce the downtime of the table for
maintenance and improve the availability of the warehouse.

ERP and CRM Systems

Overview of ERP and CRP Systems
Enterprise Resource Planning (ERP) and Customer Relationship Management (CRM)

systems contain a wealth of data in tables, columns, variables, and fields, but they lack
several key features:

� the ability to provide integration with other data sources
� the ability to do backward-looking drill-down analysis into what caused the effect

(Business Intelligence)
� the ability to do forward-looking cause and effect analysis (Business Analytics)

New Data Surveyors
Previously, SAS provided data surveyors that relied on accessing the underlying

database—Oracle, DB2, and SQL Server—and not the application APIs. SAS now
provides, through software from Composite Software, both Service Oriented
Architecture (SOA) and SQL data services that unlock the data in PeopleSoft, Oracle
Applications, Siebel, as well as the recently offered Salesforce.com. The following figure
shows how SAS interacts with Composite Software:

Figure 1.11 Establishing Connectivity Using Composite Software

SAS Data
Integration Studio

Client SAS Application Server Data Server Data Server

Workspace Server

SAS/ACCESS
Interface to ODBC

ODBC Driver
Manager

Composite
ODBC Driver

Composite
Information Server

ERP or CRM
Composite
Application

Data Services

The Composite Information Server uses a Data Service to access a data source
through the data source’s API. The Composite Information Server then offers the data

14 Data Surveyor for SAP � Chapter 1

through an ODBC interface. You configure an ODBC data source name on the SAS
Application Server with the Composite ODBC driver. Then you use SAS Management
Console to register an ODBC server and an ODBC library. For a detailed example of a
Composite Information Server connection to Salesforce.com, See “Establishing
Connectivity to a Composite Information Server” on page 24.

Data Surveyor for SAP
The Data Surveyor for SAP remains as in previous versions. It contains Java

plug-ins to SAS Data Integration Studio and SAS Management Console, plus the
required SAS/ACCESS engine necessary to get the information out of the DBMS
system. Understanding the metadata of these business applications is at the heart of
the data surveyor. The SAP Data Surveyor has knowledge about the structure of the
tables deployed in SAP. This knowledge contains information about the ERP metadata
that allows you to do the following:

� understand complex data structures

� navigate the large amounts of tables (SAP has over 20,000)

The following figure shows how connectivity to SAP servers is established:

Figure 1.12 Establishing Connectivity to an SAP Server

SAS Data
Integration Studio

SAS Data
Surveyor for SAP

Client SAS Application Server Data Server

Workspace Server

SAS/ACCESS
Interface to R/3

SAP
Application Server

SAP Data Tables

For a detailed example of an SAP server connection, see “Establishing Connectivity
to an SAP Server” on page 51.

Change Data Capture
Data extraction is an integral part of all data warehousing projects. Data is often

extracted on a nightly or regularly scheduled basis from transactional systems in bulk
and transported to the data warehouse. Typically, all the data in the data warehouse is
refreshed with data extracted from the source system. However, an entire refresh
involves the extraction and transportation of huge volumes of data and is very
expensive in both resources and time. With data volumes now doubling yearly in some
organizations a new mechanism known as change data capture (CDC) is increasingly
becoming the only viable solution for delivering timely information into the warehouse

Overview of Common Data Sources � DataFlux Integration Server and SAS Data Quality Server 15

to make it available to the decision makers. CDC is the process of capturing changes
made at the data source and applying them throughout the enterprise. CDC minimizes
the resources required for ETL processes because it deals only with data changes. The
goal of CDC is to ensure data synchronicity. SAS offers a number of CDC options.

� Some database vendors (Oracle 10g) provide tables of just changed records. These
tables can be registered in SAS Data Integration Studio and used in jobs to
capture changes.

� SAS Data Integration Studio allows the user to determine changes and take
appropriate action.

� SAS has partnered with Attunity, a company that specializes in CDC. Their
Attunity Stream software provides agents that non-intrusively monitor and
capture changes to mainframe and enterprise data sources such as VSAM, IMS,
Adabas, DB2, and Oracle. SAS Data Integration Studio provides a dedicated
transformation for Attunity.

The Attunity-based solution does the following:
� moves only CHANGES to the data
� requires no window of operation
� provides higher frequency and reduced latency transfers. It is possible for multiple

updates each day, providing near-real-time continuous change flow.
� reduces the performance impact of the following activities:

� rebuilding of target table indexes
� recovering from a process failure that happens mid-stream

DataFlux Integration Server and SAS Data Quality Server
Certain enterprise software bundles for the SAS Intelligence Platform include data

quality software from SAS and from DataFlux (a SAS company). The data quality
software enables you to analyze, standardize, and transform your data to increase the
accuracy and value of the knowledge that you extract from your data.

The data quality product from SAS is SAS Data Quality Server, which consists of
SAS language elements and a Quality Knowledge Base from DataFlux. The language
elements analyze and cleanse data by referencing data definitions in the Quality
Knowledge Base. SAS Data Quality Server also provides a SAS language interface to
the DataFlux Integration Server.

The data quality software from DataFlux consists of the DataFlux Integration
Server, a second Quality Knowledge Base, and the dfPower Studio software. The
DataFlux Integration Server runs jobs and real-time services that are created in
dfPower Studio. The jobs and real-time services can be executed by SAS programs that
contain the procedures and functions in SAS Data Quality Server. Among its many
capabilities, the dfPower Studio software enables you to create jobs and real-time
services and customize the data definitions in Quality Knowledge Bases.

SAS Data Integration Studio provides enabling software for data quality applications.
Four data quality transformations enable you to analyze data, cleanse data, or trigger
the execution of DataFlux jobs or real-time services on DataFlux Integration Servers.

The data quality software from SAS and DataFlux requires setup and configuration
after installation. For administrative information, see “Administering SAS Data
Integration Studio” in the SAS Intelligence Platform: Desktop Application
Administration Guide.

16

17

C H A P T E R

2
Connecting to Common Data
Sources

Overview of Connecting to Common Data Sources 18
Overview of SAS/ACCESS Connections to RDBMS 18

Register the DBMS Server 18

Register the DBMS Library 19

Establishing Connectivity to a Library of SAS Data Sets 19

Register the Base SAS Library 19
Working with User-Defined Formats 21

Use a Standard Name and Location for the Format Catalog 21

Create a User-Defined Formats Configuration File 21

Establishing Shared Access to SAS Data Sets 22

Overview of Establishing Shared Access 22

Create a SAS/SHARE Remote Engine Library 23
Establishing Connectivity to a Composite Information Server 24

Overview of Establishing Connectivity to a Composite Information Server 24

Prerequisites 25

Stage 1: Configuring the Composite Information Server 25

Stage 2: Configuring the Composite ODBC Driver 28
Stage 3: Register the ODBC Database Server 28

Stage 4: Register the ODBC Database Library 29

Establishing Connectivity to an Excel File 30

Overview of Establishing Connectivity to an Excel File 30

Establishing Connectivity to a Flat File 32
Overview of Establishing Connectivity to a Flat File 32

Establishing Connectivity to XML Data 34

Establishing Connectivity to a SAS Information Map 35

Overview of Establishing Connectivity to a SAS Information Map 35

Special Considerations for Information Map Tables 36

Establishing Connectivity to an Oracle Database 37
Overview of Establishing Connectivity to an Oracle Database 37

Stage 1: Register the Database Server 38

Stage 2: Register the Database Library 39

Establishing Connectivity to an Oracle Database by Using ODBC 41

Overview of Establishing Connectivity to an Oracle Database by Using ODBC 41
Stage 1: Define the ODBC Data Source 42

Stage 2: Register the Database Server 42

Stage 3: Register the Database Library 44

Establishing Connectivity to a Microsoft Access Database by Using ODBC 45

Overview of Establishing Connectivity to a Microsoft Access Database by Using ODBC 45
Stage 1: Define the ODBC Data Source 45

Stage 2: Register the Database Server 46

Stage 3: Register the Database Library 47

18 Overview of Connecting to Common Data Sources � Chapter 2

Establishing Connectivity to a Scalable Performance Data Server 48
Overview of Establishing Connectivity to a Scalable Performance Data Server 48

Stage 1: Configure the libnames.parm File 48

Stage 2: Register the Server 49

Stage 3: Register the Library 50

Establishing Connectivity to an SAP Server 51
Overview to Establishing Connectivity to an SAP Server 51

Stage 1: Register the Server 51

Stage 2: Register the Library 53

Stage 3: Extract SAP Metadata 53

Special Considerations for SAP 54

Registering and Verifying Tables 54
Stage 1: Register the Tables 54

Stage 2: Verify Access to the Data in a SAS Application 55

Read-only Access for Reporting Libraries 55

Setting UNIX Environment Variables for SAS/ACCESS 56

Troubleshooting SAS/ACCESS Connections to RDBMS 56

Overview of Connecting to Common Data Sources

This chapter consists of detailed examples for establishing a connection to each of the
common data sources introduced in Chapter 1, “Overview of Common Data Sources,” on
page 1. Some of the connection processes covered in this chapter have common
elements that might be applied to similar data sources. For example, the description of
the process of using SAS/ACCESS to connect to an Oracle database might be useful
when you connect to other relational databases such as DB2, Sybase, and Informix.
Also, the descriptions of ODBC connections to Oracle and Microsoft Access databases
and the account of the connection to an SAP source can be helpful when you connect to
similar data sources.

In order to perform the procedures for registering libraries, you must have
ReadMetadata and WriteMetadata permission for the repository and the SAS
Application Servers that the data library is assigned to.

This chapter also explains the process that registers tables as metadata from the
data sources. Registering a table in metadata enables you to view the data in a SAS
application. For more information about managing table metadata, see Chapter 4,
“Managing Table Metadata,” on page 71.

Overview of SAS/ACCESS Connections to RDBMS

This section provides generic instructions for using SAS Management Console to
configure access to a database. SAS/ACCESS must be licensed and configured before
using SAS Management Console to register the library that holds the tables. The
generic procedure has two stages:

1 Register the DBMS server.

2 Register the DBMS library.

Register the DBMS Server
To register a DBMS server, perform the following steps:

Connecting to Common Data Sources � Register the Base SAS Library 19

1 Right-click Server Manager and select the New Server option to access the New
Server wizard.

2 Select the database server type from the Database Servers list. Then, click Next.

3 Enter an appropriate server name in the Name field. Click Next.

4 Accept the defaults for the server properties. Click Next.

5 Specify the database vendor-specific values on the connection properties page. If
the user credentials for the database are different from the credentials used to log
in to SAS, then you must create an Authentication domain to store valid database
credentials. For more information, see “How to Store Passwords for a Third-Party
Server” in the SAS Intelligence Platform: Security Administration Guide.

Click Next.

6 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the wizard settings.

Register the DBMS Library
To register a DBMS library, perform the following steps:

1 In SAS Management Console, expand Data Library Manager. Right-click
Libraries and select the New Library option to access the New Library wizard.

2 Select the database type from the Database Data list. Click Next.

3 Enter an appropriate library name in the Name field. Click Next.

4 Select an application server from the list, and use the right arrow to assign the
application server. This step makes the library available to the server and makes
the library visible to users of the server. Click Next.

5 Specify a libref on the library properties page. You can also click Advanced
Options to perform tasks such as pre-assignment. Pre-assigning a library is
valuable if your clients include SAS Enterprise Guide or SAS Add-In for Microsoft
Office. For more information, see Chapter 3, “Assigning Libraries,” on page 59.
Click Next to access the next page of the wizard.

6 On the server and connection page, select the database server from the previous
stage. Contact your database administrator if you are unsure of the correct value
for the schema field. Click Next.

7 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the library settings. At this point, you can register
tables, as explained in “Registering and Verifying Tables” on page 54.

Establishing Connectivity to a Library of SAS Data Sets

Register the Base SAS Library
The following figure provides a logical view of accessing a library of SAS data sets.

20 Register the Base SAS Library � Chapter 2

Figure 2.1 Establishing Shared Access to SAS Data Sets

SAS Data
Integration Studio

Client SAS Application Server Data (Local or Remote)

Workspace Server

Base SAS Engine Library of
SAS Data Sets

After you have installed the required SAS software, you need to set up a connection
from a SAS server to a SAS data set. This connection requires that you register the
Base SAS library with the SAS Metadata Server. In addition, you must import any
user-defined formats that have been created for the data set in order to view or operate
on the data. Assume that the SAS software has already been loaded by using the
standard installation wizard and that the data set is stored in a location that can be
accessed.

Register the library by using SAS Management Console. This metadata enables your
SAS applications to access the data sets that you need to work with. For this example,
the data set contains information about customers of the Orion Gold enterprise.

To register a Base SAS library, perform the following steps:

1 In SAS Management Console, expand Data Library Manager. Right-click
Libraries. Then, select the New Library option to access the first page of the
New Library wizard.

2 Select SAS BASE Library from the SAS Data list. Click Next.

3 Enter an appropriate library name in the Name field (for example, Orion Gold
Customers). Note that you can supply an optional description if you want. Click
Next.

4 Enter the following library properties:

Table 2.1 Library Properties

Field Sample Value

Libref ORGOLD

Engine BASE

Path Specification C:\SAS\Config\Lev1\SASApp\Data (Enter the fully
qualified path to the library. This path is specified
differently in different operating systems. Make sure
that the appropriate path is displayed in the Selected
items field.)

You can also click Advanced Options to perform tasks such as pre-assignment
and setting host-specific and LIBNAME options. Click Next to access the next
page of the wizard.

Connecting to Common Data Sources � Working with User-Defined Formats 21

5 Select one or more SAS servers. The library is available to the server or servers
that you select from this list and visible to users of the server. Click Next.

6 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the settings.

At this point, you can register tables, as explained in “Registering and Verifying
Tables” on page 54. If registering tables fails, check that the user account has host
access permission to the path.

Working with User-Defined Formats
If you have existing SAS data sets, you might also have a catalog of user-defined

formats and informats. You have two options for making these formats available to
applications such as SAS Data Integration Studio and SAS Information Map Studio:

� Give the format catalog a standard name and place it in an expected location. This
is the preferred method.

� Create a user-defined formats configuration file, and use the FMTSEARCH system
option to point to the format catalog.

Use a Standard Name and Location for the Format Catalog

To make the format catalog available, in the preferred method, perform the following
steps:

1 Name the format catalog formats.sas7bcat.

2 Place the catalog in the directory
SAS-config-dir\Lev1\SASApp\SASEnvironment\SASFormats.

Create a User-Defined Formats Configuration File

Alternatively, you can create a user-defined formats configuration file in which you
point to the location of the formats catalog.

To make a format catalog available using the alternative method on Windows and
UNIX systems, perform the following steps:

1 To the SAS configuration file SAS-config-dir\Lev1\SASApp\sasv9_usermods.cfg,
add the CONFIG system option, and use it to point to the user-defined formats
configuration file.

-config "SAS-config-dir\Lev1\SASApp\userfmt.cfg"

2 Then, use the FMTSEARCH system option in the same configuration file to point
to the format catalog:

-set fmtlib1 "SAS-config-dir\Lev1\Data\orformat"
-insert fmtsearch (fmtlib1.orionfmt)

In this example, SAS-config-dir\Lev1\Data\orformat is the location of the format
catalog, and orionfmt (filename orionfmt.sas7bcat) is the name of the format
catalog. If you have more than one catalog to list, leave a space between each
catalog name.

Note: On UNIX systems, you must enter the variable name in uppercase. For
example, you enter FMTLIB1 instead of fmtlib1. �

22 Establishing Shared Access to SAS Data Sets � Chapter 2

To make a format catalog available using the alternative method on z/OS systems,
perform the following steps:

1 Add the AUTOEXEC system option to the SAS launch command as shown in the
following example.

SAS-config-dir/Lev1/SASApp/startsas.sh
o("autoexec="./WorkspaceServer/userfmt.sas"")

In this example, startsas.sh is your SAS launch command script, and
userfmt.sas is the name of the SAS autoexec file. When you enter the command,
you must enter it all on one line.

2 In the autoexec file, use the LIBNAME statement to assign the format library and
the OPTIONS statement to set the FMTSEARCH system option. For example, you
might specify the following statements:

LIBNAME fmtlib1 ’SAS-config-dir/Lev1/Data/orformat’ repname=Foundation;
options fmtsearch=(fmtlib1.orionfmt);

Establishing Shared Access to SAS Data Sets

Overview of Establishing Shared Access
The following figure provides a logical view of accessing SAS data sets through a

SAS/SHARE server.

Figure 2.2 Establishing Shared Access to SAS Data Sets

SAS Data
Integration Studio

Client SAS Application Server Data Server

Workspace Server

SAS/SHARE
REMOTE Engine

SAS/SHARE
Server

Base SAS Engine

Library of
SAS Data Sets

Base SAS libraries allow the following access:

� Any number of users can read data.

� A single user can write or update data.

Connecting to Common Data Sources � Create a SAS/SHARE Remote Engine Library 23

This access can be extended through the use of the SAS/SHARE server. A SAS/SHARE
server permits multiple users to update the same items in a SAS library.

You can share access to a library of existing SAS data sets by using a SAS/SHARE
server to manage access to the data. Assume that the SAS/SHARE software has
already been loaded by using the standard installation wizard, and that you have a
SAS/SHARE server registered in metadata (for example, SHAREServer) that was
created by the wizard. Configuring shared access is a two-stage process:

1 Create a SAS/SHARE REMOTE Engine Library. This library is assigned to a SAS
application server, as shown in the previous figure.

2 While creating the SAS/SHARE REMOTE Engine Library, choose the option to
register a new library to the SAS/SHARE server. This is shown in the previous
figure as a Base SAS library. It is very important to pre-assign this library and to
assign it to the SAS/SHARE server.

Create a SAS/SHARE Remote Engine Library
To create a SAS/SHARE Remote Engine library, perform the following steps:

1 In SAS Management Console, expand Data Library Manager. Right-click
Libraries. Then, select the New Library option to access the New Library
wizard.

2 Select SAS/SHARE REMOTE Engine Library from the SAS Data list. Click Next.

3 Enter an appropriate library name in the Name field (for example,
SharedAccessToOrionGold). You can supply an optional description. Click Next.

4 Select one or more SAS servers (not a SAS/SHARE server at this point) and click
the right arrow. The library is available to the servers included in this list and
visible to users of the server. Click Next.

5 Enter a value for Libref and click Next.

6 Enter the following library properties:

Table 2.2 Server and Connection Information

Field Sample Value

SAS/SHARE Server SHAREServer

SAS/SHARE Server Library Click New to register a new library such as a Base SAS
library. Assign the new library to the SAS/SHARE
Server and set the library as pre-assigned.

Default Login (None) (This default login is used to resolve conflicts
between multiple logins to an authentication domain.
In such cases, the default login is used.)

Click Next.

7 Examine the final page of the wizard (for the SAS/SHARE REMOTE Engine
Library) to ensure that the proper values have been entered. Click Finish to save
the settings.

8 Restart the SAS/SHARE server.

At this point, you can register tables, as explained in “Registering and Verifying
Tables” on page 54.

24 Establishing Connectivity to a Composite Information Server � Chapter 2

Establishing Connectivity to a Composite Information Server

Overview of Establishing Connectivity to a Composite Information
Server

SAS has partnered with Composite Software to provide customers with access to
enterprise resource planning (ERP) and customer relationship management (CRM)
data. Composite Software provides the Composite Information Server and Application
Data Services that tailor the Composite Information Server’s access to the ERP or CRM
data source. For this detailed example, the Composite Application Data Service to
Salesforce.com is used. Detailed information about the data services is available from
Composite Software.

The following figure provides a logical view of how SAS accesses CRM data from
Salesforce.com through a SAS/ACCESS ODBC interface to a Composite Information
Server.

Figure 2.3 Establishing Connectivity to a Composite Information Server

SAS Data
Integration Studio

Client SAS Application Server Data Server Data Server

Workspace Server

SAS/ACCESS
Interface to ODBC

ODBC Driver
Manager

Composite
ODBC Driver

Composite
Information Server

Salesforce.com
Composite
Application

Data Services for
Salesforce.com

SAS supports setting up a connection to a Composite Information Server with ODBC.
Configuring this connection is a four-stage process:

1 Configure the Composite Information Server to communicate with the data source.
(This is described in the Composite Software documentation, but the high-level
steps are covered here to show the relationships between data sources and user
accounts.)

2 Define an ODBC data source.

3 Register the database server.

4 Register the database library.

Connecting to Common Data Sources � Stage 1: Configuring the Composite Information Server 25

Prerequisites
This example assumes that the following configuration tasks are complete before

beginning the configuration of SAS software:
1 configuration of a user account and password for the data source, Salesforce.com,

that will be used by the Composite Application Data Service for communicating
with the data source.

2 installation of a Composite Information Server and the Composite Application
Data Services for Salesforce.com.

3 installation of SAS/ACCESS Interface to ODBC. For requirements information, go
to the Install Center at http://support.sas.com/documentation/
installcenter/92/documents/index.html and use the operating system and
SAS version to locate the appropriate SAS Foundation Configuration Guide.

4 (UNIX only) configuration of SAS/ACCESS environmental variables. For more
information, see “Setting UNIX Environment Variables for SAS/ACCESS” on page
56.

Stage 1: Configuring the Composite Information Server
The following tasks are documented in detail in the Composite Information Server

Administration Guide. The high-level steps are presented here to provide a complete
walk through. At the completion of this stage the Composite Information Server can
access the data at Salesforce.com.

To add Salesforce.com as a data source to Composite, perform the following steps:
1 Use Composite Studio to add a new data source to the Shared folder. Choose

Salesforce.com as the data source driver. Set option Pass-Through Login to
Enabled. The values in the user name and password fields are used to test and
confirm connectivity. Deselect the Save Password check box. This step adds the
physical data source.

Table 2.3 Data Source Wizard Properties

Field Sample Value

Data Source Driver Salesforce.com

Datasource Name Salesforce.com

Username Salesforce.com user name

Password account password. If the connection fails, follow the
instruction to reset the security token at Salesforce.com
and append the security token value to the account
password.

Save Password Deselected

Pass-Through Login Enabled

2 If the security token was used, then restart the Composite Information Server
before continuing.

3 Right-click the Salesforce.com data source and select Open.
4 Click the Re-Introspection tab at the bottom of the right side pane. Either

schedule Re-introspection on this pane, or periodically navigate to this pane and

http://support.sas.com/documentation/installcenter/92/documents/index.html
http://support.sas.com/documentation/installcenter/92/documents/index.html

26 Stage 1: Configuring the Composite Information Server � Chapter 2

click the Re-Introspect Now button. Re-introspection is necessary when tables or
columns are added, removed, or altered.

5 Use Composite Studio to add a new data service that uses the data source.
Right-click host name/services/databases and select New Composite Data
Service.

Enter the following configuration settings on the Add Composite Data Service
dialog box:

Table 2.4 Add Composite Data Service Wizard Properties

Field Sample Value

Data Service Name Salesforce

Data Service Type Composite Database

6 Right-click each table and procedure from the Salesforce.com data source and
select Publish. On the Publish window, be sure to select the Salesforce data
service and to remove spaces from the table name. For example, change “Account
Contact Role” to “AccountContactRole.”

Connecting to Common Data Sources � Stage 1: Configuring the Composite Information Server 27

7 Enable the dynamic domain. For more information, see “Enabling the Dynamic
Domain” in the Composite Information Server Administration Guide.

8 Use Composite Studio to set privileges on the data service (shown in the following
figure) and the data source (not shown, but similar). Right-click host name/
services/databases/Salesforce and set permissions for dynamic � Groups �
all. You must set permissions for Read and Select to make the data available to
users. You might choose to set additional permissions for your site. Afterward,
right-click Shared/Salesforce.com and set the same permissions.

28 Stage 2: Configuring the Composite ODBC Driver � Chapter 2

Note: Ensure the Apply changes recursively to child resources and
folders check box is selected. �

Stage 2: Configuring the Composite ODBC Driver
After the Composite Information Server is configured to transfer data with the data

source, Salesforce.com, then the Composite ODBC Driver must be configured. This
driver is configured on the SAS server host machine that is used to transfer data with
the Composite Information Server. The driver is used by SAS to open a connection to
the Composite Information Server, pass credentials for the data source to Composite,
and transfer data.

To configure the Composite ODBC driver, perform the following steps:

1 On the SAS server host machine, start an installation of Composite Information
Server. When you choose the Composite software components to install, select only
the ODBC check box.

2 Open the Windows Control Panel. Then, double-click Administrative Tools.
Then, double-click Data Sources (ODBC) to access the ODBC Data Source
Administrator dialog box.

3 Click the System DSN tab, and then click Add to access the Create New Data
Source dialog box.

4 Select Composite from the list, and click Finish to access the Composite Software
ODBC Driver Configuration dialog box.

5 Enter the following configuration settings:

Table 2.5 Configuration Settings

Field Sample Value

DSN Name SalesforceDSN

Composite Host Enter the host name for the Composite Information
Server

Port Use the default value of 9401

User Name demo (This is a dummy value. Setting the domain to
dynamic enables passing each users’ credentials to
the data source, Salesforce.com, instead of using demo.)

Password Leave this field blank

Domain dynamic

Datasource Salesforce (Enter the name of the Data Service that
was published during the first stage.)

Catalog Leave this field blank

6 Click OK to save the configuration settings and return to the ODBC Data Source
Administrator dialog box. Then, click OK to save the data source.

Stage 3: Register the ODBC Database Server
To register an ODBC database server, perform the following steps:

1 Open the SAS Management Console application.

Connecting to Common Data Sources � Stage 4: Register the ODBC Database Library 29

2 Right-click Server Manager and select the New Server option to access the New
Server wizard.

3 Select ODBC Server from the Database Servers list. Click Next.
4 Enter an appropriate server name in the Name field (for example, Composite

Server). You can supply an optional description. One server is required for each
DSN. Click Next.

5 Enter the following server properties:

Table 2.6 Server Properties

Field Sample Value

Major Version Number 3

Minor Version Number 7

Data Source Type ODBC - Other Database

Software Version 3.70

Vendor Data Direct

Associated Machine Select the Composite Information Server host machine
value from the drop-down list. If the value that you
need is not available, click New to access the New
Machine dialog box. Then enter the appropriate value
in the Host Name field.

Click Next.
6 Enter the following connection properties:

Table 2.7 Connection Properties

Field Sample Value

Datasrc SalesforceDSN (Use the value entered in the DSN
Name field in the Composite Software ODBC Driver
Configuration dialog box.)

Authentication type User/Password

Authentication Domain CompositeAuth (You might need to create a new
authentication domain. For more information, see
“How to Store Passwords for a Third-Party Server” in
the SAS Intelligence Platform: Security Administration
Guide.) Click New to access the New Authentication
Domain dialog box. Then enter the appropriate value in
the Name field and click OK to save the setting.

Click Next.
7 Examine the final page of the wizard to ensure that the proper values have been

entered. Click Finish to save the wizard settings.

Stage 4: Register the ODBC Database Library
Important: Before tables can be registered, you must use the User Manager plug-in

to SAS Management Console and edit each user that will access Salesforce.com. On the

30 Establishing Connectivity to an Excel File � Chapter 2

Accounts tab, add a new account. For the account, set the User ID to be the
Salesforce.com user name, set password to be the Salesforce.com security token, and set
authentication domain to CompositeAuth.

After you have registered the database server, you register the database library. To
register the database library, perform the following steps:

1 In SAS Management Console, expand the Data Library Manager node.
Right-click Libraries and select the New Library option to access the New
Library wizard.

2 Select ODBC Library from the Database Data list. Click Next.
3 Enter an appropriate library name in the Name field. For example, Salesforce.

You can supply an optional description. Click Next.
4 Select the SAS server from the list that was configured with the Composite

Software ODBC Driver and use the right arrow to assign the library to the SAS
server. Click Next.

5 Enter the following library properties:

Table 2.8 Library Properties

Field Sample Value

Libref sfref

Engine ODBC

6 Important: Click Advanced Options. On the Advanced Options dialog box, click
the Input/Output tab and set Preserve DBMS table names to YES. Click OK.

7 Enter the following settings:

Table 2.9 Server and Connection Information

Field Sample Value

Database Server Composite Server (Use the database server that you
selected in the New Server wizard.)

Database Schema Name This field is not used.

Connection Use the default value of Connection: <server_name>.

Default Login Use the default value of (None).

Click Next.
8 Examine the final page of the wizard to ensure that the proper values have been

entered. Click Finish to save the library settings. At this point, you can register
tables, as explained in “Registering and Verifying Tables” on page 54.

Establishing Connectivity to an Excel File

Overview of Establishing Connectivity to an Excel File
The following figure provides a logical view of using an Excel file as a data source.

Connecting to Common Data Sources � Overview of Establishing Connectivity to an Excel File 31

Figure 2.4 Establishing Connectivity to an Excel File

SAS Data Integration
Studio

Base SAS Code

Client SAS Application Server Files

Workspace Server

The Excel file must be stored in a location that can be accessed by a Windows 32-bit
machine. This example focuses on a file that is local to a SAS server, but a Windows
UNC path such as \\datasrv\sales\firstquarter.xls is also acceptable.

To establish connectivity to an Excel file, perform the following steps:
1 In SAS Management Console, expand Data Library Manager. Right-click

Libraries. Then, select the New Library option to access the New Library
wizard.

2 Select Microsoft Excel Library from the Database Data list. Click Next.
3 Enter a value for Libref and click Next.
4 Enter an appropriate library name in the Name field (for example,

FirstQuarterSales). Specify a metadata folder location for the library in the
Library field. You can supply an optional description. Click Next.

5 Select one or more SAS servers and click the right arrow. The library is available
to the servers included in this list and visible to users of the server. Click Next.

6 On the server and connection page, click New in the Server Details group box to
specify a new database server.

The New Server wizard displays.
7 Enter a name such as FirstQuarterSalesFolder in the Name field. Click Next.
8 Click Next on the Server Properties page.
9 On the Connection Properties page, enter the path to the Excel file. Enclose the

value in quotation marks. For example, "C:\sales\firstquarter.xls." Click
Next.

10 Examine the final page of the New Server wizard to ensure that the proper values
have been entered. Click Finish to save the server settings.

The New Server wizard closes and returns you to the final page of the New
Library wizard.

11 Examine the final page of the New Library wizard to ensure that the proper
values have been entered. Click Finish to save the library settings.

At this point, you can register tables, as explained in “Registering and Verifying
Tables” on page 54.

The Microsoft Excel Library wizard in SAS Management Console generates the
metadata to construct a LIBNAME statement for the EXCEL LIBNAME engine. For
more information about the EXCEL LIBNAME engine and supported options, see the
SAS/ACCESS Interface to PC Files: Reference.

32 Establishing Connectivity to a Flat File � Chapter 2

Establishing Connectivity to a Flat File

Overview of Establishing Connectivity to a Flat File
The following figure provides a logical view of using an external file as a data source.

Figure 2.5 Establishing Connectivity to External Files

SAS Data Integration
Studio

Base SAS Code

Client SAS Application Server Files

Workspace Server

You can connect to a flat file using the External File Source Designer in SAS Data
Integration Studio.

Assume that the SAS software has already been loaded by using the standard
installation wizard, and that the flat file is stored in a location that can be accessed.
This example focuses on a comma-delimited flat file. A similar process is used for other
types of flat files, but some steps are different.

To establish a connection to a flat file, perform the following steps:
1 Open SAS Data Integration Studio. Then, select File � New � External File �

Delimited to access the New Delimited External File wizard.
2 Enter a name for the external file and click Next.
3 Enter the fully qualified path to the file in the File name field (for example,

SAS-config-dir\sources\customer_data.dat). Click Next.
4 On the Delimiters and Parameters page of the wizard, deselect the Blank option

in the Delimiters group box. Then, select the Comma option. Click Next to access
the Column Definitions page of the wizard.

5 To define the columns, perform the following steps:

a Click Refresh to view the data from the flat file in the File tab in the view
pane at the bottom of the page.

b Click Auto Fill to access the Auto Fill Columns dialog box. Change the
value entered in the Start record field in the Guessing records group box
to 2. This setting is based on the assumption that the first data record of the
flat file contains header information and that the record is unique because it
holds the column names for the file. Therefore, excluding the first data record
from the guessing process yields more accurate preliminary data because it is
excluded when the guessing algorithm is run.

Connecting to Common Data Sources � Overview of Establishing Connectivity to a Flat File 33

6 Click Import to access the Import Column Definitions dialog box. The following
four methods are provided for importing column definitions:

� Get the column definitions from other existing tables or external files.
� Get the column definitions from a format file.
� Get column definitions from a COBOL format file.
� Get the column names from column headings in the file.

In most cases, you will either get the column definitions from an external
format file or get the column names from the column headings in the external file.
Here is an example of a format file:

Header follows
Name,SASColumnType,SASColumnName,SASColumnLength,
SASInformat,SASFormat,Desc,ReadFlag
Column definition records records follow
Make,C,Make,13,,$char13.,Manufacturer name column,y
Model,C,Model,40,,$char40.,Model name column,y
Comma within quotation marks below is not a delimiter
Description,C,Description,32,$char32.,,’Description, Comments, Remarks’,y

A sample of the output is shown in the following figure:

For this example, select the Get the column names from column headings
in the file radio button. Keep the default settings for the fields underneath it.

Note: If you select Get the column names from column headings in the
file, the value in the Starting record field in the Data tab of the view pane in
the Column Definitions dialog box is automatically changed. The new value is one
greater than the value in the The column headings are in file record field
in the Import Column Definitions dialog box. �

7 Click OK to return to the Column Definitions page.
8 The preliminary data for the external file object is displayed in the columns table

at the top of the page. The Informat and Format columns for the rows in the
table are based on the values that are included in the sample data that is
processed by the guessing function. The results are accurate for this particular set
of records, but you should still examine them to make sure that they are
representative of the data in the rest of the flat file. Edit the values by clicking
directly on the cells in the column table and making the necessary changes.

9 Click the Data tab at the bottom of the Column Definitions page. Then, click
Refresh. The data should be properly formatted. If not, edit the cells in the
column table and check the results by refreshing the Data tab. You can repeat this
process until you are satisfied. You can review the SAS log for more details.

Note: To view the code that will be generated for the external file, click the
Source tab. To view the SAS log for the generated code, click the Log tab. The

34 Establishing Connectivity to XML Data � Chapter 2

code that is displayed in the Source tab is the code that will be generated for the
current external file. �

10 Click Next.
11 Examine the final page of the wizard to ensure that the proper values have been

entered. Click Finish to save the library settings. The file is ready for use.

Establishing Connectivity to XML Data
The following figure provides a logical view of using XML files as a data source.

Figure 2.6 Establishing Connectivity to XML Files

The following steps describe how to specify a SAS XML library in SAS Management
Console. Assume that the XML library will point to an XML file that contains climate
information (climate.xml). The XML file is in generic format, as defined for the SAS
XML LIBNAME engine. For more information, see the SAS XML LIBNAME Engine:
User’s Guide.

To register an XML library, perform the following steps:

1 In SAS Management Console, expand Data Library Manager. Right-click
Libraries. Then, select the New Library option to access the New Library
wizard.

2 Select SAS XML library from the SAS Data list. Click Next.
3 Enter an appropriate library name in the Name field (for example, XML Lib). Click

Next.
4 Enter information about the library, such as the following:

Table 2.10 Library Properties

Field Sample Value

Name XML Lib

Libref xmllib

Engine XML

Connecting to Common Data Sources � Overview of Establishing Connectivity to a SAS Information Map 35

Field Sample Value

XML File C:\sources\xml\climate.xml

XML Type GENERIC

Library Access READONLY

5 Click Finish to save the wizard settings.

Establishing Connectivity to a SAS Information Map

Overview of Establishing Connectivity to a SAS Information Map
A SAS Information Map is a business metadata layer on top of another data source.

When an information map is registered as a table in a SAS Information Map library, it
can also be used as the data source for other information maps. For more information
about creating information maps, see either the SAS Information Map Studio Help or
Base SAS Guide to Information Maps. Information map tables are expected to be used
primarily by SAS Information Map Studio and SAS Enterprise Guide.

Figure 2.7 Establishing Connectivity to an Information Map

SAS Information
Map Studio

Client SAS Application Server Data Server

Workspace Server

Information Maps
LIBNAME Engine

Metadata Server

Information Maps

To register a SAS Information Map library, perform the following steps:
1 In SAS Management Console, expand Data Library Manager. Right-click

Libraries. Then, select the New Library option to access the New Library
wizard.

2 Select SAS Information Map Library from the SAS Data list. Click Next.
3 Enter an appropriate library name in the Name field (for example, InfoMapLib).

Click Next.
4 Select a SAS server from the list and use the right arrow to assign the SAS server.

This step makes the library available to the server and makes the library visible
to users of the server. Click Next.

36 Special Considerations for Information Map Tables � Chapter 2

5 Enter information about the library, such as the following:

Table 2.11 Library Properties

Field Sample Value

Libref maplib

Engine SASIOIME

Metadata server select a metadata server from the list

Default login (None)

Information map location /Shared Data/SASInfoMaps

Click Next.
6 Examine the final page of the wizard to ensure that the proper values have been

entered. Click Finish to save the library settings. At this point, you can register
tables, as explained in “Registering and Verifying Tables” on page 54.

Special Considerations for Information Map Tables
� When registering the tables with SAS Management Console, ensure that the check

box for the option Enable special characters within DBMS object names
option is selected. The New Library wizard uses data item IDs from the source
information map as column names for the table. These data item IDs sometimes
contain special characters.

� The data item IDs of a source information map are used as column names when
the information map is registered as an information map table. If you change the
data item ID or table column name after the table is registered, then you will not
be able to run queries on the table.

� By default, the values retrieved from an information map table are the detail
values from the source information map. If you want to retrieve aggregated
values, then you must set an aggregation option. You can set the AGGREGATE=
options for tables and libraries in Data Library Manager in SAS Management
Console. After you add a table as a data source for an information map, you can
also set the aggregation option for the data source in the Table Properties dialog
box in SAS Information Map Studio. Selecting the Use the detail values from
the data source radio button is equivalent to setting the AGGREGATE= option
to NO, and selecting the Use the aggregated values from the data source
radio button is equivalent to setting the AGGREGATE= option to YES. This
setting overrides the aggregation settings on the library or the table.

� When referenced by an information map table, measure data items that reference
other measure data items or that use aggregate functions in their expressions can
produce aggregated values only. If a source information map contains one of these
data items, then set the AGGREGATE= option to YES on the library. Otherwise,
these data items will not be registered as columns when you register the
information map as a table.

� If the source information map for an information map table has measure data
items that reference other measure data items or that use aggregate functions in
their expressions, then the combination of setting the AGGREGATE= option to
YES on the library and setting the AGGREGATE= option to NO on the table or on
the data source (within SAS Information Map Studio) causes the table data to be
inaccessible.

Connecting to Common Data Sources � Overview of Establishing Connectivity to an Oracle Database 37

� Normally, when an information map table is registered, its columns get their
formats from the associated source data items. But when a source data item is a
measure data item and has a data type of character, then if the AGGREGATE=
option is set to NO on the library, the format is not set to the format of the source
data item. The format is set to the format of the column that the source data item
is based on.

� Because an information map acts as a reference to underlying data, ReadMetadata
permission must be granted to a user for the information map table, the source
information map, and the table used by the source information map. Read
permission is also needed on the source information map.

� Stored processes and prefilters associated with a source information map are
applied to the information map table. (Filters that are not used as prefilters are
not applied.)

� If a stored process is associated with a source information map and the stored
process uses prompts with default values, the stored process is applied to the
information map table. If the prompts do not have default values, the stored
process does not affect the information map table.

� Information maps created from OLAP cubes cannot be registered as information
map tables.

� The source information map name must be 32 bytes or less.

Establishing Connectivity to an Oracle Database

Overview of Establishing Connectivity to an Oracle Database
The following figure provides a logical view of using Oracle with SAS/ACCESS as a

data source.

Figure 2.8 Establishing Connectivity to Oracle Databases

SAS Data Integration
Studio

Client SAS Application Server Data Server

Workspace Server

SAS/ACCESS
Interface to Oracle

Oracle Client

Oracle Server

Schema of
Oracle Tables

Setting up a connection from SAS to a database management system is a two-stage
process:

1 Register the database server.

38 Stage 1: Register the Database Server � Chapter 2

2 Register the database library.

This example shows the process for establishing a SAS connection to an Oracle
database. It assumes that the software for the database has already been loaded by
using the standard installation wizard for the database client. The following
prerequisites have been satisfied:

� installation of SAS/ACCESS Interface to Oracle. For requirements information, go
to the Install Center at http://support.sas.com/documentation/
installcenter/92/documents/index.html and use the operating system and
SAS version to locate the appropriate SAS Foundation Configuration Guide.

� installation of a supported Oracle Database Client.
� validation that the Oracle client can communicate with the Oracle server.
� (UNIX only) configuration of SAS/ACCESS environmental variables. For more

information, see “Setting UNIX Environment Variables for SAS/ACCESS” on page
56.

Stage 1: Register the Database Server
To register the Oracle database server, perform the following steps:
1 Open the SAS Management Console application.
2 Right-click Server Manager and select the New Server option to access the New

Server wizard.
3 Select Oracle Server from the Database Servers list. Then, click Next.
4 Enter an appropriate server name in the Name field (for example, Oracle Server).

Note that you can supply an optional description if you want. Click Next.
5 Enter the following server properties:

Table 2.12 Server Properties

Field Sample Value

Major Version Number 10

Minor Version Number 2

Software Version 10.2.0

Vendor Oracle Corporation

Click Next.
6 Enter the following connection properties:

http://support.sas.com/documentation/installcenter/92/documents/index.html
http://support.sas.com/documentation/installcenter/92/documents/index.html

Connecting to Common Data Sources � Stage 2: Register the Database Library 39

Table 2.13 Connection Properties

Field Sample Value

Path NEWSERVER10G (This value is contained in the
tnsnames.ora file generated during the Oracle
installation. The file is stored in an Oracle installation
directory such as /opt/oracle/app/oracle/
product/10.2.0/db_1/network/admin/
tnsnames.ora. The alias for the connection
information is contained in this file. See the following
figure.)

Authentication type User/Password

Authentication domain OracleAuth (You might need to create a new
authentication domain. For more information, see
“How to Store Passwords for a Third-Party Server” in
the SAS Intelligence Platform: Security Administration
Guide.) Click New to access the New Authentication
Domain dialog box. Then enter the appropriate value in
the Name field and click OK to save the setting.

The following figure shows a sample tnsnames.ora file:

Note that the correct Path value is circled. Click Next.

7 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the wizard settings.

Stage 2: Register the Database Library
After you have registered the database server, you can register the database library.

To register the Oracle database library, perform the following steps:

1 In SAS Management Console, expand Data Library Manager. Right-click
Libraries. Then, select the New Library option to access the New Library
wizard.

2 Select Oracle Library from the Database Data list. Click Next.

3 Enter an appropriate library name in the Name field (for example, Oracle
Library). You can supply an optional description. Click Next.

4 Select a SAS server from the list and use the right arrow to assign the SAS server.
This step makes the library available to the server and makes the library visible
to users of the server. Click Next.

40 Stage 2: Register the Database Library � Chapter 2

5 Enter the following library properties:

Table 2.14 Library Properties

Field Sample Value

Libref ORAREF

Engine ORACLE

You can also click Advanced Options to perform tasks such as pre-assignment
and optimization. Click Next to access the next page of the wizard.

6 Enter the following settings:

Table 2.15 Server and Connection Information

Field Sample Value

Database Server OracleServer (Use the database server that you
created in the New Server wizard.)

Database Schema Name See your Database Administrator for the correct value.

Default Login If an authentication domain is used, leave this set to
None.

Click Next.

7 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the library settings. At this point, you can register
tables, as explained in “Registering and Verifying Tables” on page 54.

Connecting to Common Data Sources � Overview of Establishing Connectivity to an Oracle Database by Using ODBC 41

Establishing Connectivity to an Oracle Database by Using ODBC

Overview of Establishing Connectivity to an Oracle Database by Using
ODBC

The following figure provides a logical view of using Oracle as a data source and
connecting to the database with a SAS/ACCESS ODBC interface.

Figure 2.9 Establishing Connectivity to Oracle Databases By Using ODBC

SAS Data Integration
Studio

Client SAS Application Server Data Server

Workspace Server

ODBC Driver
Manager

SAS/ACCESS
Interface to ODBC

ODBC Driver

Schema of
Oracle Tables

Oracle Server

Setting up a connection from SAS to an Oracle database management system by using
ODBC is a three-stage process:

1 Define an ODBC data source.

2 Register the database server.

3 Register the database library.

This example shows the process for establishing a SAS connection to an Oracle
database. It assumes that the software for the database has already been loaded with
the standard installation wizard for the database client. Before you begin, satisfy the
following prerequisites:

� installation of SAS/ACCESS Interface to ODBC. For requirements information, go
to the Install Center at http://support.sas.com/documentation/
installcenter/92/documents/index.html and use the operating system and
SAS version to locate the appropriate SAS Foundation Configuration Guide.

� installation of a supported Oracle Database Client if your ODBC driver requires a
client. Refer to the ODBC driver vendor’s documentation to determine whether an
Oracle client is required.

� validation that the Oracle client can communicate with the Oracle server.

� (UNIX only) configuration of SAS/ACCESS environmental variables. For
information about setting environmental variables when you use SAS/ACCESS to

http://support.sas.com/documentation/installcenter/92/documents/index.html
http://support.sas.com/documentation/installcenter/92/documents/index.html

42 Stage 1: Define the ODBC Data Source � Chapter 2

connect to data on UNIX systems, see “Setting UNIX Environment Variables for
SAS/ACCESS” on page 56.

Stage 1: Define the ODBC Data Source
First, you must define the ODBC data source. To define the ODBC data source on

Window systems, perform the following steps:

1 Open the Windows Control Panel. Then, double-click Administrative Tools.
Double-click Data Sources (ODBC) to access the ODBC Data Source
Administrator dialog box.

2 Click Add to access the Create New Data Source dialog box. Click the Oracle
driver listed in the window (for example, Oracle in OraClient10g_home1). Click
Finish to access the Oracle ODBC Driver Configuration dialog box.

Note: System data sources and user data sources store information about how
to connect to the indicated data provider. A system data source is visible to all
users with access to the system, including Windows services. A user data source is
visible only to a particular user, and it can be used on the current machine only.
For this example, we are creating a system data source. �

3 Enter the following configuration settings:

Table 2.16 Configuration Settings

Field Sample Value

Data Source Name Oracle_newserver

TNS Service Name NEWSERVER10G (Select the name entered in the
tnsnames.ora file created during installation of the
Oracle database from the drop-down menu. See the
following figure.)

User User Name

The following display shows the tnsnames.ora file:

4 Click OK to save the configuration settings and return to the ODBC Data Source
Administrator dialog box. Then, click OK to save the data source.

Stage 2: Register the Database Server
To register the database server, perform the following steps:

1 Open the SAS Management Console application.

Connecting to Common Data Sources � Stage 2: Register the Database Server 43

2 Right-click Server Manager and select the New Server option to access the New
Server wizard.

3 Select ODBC Server from the Database Servers list. Click Next.

4 Enter an appropriate server name in the Name field (for example, ODBC Server).
You can supply an optional description. One server is required for each DSN. Click
Next.

5 Enter the following server properties:

Table 2.17 Server Properties

Field Sample Value

Major Version Number 3

Minor Version Number 7

Data Source Type ODBC - Oracle

Software Version 10

Vendor Oracle

Associated Machine newserver.na.sas.com This is the server where the
database is running. (Select this value from the
drop-down list. If the value that you need is not
available, click New to access the New Machine dialog
box. Then enter the appropriate value in the Host
Name field.)

Click Next.
6 Enter the following connection properties:

Table 2.18 Connection Properties

Field Sample Value

Datasrc Oracle_newserver (Use the value entered in the
Data Source Name field in the ODBC Data Source
Administrator dialog box.)

Authentication type User/Password

Authentication Domain ODBCAuth (You might need to create a new
authentication domain. For more information, see
“How to Store Passwords for a Third-Party Server” in
the SAS Intelligence Platform: Security Administration
Guide.) Click New to access the New Authentication
Domain dialog box. Then enter the appropriate value in
the Name field and click OK to save the setting.

Click Next.
7 Examine the final page of the wizard to ensure that the proper values have been

entered. Click Finish to save the wizard settings.

44 Stage 3: Register the Database Library � Chapter 2

Stage 3: Register the Database Library
After you have registered the database server, you can register the database library.

To register the database library, perform the following steps:
1 In SAS Management Console, expand Data Library Manager. Right-click

Libraries and select the New Library option to access the New Library wizard.
2 Select ODBC Library from the Database Data list. Click Next.
3 Enter an appropriate library name in the Name field (for example, ODBC Library).

Note that you can supply an optional description if you want. Click Next.
4 Select a SAS server from the list and use the right arrow to assign the SAS server.

This step makes the library available to the server and makes the library visible
to users of the server. Click Next.

5 Enter the following library properties:

Table 2.19 Library Properties

Field Sample Value

Libref ODBCREF

Engine ODBC

You can also click Advanced Options to perform tasks such as pre-assignment
and optimization. Click Next to access the next page of the wizard.

6 Enter the following settings:

Table 2.20 Server and Connection Information

Field Sample Value

Database Server ODBCServer (Use the database server that you selected
in the New Server wizard.)

Database Schema Name See your Database Administrator for the correct value.

Connection Use the default value of Connection: server_name.

Default Login Use the default value of (None).

Click Next.
7 Examine the final page of the wizard to ensure that the proper values have been

entered. Click Finish to save the library settings. At this point, you can register
tables, as explained in “Registering and Verifying Tables” on page 54.

Connecting to Common Data Sources � Stage 1: Define the ODBC Data Source 45

Establishing Connectivity to a Microsoft Access Database by Using
ODBC

Overview of Establishing Connectivity to a Microsoft Access Database
by Using ODBC

The following figure provides a logical view of using Microsoft Access as a data
source and connecting to the database with a SAS/ACCESS ODBC interface.

Figure 2.10 Establishing Connectivity to Access Databases By Using ODBC

SAS Data Integration
Studio

Client SAS Application Server Data Server

Workspace Server

ODBC Driver
Manager

SAS/ACCESS
Interface to ODBC

ODBC Driver

Microsoft Access
Database

Database Tables

Setting up a connection from SAS to a Microsoft Access database by using ODBC is a
three-stage process:

1 Define an ODBC data source.
2 Register the database server.
3 Register the database library.

This example shows the process for establishing a SAS connection to an Access
database. It assumes that the software for the database has already been loaded with
the standard installation wizard for the database client. In addition, SAS/ACCESS
Interface to ODBC must be installed on the SAS server that will access the Access
database.

Stage 1: Define the ODBC Data Source
First, you must define the ODBC data source. To define the ODBC data source on

Windows systems, perform the following steps:
1 Open the Windows Control Panel. Then, double-click Administrative Tools.

Finally, double-click Data Sources (ODBC) to access the ODBC Data Source
Administrator dialog box.

46 Stage 2: Register the Database Server � Chapter 2

2 Click Add to access the Create New Data Source dialog box. Click the Microsoft
Access driver listed in the window (for example, Microsoft Access Driver
[*.mdb]). Click Finish to access the ODBC Microsoft Access Setup dialog box.

Note: System data sources and user data sources store information about how
to connect to the indicated data provider. A system data source is visible to all
users with access to the system, including Windows services. A user data source is
visible only to a particular user, and it can be used on the current machine only. �

3 Enter the following configuration settings:

Table 2.21 Configuration Settings

Field Sample Value

Data Source Name MS Access

Database Click Select to browse for your Access database file,
such as Northwinds.mdb in the Microsoft Office
Samples directory.

4 Click OK to save the configuration settings and return to the ODBC Data Source
Administrator dialog box. Then, click OK to save the data source.

Stage 2: Register the Database Server
To register the database server, perform the following steps:
1 Open the SAS Management Console application.
2 Right-click Server Manager and select the New Server option to access the New

Server wizard.
3 Select ODBC Server from the Database Servers list. Click Next.
4 Enter an appropriate server name in the Name field (for example, MS Access

Server). One server is required for each DSN. Note that you can supply an
optional description if you want. Click Next.

5 Enter the following server properties:

Table 2.22 Server Properties

Field Sample Value

Major Version Number 3

Minor Version Number 7

Data Source Type ODBC - Microsoft Access

Software Version 3.7.0

Vendor Microsoft

Associated Machine newserver.na.sas.com This is the server where the
database is running. (Select this value from the
drop-down list. If the value that you need is not
available, click New to access the New Machine dialog
box. Then enter the appropriate value in the Host
Name field.)

Click Next.

Connecting to Common Data Sources � Stage 3: Register the Database Library 47

6 Enter the following connection properties:

Table 2.23 Connection Properties

Field Sample Value

Datasrc MS Access (Use the value entered in the Data
Source Name field in the ODBC Data Source
Administrator dialog box.)

Authentication type User/Password

Authentication Domain (None)

Click Next.
7 Examine the final page of the wizard to ensure that the proper values have been

entered. Click Finish to save the wizard settings.

Stage 3: Register the Database Library
After you have registered the database server, you can register the database library.

To register the database library, perform the following steps:
1 In SAS Management Console, expand Data Library Manager. Then, right-click

Libraries and select the New Library option to access the New Library wizard.
2 Select ODBC Library from the Database Data list. Click Next.
3 Enter an appropriate library name in the Name field (for example, MS Access

Library). Note that you can supply an optional description if you want. Click
Next.

4 Select an application server from the list and use the right arrow to assign the
application server. Click Next.

5 Enter the following library properties:

Table 2.24 Library Properties

Field Sample Value

Libref ACCESREF

Engine ODBC

You can also click Advanced Options to perform tasks such as pre-assignment
and optimization. Click Next to access the next page of the wizard.

6 Enter the following settings:

Table 2.25 Server and Connection Information

Field Sample Value

Database Server MS Access Server (Use the database server that you
created in the New Server wizard.)

Click Next.
7 Examine the final page of the wizard to ensure that the proper values have been

entered. Click Finish to save the library settings. At this point, you can register
tables, as explained in “Registering and Verifying Tables” on page 54.

48 Establishing Connectivity to a Scalable Performance Data Server � Chapter 2

Establishing Connectivity to a Scalable Performance Data Server

Overview of Establishing Connectivity to a Scalable Performance Data
Server

The following figure provides a logical view of using SPD Server tables as a data
source.

Figure 2.11 Establishing Connectivity to an SPD Server

SAS Data Integration
Studio

Client SAS Application Server Data Server

Workspace Server

SPDS Engine SAS Scalable
Performance Data Server

SPDS Tables

Configuring a connection from SAS to a Scalable Performance Data Server (SPD
Server) is a three-stage process:

1 Configure the libnames.parm file.
2 Register the SPD server.
3 Register the SPD server library.

This example shows the process for establishing a SAS connection to SPD Server. It
assumes that the software for the database has already been loaded by using the
standard installation wizard for the database client. The SPD Server client and server
software must be installed before the connection can be established.

Stage 1: Configure the libnames.parm File
When you install the SPD Server software on Windows, a libnames.parm file is

created in the C:\Program Files\SAS Institute Inc\SPDS-version\Site directory.
You must specify at least a LIBNAME and a pathname for the directory where the SPD
Server tables will be saved (for example, C:\SPDSTables). For the LIBNAME, use the
LIBNAME domain that you created earlier for the library (in this case, spdsrv).

A sample libnames.parm file is shown in the following figure:

Connecting to Common Data Sources � Stage 2: Register the Server 49

Stage 2: Register the Server
To register the database server, perform the following steps:

1 Open the SAS Management Console application.

2 Right-click Server Manager and select the New Server option to access the New
Server wizard.

3 Select SAS Scalable Performance Data Server from the SAS Servers list.
Then, click Next.

4 Enter an appropriate server name in the Name field (for example, SPDServer). You
can supply an optional description. Click Next.

5 Enter the following server properties:

Table 2.26 Server Properties

Field Sample Value

Major Version Number 4

Minor Version Number 3

Vendor SAS Institute

SAS Compatibility SAS 9

Click Next.

6 Enter the following connection properties:

Table 2.27 Connection Properties

Field Sample Value

Host D1234

Port Number or Name 5200 (Enter the port number for the SPD Server name
server.)

50 Stage 3: Register the Library � Chapter 2

Field Sample Value

Communication Protocol TCP

Authentication Domain SPDSAuth (You might need to create a new
authentication domain. For more information, see
“How to Store Passwords for a Third-Party Server” in
the SAS Intelligence Platform: Security Administration
Guide.) Click New to access the New Authentication
Domain dialog box. Then enter the appropriate value in
the Name field and click OK to save the setting.

7 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the wizard settings.

Stage 3: Register the Library
After you have registered the server, you can register the library. To register the

library, perform the following steps:
1 In SAS Management Console, expand Data Library Manager. Right-click

Libraries. Then, select the New Library option to access the New Library
wizard.

2 Select SAS Scalable Performance Data Server V4 Library from the SAS
Data list. Click Next.

3 Enter an appropriate library name in the Name field (for example,
SPDServerLibrary). You can supply an optional description. Click Next.

4 Select a SAS server from the list and use the right arrow to assign the SAS server.
This step makes the library available to the server and makes the library visible
to users of the server. Click Next.

5 Enter the following library properties:

Table 2.28 Library Properties

Field Sample Value

Libref spdsrv

Engine SASSPDS

You can also click Advanced Options to perform tasks such as pre-assignment
and optimization. Click Next to access the next page of the wizard.

6 Enter the following settings:

Table 2.29 Server and Connection Information

Field Sample Value

SAS SPD Server SPDSServer (Use the database server that you selected
in the New Server wizard.)

LIBNAME Domain spdsrv (Select the domain name that you entered in
the libname.parms file.)

Default Login (None) (Keep this default value.)

Click Next.

Connecting to Common Data Sources � Stage 1: Register the Server 51

7 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the library settings.

At this point, you can register tables, as explained in “Registering and Verifying
Tables” on page 54.

Establishing Connectivity to an SAP Server

Overview to Establishing Connectivity to an SAP Server
The following figure provides a logical view of connecting to an SAP Server as a data

source.

Figure 2.12 Establishing Connectivity to an SAP Server

SAS Data
Integration Studio

SAS Data
Surveyor for SAP

Client SAS Application Server Data Server

Workspace Server

SAS/ACCESS
Interface to R/3

SAP
Application Server

SAP Data Tables

Setting up a connection from SAS to an SAP server is a three-stage process:
1 Register the server.
2 Register the library.
3 Extract SAP metadata, if SAS Data Surveyor for SAP is installed.

This example shows the process for establishing a SAS connection to SAP. It assumes
that the following software has already been loaded by using the standard installation
wizard:

� SAP RFC library. This is required for communication with SAP.
� SAS/ACCESS Interface to R/3. For z/OS hosts, this installs the SAS RFC server.

For these z/OS hosts, this server must be started each time that you start the SAS
servers such as the Object Spawner.

Stage 1: Register the Server
To register the SAP server, perform the following steps:

1 Open the SAS Management Console application.

52 Stage 1: Register the Server � Chapter 2

2 Right-click Server Manager and select the New Server option to access the New
Server wizard.

3 Select SAP Server from the Enterprise Applications Servers list. Then, click
Next.

4 Enter an appropriate server name in the Name field (for example, SAPServer).
Note that you can supply an optional description if you want. Click Next.

5 Enter the following server properties. An SAP 4.6 installation is used as the
example:

Table 2.30 Server Properties

Field Sample Value

Major Version Number 4

Minor Version Number 6

Software Version 4.6

Vendor SAP AG

Click Next.
6 Enter the following connection properties:

Table 2.31 Connection Properties

Field Sample Value

Authentication Domain SAPAuth (You might need to create a new
authentication domain. For more information, see
“How to Store Passwords for a Third-Party Server” in
the SAS Intelligence Platform: Security Administration
Guide.) Click New to access the New Authentication
Domain dialog box. Then enter the appropriate value in
the Name field and click OK to save the setting.

Client 800 (This value is obtained from your SAP
administrator.)

Language EN (This value is obtained from your SAP
administrator.)

Note: An embedded RFC server is not available for z/OS. For z/OS, click the
Advanced Options button and enter “host=rfc-server port=rfc-port” in the Other
option(s) to be appended text field. Also, select the Batch Mode check box. �

7 Select Application Server and click Options to access the Application Server
Host dialog box.

Note: Instead of the Application Server, you might choose other options, as
well, including: SAPGUI Logical Name, SAPRFC.INI Logical Name, and Message
Servers �

8 Enter the fully qualified name of the server host that was supplied by the SAP
administrator (for example, sapsrv.na.sas.com) in the Application Server
Host field. Enter the system number that was supplied by the SAP administrator
(for example, 12) in the System Number field. The default access mode is direct

Connecting to Common Data Sources � Stage 3: Extract SAP Metadata 53

access. In order to run in batch mode, click the Advanced Options tab, select the
Batch Mode check box, and enter into the Other options field a value for
destgroup such as destgroup="SDSTEST". For batch mode on z/OS, follow the
instructions in Installation Instructions for SAS/ACCESS Interface to R/3
Software. Then, click OK to return to the New Server wizard.

9 Click Next.
10 Examine the final page of the wizard to ensure that the proper values have been

entered. Click Finish to save the wizard settings.

Stage 2: Register the Library
After you have registered the server, you can register the library. To register the

library, perform the following steps:
1 In SAS Management Console, expand Data Library Manager. Right-click

Libraries. Then, select the New Library option to access the New Library
wizard.

2 Select SAP Library from the Enterprise Applications Data list. Click Next.
3 Enter an appropriate library name in the Name field (for example, SAP Library).

You can supply an optional description. Click Next.
4 Select an application server from the list and use the right arrow to assign the

application server. This step makes the library available to the server and makes
the library visible to users of the server. Click Next.

5 Enter the following library properties:

Table 2.32 Library Properties

Field Sample Value

Libref SAPLib

Engine SASIOSR3 (Accept the value that is populated
automatically.)

Click Next.
6 Select the SAP server that you entered in the Name field of the New Server wizard

(for example, SAP Server) by using the Database Server drop-down list. Then,
click Next.

7 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the library settings.

Stage 3: Extract SAP Metadata
If SAS Data Surveyor for SAP is installed, then you can extract metadata about your

SAP objects to SAS data sets. Once you have created the SAS data sets, then the tables
in your SAP System are available for use in jobs with clients like SAS Data Integration
Studio and SAS Enterprise Guide.

The tools for extracting the SAP metadata are provided as a plug-in to SAS
Management Console and access to the tool is controlled with role-based access. To
enable the extraction tool for role-based access and to extract the SAP metadata,
perform the following steps:

1 Using an unrestricted account such as sasadm@saspw, select Tools � Plug-in
Manager from SAS Management Console.

54 Special Considerations for SAP � Chapter 2

2 On the Plug-in Manager window, select the ExtractionTool check box. Click OK.
3 Assign the ExtractionTool capability to a role with the User Manager plug-in to

SAS Management Console, and then associate users or groups with the role. The
following list provides two choices:
� Assign the ExtractionTool capability to an existing role such as Management

Console: Advanced.
� Create a new role, assign the ExtractTool capability to it, and then associate

users and groups with the new role.

For more information about roles, see “How to Assign Capabilities to Roles” in
the SAS Intelligence Platform: Security Administration Guide.

4 Important: Log on to SAS Management Console with an account that has access to
the Foundation repository and that is not an unrestricted account.

5 Select Tools � Extract from BW or Tools � Extract from R/3. For information
about using the tools, click Help.

Special Considerations for SAP
For z/OS operating environments, when you specify the language value on the New

Server wizard, use uppercase letters and enclose the value in quotation marks (for
example, “EN”).

Registering and Verifying Tables
You need to make sure that the end users of your SAS applications can gain access to

tables in your data libraries. The exact steps and authorization requirements vary
across applications and data types, but you must always log on to the application,
create the needed metadata, and verify the existence of the tables. This example will
focus on the process used to verify SAS tables in SAS Management Console.

One important consideration for registering tables is that you must not use an
unrestricted user account. This is because the libraries you access often require
retrieving database passwords from the metadata repository. An unrestricted user does
not have the ability to access passwords stored in metadata. The user account you log
in with must have the necessary permissions to access stored database credentials in
the metadata. Also, this user account must have the necessary permissions:

� ReadMetadata and WriteMetadata permission in the DefaultACT for the repository
� ReadMetadata and WriteMetadata permission on the library
� WriteMemberMetadata permission to the folder where the table metadata is to be

stored
� permission to the underlying data source to read the tables

Verifying your access to tables in SAS Management Console is a two-stage process:
1 Register the tables.
2 View the data in SAS Data Integration Studio.

Stage 1: Register the Tables
To register the tables, perform the following steps:
1 Open SAS Management Console, if necessary. Be sure to select the metadata

profile of a user who is not an unrestricted user.

Connecting to Common Data Sources � Read-only Access for Reporting Libraries 55

2 Expand the Data Library Manager node. Then, expand the Libraries node to
see the list of libraries. Right-click the library that contains the tables that you
need to import. Then, select the Register Tables option to access the first page
of the Register Tables wizard.

3 Verify that the values shown in the fields in the Library details group box are
correct. Click Next.

4 Click the tables that you need to select. (Hold down the CTRL key and click to
select more than one table.) Click Next.

5 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish.

Note: You can also register tables by using SAS Data Integration Studio and also
by using the METALIB procedure. For information about using the METALIB
procedure, see Chapter 4, “Managing Table Metadata,” on page 71. �

Stage 2: Verify Access to the Data in a SAS Application
Open an application that can view SAS data in order to view the data in the imported

tables and review the data. For example, you can use SAS Data Integration Studio. To
use SAS Data Integration Studio to view a registered table, perform the following steps:

1 Navigate to the Inventory tree and expand the Table node.
2 Right-click a table that you need to verify and select the Open option. Examine the

data contained in the table in the View Data window.
3 Close the View Data window.
4 (Optional) You can also examine the table’s Properties field. Right-click the table

and select the Properties option.
5 Click the Columns tab to see column data for the table. Close the Properties

window.

Read-only Access for Reporting Libraries
If your site uses libraries for reporting, or for access exclusively by report generating

applications such as SAS Information Map Studio and SAS Web Report Studio, then
consider setting read-only access for the library. If the library is not set for read-only
access, then even when reporting applications raise a query against the library, the
underlying SAS session opens the data in read-write mode. In this case, simultaneous
queries against the same library might be prevented. Simply put, if clients access the
information in read-only mode, then set the library to read the data source in read-only
mode.

Table 2.33 Setting a Library for Read-Only Access

Library Type Where to Set Read-only Access

All Database Data Libraries Advanced Options dialog box, Input/Output tab, option Data
access level for connection

SAS BASE Library Advanced Options dialog box, Options for any host tab

SAS Information Map Library Always read-only, no configuration needed

SAS XML Library Library properties page of the wizard, Library Access
option

56 Setting UNIX Environment Variables for SAS/ACCESS � Chapter 2

Library Type Where to Set Read-only Access

SAS Scalable PerformanceData
Engine Library

Advanced Options dialog box, Options for any host tab

SAS/SHARE REMOTE Engine
Library

Advanced Options dialog box, Libname Options tab

Setting UNIX Environment Variables for SAS/ACCESS
If you are attempting to connect to data sources located on UNIX by using

SAS/ACCESS, you must set environmental variables so SAS servers can access the
database. Each database vendor and operating system vendor requires specific
environment variables to be set. A typical value is LD_LIBRARY_PATH. When using
ODBC, two typical values are ODBCINI and ODBCINSTINI. For more information
about the correct environment variables, go to the Install Center at http://
support.sas.com/documentation/installcenter/92/documents/index.html, and
use the operating system and SAS version to locate the appropriate SAS Foundation
Configuration Guide.

To set the appropriate environment variables in the !SASROOT/bin/sasenv_local
file, perform the following steps:

1 Edit the sasenv_local file and add the variables. This example uses sample
values, substitute the proper paths:

ODBCINI=/opt/Composite_Software/CIS_4.6.0/odbc.ini
export ODBCINI

ODBCINSTINI=/opt/Composite_Software/CIS_4.6.0/odbcinst.ini
export ODBCINSTINI

LD_LIBRARY_PATH=/opt/Composite_Software/CIS_4.6.0/apps/odbc/lib:\
/opt/oracle/app/oracle/product/11.1.0/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

ORACLE_HOME=/opt/oracle/app/oracle/product/11.1.0
export ORACLE_HOME

2 In SAS Management Console, right-click the Workspace Server connection and
select Validate to verify that the workspace server starts correctly with the new
environment variables.

3 Restart the SAS/SHARE and SAS/CONNECT servers, if they are present in the
deployment and reference the SAS/ACCESS library.

Troubleshooting SAS/ACCESS Connections to RDBMS
This section provides information about troubleshooting a SAS/ACCESS library

configuration when registering tables fails. To troubleshoot the SAS/ACCESS library,
perform the following steps:

1 From SAS Management Console, right-click the library icon and select Display
LIBNAME Statement.

2 Start SAS on the SAS server host and issue the LIBNAME statement displayed
from SAS Management Console.

http://support.sas.com/documentation/installcenter/92/documents/index.html
http://support.sas.com/documentation/installcenter/92/documents/index.html

Connecting to Common Data Sources � Troubleshooting SAS/ACCESS Connections to RDBMS 57

a If the SAS log indicates failure, check the following items:

i If this is UNIX environment, check “Setting UNIX Environment Variables for
SAS/ACCESS” on page 56.

ii Check and revise the LIBNAME statement. For more information about
LIBNAME statements for SAS/ACCESS engines, see SAS/ACCESS for
Relational Databases: Reference. If you are successful at this stage, then use
the Properties tab of the library to reconfigure the library.

iii Confirm that SAS/ACCESS is installed correctly. For installation
information, go to the Install Center at http://support.sas.com/
documentation/installcenter/92/documents/index.html and use the
operating system and SAS version to locate the appropriate SAS Foundation
Configuration Guide.

b If the connection succeeds, perform the following steps:

i Run the DATASETS procedure:

proc datasets library = libref;
quit;

ii If no members are returned, then check the schema value by running the
next step or contacting your database administrator.

3 Log on with the user account to the host where the SAS server is running, and use
the native database client to connect to the database. If this fails, confirm the user
account has file system privileges to the database client binaries and libraries.

58

59

C H A P T E R

3
Assigning Libraries

Overview of Assigning Libraries 59
What Does It Mean to Assign a Library? 59

Pre-assigning Libraries 60

Data-Access Engines and the Metadata Engine 61

Using Libraries That Are Not Pre-assigned 62

Default assignment for libraries 62
How Do the Different Platform Clients Assign Libraries? 63

Processing Stored Processes When the Library is Not Pre-assigned 64

Pre-assigning Libraries Using Engines Other Than the Metadata Engine 65

Overview of Pre-assigning Libraries Using Engines Other Than the Metadata Engine 65

Stage 1: Flag the Library as Pre-assigned 66

Stage 2: Edit Configuration Files 67
Pre-assignment Using Information in an Autoexec File 68

Pre-assigning Libraries to Use the Metadata Engine 68

Verifying Pre-assignments by Reviewing the Logs 69

Overview of Assigning Libraries

What Does It Mean to Assign a Library?
In Chapter 2, “Connecting to Common Data Sources,” on page 17, you learned how to

register libraries in metadata and assigned the libraries to SAS servers. These libraries
represented such things as the set of SAS data sets in a directory or the set of tables in
a database schema. This chapter explains what assigning a library accomplishes and
how to assign a library to SAS servers. By assigning a library to a SAS server, you are
identifying the server that can access the libraries, controlling how the SAS server
accesses the library, and making the library visible to users of the SAS server.

Assigning a library means letting a SAS session know that a libref—a shortcut
name—is associated with the information that the SAS session needs to access a data
library. For example, if you were writing a SAS program that needed to access a library
of SAS data sets, your program might include the following statement:

LIBNAME ORGOLD BASE ’C:\SAS\SASConfig\Lev1\SASApp\Data\orgold’

In this case, the libref ORGOLD tells the SAS session that it should access data sets in
the directory C:\SAS\SASConfig\Lev1\SASApp\Data\orgold using the Base SAS
data-access engine.

60 Pre-assigning Libraries � Chapter 3

SAS Intelligence Platform clients such as SAS Data Integration Studio, SAS OLAP
Cube Studio, and SAS Information Map Studio generate SAS code that uses librefs.
Before this code can execute, the corresponding library must be assigned, and the
server that executes the code must know about that assignment.

Pre-assigning Libraries
There are two ways in which a server can find out about a library reference. One

way is for you, as the administrator, to configure the environment so that the server
finds out about the libref at server startup. This approach is referred to as
pre-assigning the library, because the libref is established before any code that uses
that libref is submitted. The other way is to let the client application define the libref
for a server when it generates code for submission to that server.

Deciding whether to pre-assign a library or not has important consequences. One
factor to keep in mind is that pre-assigning an excessive number of libraries can slow
the execution of SAS jobs for all users. Other factors are described in “Data-Access
Engines and the Metadata Engine” on page 61. SAS clients and stored processes can
access a library using one of two engines:

� the engine specified in the library’s metadata. This is the Base SAS engine for
libraries of SAS data sets, the ORACLE engine for Oracle libraries, and so forth.

� the Metadata LIBNAME Engine.

Which engine you use affects security and determines what operations are possible.

Note: If you are defining a pre-assigned DBMS library, do not use the Pre-Assigned
Library resource template. Register the library using the appropriate DBMS library
template. Specify that the library is pre-assigned using the Advanced Options dialog
box in the New Library wizard or the library Properties window. �

If you pre-assign libraries, you control which engine is used to access the data. If you
do not pre-assign a library, the client that needs to access that library decides which
engine to use, and different clients use different strategies. For example, SAS Data
Integration Studio and SAS OLAP Cube Studio always use the engine stored in the
library’s metadata, while SAS Enterprise Guide can use either the metadata engine or
its native engine. For more information, see “Managing Libraries” in the chapter
“Managing Metadata Objects” in SAS Management Console User’s Guide.

Having the server process assign libraries upon start-up based on information in the
metadata results in library assignments that are identical and guaranteed across all
SAS client applications and servers. Some environments where this approach to
assigning libraries is desirable include the following:

� environments where users are executing stored processes, and you do not want
programmers having to manage library assignments in their code or in autoexec
files.

� environments where the DATA Step Batch Server is used to execute jobs created
by SAS Data Integration Studio, and library assignments for these jobs should be
identical to assignments used when the process was created.

� environments where SAS Enterprise Guide or SAS Add-In for Microsoft Office
users will be running tasks that need to create tables in the library that is
registered in metadata. When you register a client-assigned library (a library that
is not pre-assigned), SAS Enterprise Guide and SAS Add-In for Microsoft Office
assign the library to use the metadata engine by default. Metadata engine
libraries do not update metadata after changes to the underlying data source.
Metadata can be updated to reflect changes to the underlying data source with
PROC METALIB or with the register tables function of SAS Management Console.

Assigning Libraries � Data-Access Engines and the Metadata Engine 61

When libraries are assigned by the client application, each application can assign the
library in a way that is most suitable for its intended user base, and library connections
are established only if needed. When libraries are assigned by the server, each library
is available to all back-end server processes and is allocated exactly the same way for
all client applications. A mixture of some server-assigned and some client
application-assigned libraries will most likely be required to meet the needs of all the
users in your environment.

Data-Access Engines and the Metadata Engine
As mentioned previously, when you access the data in a data library, you can use the

data-access engine stored in the metadata definition of the library, or you can use the
metadata engine. As shown in the following figure, the metadata engine invokes the
Base SAS engine stored in the metadata.

Display 3.1 Metadata Engine Invocation of the Base SAS Engine

File Server
SAS Data Tables

SAS Metadata Server

Metadata Repository

Workspace
Server Metadata Engine

(META)

SAS Add-In
for Microsoft Office

(Open SAS Data Source)

BASE Engine

®

One of the key enhancements made in SAS®9 has been the introduction of the SAS
Open Metadata Architecture authorization facility. This authorization facility gives you,
the administrator, the ability to control which users can access which metadata objects,
such as SASLibrary, PhysicalTable, and LogicalServer. You manage their access to
metadata by setting ReadMetadata and WriteMetadata permissions on the object or on
the repository.

As depicted in the previous figure, when SAS users expand a library that they have
ReadMetadata access to and that has been assigned to use the metadata engine, the
engine first sends a request to the SAS Metadata Server asking for the users’ metadata
permissions on the tables in the library. A list of tables for which the users have at
least ReadMetadata access will be returned and presented to them for selection. If they
then attempt to perform some action against one of those tables, such as opening it, the
metadata engine sends a query to the metadata server for the users’ metadata
permission on the table. If the users or the group to which they belong have at least
Read access to the table, the metadata engine will call upon the engine specified in the

62 Using Libraries That Are Not Pre-assigned � Chapter 3

metadata to handle the request, and the table will be opened into the client application
for reading.

In contrast, when client applications access a library that does not use the metadata
engine, they first contact the metadata server and request access to a metadata object
as the user. The metadata server then queries the SAS authorization facility to
determine whether users have ReadMetadata, CheckInMetadata, or WriteMetadata
permission to the object. These metadata-based permissions are the only permissions
checked by the metadata server. Users attempting to access a table in a SAS
metadata-based library that is pre-assigned by the server will be successful if they have
ReadMetadata access to the library and, in the case of SAS Data Integration Studio,
SAS OLAP Cube Studio, and SAS Information Map Studio, ReadMetadata access to the
table. Notice that when the library does not use the metadata engine, the data-level
authorizations of Read, Write, Create, and Delete are never checked.

If you want to use the SAS authorization facility to control Read, Write, Create, and
Delete permissions, then you need to assign the server-side library to use the metadata
engine in an autoexec file. When used with its default options, the metadata engine
queries the metadata server for these metadata-based permissions. The SAS
authorization facility must be queried for data-level permissions. When libraries are
defined in an autoexec file through a LIBNAME statement, they are always
pre-assigned.

The general form of a LIBNAME statement for the metadata engine is as follows:

LIBNAME libref META LIBID=id|LIBURI=URI-format|LIBRARY=name
<connection-options><engine-options>;

Therefore, a META LIBNAME statement for the Orion Gold Customers library that
is registered in metadata would look something like the following:

LIBNAME ORGOLD META library="Orion Gold Customers";

This is the minimum information that you need to supply in the LIBNAME
statement itself. However, this statement works only if the META* options that contain
the information necessary to connect to the metadata server have already been
specified. These options, METASERVER, METAPORT, METAREPOSITORY, and
METAPROTOCOL, are configured in the sasv9.cfg file already if you used the SAS
Deployment Wizard to set up your environment.

Having data requests flow through the metadata engine before they reach the engine
that actually fulfills the request provides an important capability: the metadata engine
enforces the data-level authorizations that are available in the SAS Authorization
Manager. These include the Read, Write, Create, and Delete permissions. The other
data-access engines ignore these permissions.

At the same time, using the metadata engine takes away some capabilities. Most
important, the metadata engine does not automatically create, update, or delete
metadata when changes are made to the underlying data source.

Using Libraries That Are Not Pre-assigned

Default assignment for libraries
By default, newly created libraries are not pre-assigned. When a library is not

pre-assigned, the library is assigned by using the data-access engine that best suits the
client application and its intended user base. Thus, the default assignments for
applications such as SAS Data Integration Studio, SAS Add-In for Microsoft Office, SAS
Enterprise Guide, SAS OLAP Cube Studio, SAS Enterprise Miner, and SAS

Assigning Libraries � How Do the Different Platform Clients Assign Libraries? 63

Information Map Studio are used. For example, if you do not pre-assign the library,
SAS Data Integration Studio assigns the library using the engine specified in metadata
(such as BASE). This method avoids the data-level authorizations of Read, Write,
Create, and Delete. This approach is a best practice, because it is assumed that in most
cases SAS Data Integration Studio developers are building processes that create or
update tables in the library and that the underlying engine is the only engine that
should be used for data-populating tasks.

How Do the Different Platform Clients Assign Libraries?
When libraries are not pre-assigned, each SAS platform client assigns libraries.

Allowing each application to assign libraries as it deems appropriate for its user base
results in the optimal security model for environments where users have different data
access requirements to a library and where you want to capitalize on using metadata
decisions enforced by the SAS authorization facility on top of the operating system or
RDBMS authorization layer. An example of such an environment would be one with
clients running at least SAS Enterprise Guide and SAS Data Integration Studio. In
this environment, SAS Data Integration Studio processes update tables that are in turn
used in ad hoc analysis within SAS Enterprise Guide. The SAS Data Integration Studio
processes need to specify tables in the library as target tables (output), whereas the
SAS Enterprise Guide user’s activities largely involve querying and analyzing chunks of
data (input).

Because SAS Data Integration Studio processes typically update or create target
tables, when SAS Data Integration Studio assigns the library it does not use the
metadata engine. Instead, it assigns the library using the engine specified in the
metadata. Because SAS Data Integration Studio only works with tables that are
registered in the metadata repository, you can use the SAS authorization facility to
control a client’s access to tables by setting ReadMetadata, WriteMetadata, and
CheckInMetadata permissions on the library and table metadata objects.

SAS Information Map Studio always assigns the library by using a LIBNAME
statement and the engine specified in the metadata, unless the library is explicitly
defined by a SAS administrator (or SAS Data Integration Studio administrator) to use
the metadata engine.

Note: The metadata authorization layer supplements operating system- and
RDBMS-level security. It does not replace it. Operating system and RDBMS
authorization layers can and should always be used as the first means of securing
access to tables. �

On the other hand, the SAS Add-In for Microsoft Office and SAS Enterprise Guide
(shown in the following table) assign the library using the metadata engine by default,
so that data-level authorizations of Read, Write, Create, and Delete, which are specified
in the metadata, are enforced. If defining libraries so that they are not pre-assigned
seems like a potential option for your environment, then you will want to explore this
topic a little further and learn how to ensure that these libraries will be available to
server processes that do not receive direct requests from client applications. For
example, you will need to learn how to manually assign the library in server processes
such as the stored process server and DATA Step Batch Server (if present), as discussed
in the next section.

64 Processing Stored Processes When the Library is Not Pre-assigned � Chapter 3

Table 3.1 Platform Client Default Library Assignments

Application Pre-assigned

Library

Engine Used

Minimum Metadata
Authorizations

Required

SAS Add-In for
Microsoft Office

No META Library: ReadMetadata

Table: ReadMetadata
and Read

SAS Enterprise Guide No META Library: ReadMetadata

Table: ReadMetadata
and Read

SAS Data Integration
Studio

No Underlying data
engine

Library: ReadMetadata

Table: ReadMetadata

SAS OLAP Cube
Studio

No Underlying data
engine

Library: ReadMetadata

Table: ReadMetadata

SAS Information Map
Studio

No Underlying data
engine

Library: ReadMetadata

Table: ReadMetadata

Processing Stored Processes When the Library is Not Pre-assigned
In the SAS Intelligence Platform, a stored process is a SAS program that is stored on

a server and can be executed as requested by clients who have ReadMetadata access to
the stored process program’s metadata. SAS Stored Processes can be executed by either
a SAS Workspace Server or a SAS Stored Process Server. If a library is not
pre-assigned, it is the responsibility of the stored process program’s author or the SAS
administrator to ensure that the library is assigned to a specific location and physical
path. This can be done either directly in each stored process program or from an
external file that is linked to the stored process with an %INCLUDE statement.

These methods have the following advantages and disadvantages:

� Method: Define a metadata engine library in the stored process program.
� Advantage: Data-level authorizations specified for the library and table

metadata objects are enforced by the SAS authorization facility. Note that these
permissions are enforced for the server’s identity (usually SAS General
Servers), not the client’s.

� Disadvantage: Library and table metadata for any table called in the program
must be registered in the metadata repository, thus preventing a stored process
from accessing tables that might reside in the library but are not registered in
metadata.

� Disadvantage: Changes to the library metadata object’s name or repository
location would require that each stored process that references the library be
updated.

� Disadvantage: Metadata inconsistencies or corruptions can result if the stored
process modifies a table’s structure through the library. Examples of this
modification include adding or removing columns.

� Method: Define the library in the stored process program and use only the
underlying data engine.

Assigning Libraries � Overview of Pre-assigning Libraries Using Engines Other Than the Metadata Engine 65

� Advantage: A table does not have to be registered in the metadata repository in
order for the stored process to access it.

� Advantage: Tables in the library can be re-created or updated and new tables
created without directly impacting the metadata. Note, however, that changes
to the structure of a table that has been registered previously in the metadata
repository can still cause synchronization issues between the table and the
metadata.

� Disadvantage: The metadata repository is no longer a single point of
management, because library definitions are stored in multiple places.

� Disadvantage: Changes to the library path or directory would require that each
stored process that references the library be updated.

� Disadvantage: The SAS authorization facility has no role in managing access to
tables called by the stored process. Thus, the SAS General Server User can
access data in any table in the library for which he has been granted Read
access at the OS or RDBMS layer.

� Method: Store the library assignments in an external file and then include the file
in the stored process program.

� Advantage: Library assignments are defined in one file or directory location
that all stored process programs can reference.

� Advantage: Multiple files that contain library assignments can be created and
referenced as needed in the stored process so that things such as connections to
databases are established only when absolutely required.

� Advantage: Other advantages depend on how the library is defined in the file.
See the two preceding methods.

� Disadvantage: The files referenced in the stored process must be created and
maintained by someone who has Write (and Modify) access to the file’s location
on the system.

� Disadvantage: Stored processes created through point and click applications
such as SAS Enterprise Guide must be modified manually to replace the library
assignment with manually generated %INCLUDE syntax.

� Disadvantage: Changes to the file’s location or name requires updating all the
stored processes that include the file.

Pre-assigning Libraries Using Engines Other Than the Metadata Engine

Overview of Pre-assigning Libraries Using Engines Other Than the
Metadata Engine

Pre-assigning a library ensures that the library will always be available to and
assigned by SAS server processes on a server-by-server basis when the server starts,
rather than assigned by the client application or later in SAS code. Two types of
pre-assignment are possible. First, you can pre-assign a library so that it will be
accessed by the engine defined in the metadata. Second, you can pre-assign a library so
that it will be accessed by the metadata engine. In either case, pre-assignment allows
you to designate an assignment method for use by all of the applications that use the
library.

66 Stage 1: Flag the Library as Pre-assigned � Chapter 3

Note: Pre-assigning a large number of libraries can have a negative impact on the
execution time of SAS programs for all users. You should therefore be judicious in
deciding whether to pre-assign a library or not. �

Pre-assigning a library to an engine other than the metadata engine engine is a
two-stage process:

1 Use SAS Management Console to flag the library as pre-assigned and to assign the
library to the servers.

2 Edit configuration files so the assigned servers can retrieve library metadata by
adding the METAAUTORESOURCES SAS system option to the server’s
sasv9_usermods.cfg file.

Stage 1: Flag the Library as Pre-assigned
Assume that we are pre-assigning the Orion Gold Customers library. The library can

be configured to be assigned by the server process by either selecting the Library is
pre-assigned advanced option when the library is being registered or by modifying the
library’s properties after the fact. To pre-assign a library, perform the following steps:

1 From SAS Management Console, select Data Library Manager � Libraries �
Orion Gold Customers � Properties.

2 Select the Options tab.
3 Click the Advanced Options button.
4 Select the check box on the Pre-Assign tab.

Figure 3.1 Library is Pre-assigned Option

5 Click OK on the Advanced Options dialog box.

Assigning Libraries � Stage 2: Edit Configuration Files 67

6 Click the Assign tab on the library properties window.

7 Select the servers you want to pre-assign the libraries to. Click OK when you are
finished.

Stage 2: Edit Configuration Files
In the previous stage, we set the libraries that are available to be pre-assigned, and

we selected which servers can retrieve the library definitions from metadata. In this
stage, we edit the sasv9_usermods.cfg file for the servers we selected and add a
METAAUTORESOURCES SAS system option so that as those servers start, they read
the library definitions from metadata.

Note: This stage is not needed for workspace servers, pooled workspace servers,
stored process servers, SAS/SHARE servers, or OLAP servers. Those server types
automatically read metadata when they start and assign the libraries. �

To edit the configuration files, perform the following steps:

1 For each SAS/CONNECT server, edit the following file:

SAS-config-dir\Lev1\SASApp\ConnectServer\sasv9_usermods.cfg

Add the following SAS system option:

-metaautoresources "omsobj:ServerComponent?@Name=’SASApp’"

2 For each DATA Step Batch server, edit the following file:

SAS-config-dir\Lev1\SASApp\DataStep\sasv9_usermods.cfg

Add the following SAS system option:

-metaautoresources "omsobj:ServerComponent?@Name=’SASApp’"

68 Pre-assignment Using Information in an Autoexec File � Chapter 3

Pre-assignment Using Information in an Autoexec File
Pre-assigning libraries in an autoexec file is not a recommended practice because

library assignments can be stored in two places, the autoexec file and metadata. Having
configuration information in two places increases maintenance. An autoexec file is a
text file that contains SAS statements that are executed when the server process starts.
If an autoexec file is used in your environment, it is important to note that libraries
assigned by an autoexec file take precedence over same-named libraries assigned by to
the server in metadata. (Use the autoexec file created during installation, which is
SAS-config-dir\Lev1\SASApp\appserver_autoexec_usermods.sas.) For example, if
ORGOLD is registered in the metadata to be pre-assigned, and ORGOLD is also defined
in an autoexec for the same server, the ORGOLD library is assigned using the
LIBNAME information from the autoexec file. Simply put, the library assignment in
the autoexec file always takes precedence.

Display 3.2 Library Assignment in an Autoexec File

Pre-assigning Libraries to Use the Metadata Engine

The metadata engine is a data access engine that enforces the data-level permissions
of Read, Write, Create, and Delete that are set on table objects in the repository. It also
enforces the Create and Delete permissions that are set on library objects. The
metadata engine acts as a gatekeeper that determines which users can access which
metadata-based libraries and tables. Note that this is a level of security implemented
in SAS as a supplement to securing the data source. Do not rely on the metadata
engine as the single security mechanism.

Note: The METAOUT= option specified in step 3 of the following task is important.
For information about the LIBNAME statement for the metadata engine, see SAS
Language Interfaces to Metadata. �

To register a library that uses the metadata engine, perform the following steps:

1 Register the library in the SAS Metadata Repository.

2 Mark the library as pre-assigned.

3 Construct a LIBNAME statement that uses the same libref specified in the
metadata and META as the engine:

LIBNAME ORGOLD LIBRARY=’Orion Gold’ REPNAME=’Foundation’ METAOUT=DATA;

Assigning Libraries � Verifying Pre-assignments by Reviewing the Logs 69

Note: The METAOUT=DATA option permits read, create, update, and deleting
tables. Another value is METAOUT=DATAREG. This choice permits read, update,
and delete of tables registered in metadata as well as creating new tables;
however, new tables cannot be read until they are registered in metadata. �

4 Add the metadata LIBNAME statement to an autoexec file. During the
configuration process, the SAS Deployment Wizard created a single file named
appserver_autoexec_usermods.sas that controls all component servers of the
SAS application server and files named autoexec_usermods.sas for each of the
component servers of the application server:

� appserver_autoexec_usermods.sas

Use this file if you want all the SAS application server components
registered to the application server, such as an OLAP server, a workspace
server, and so on, to access the library with the metadata engine in the same
way.

� autoexec_usermods.sas

Use this file to modify one of the SAS application server components, such
as the workspace server, to use the metadata engine for accessing a library,
but to leave the other server components unchanged. If this is your choice,
then note that the autoexec_usermods.sas file is located within a
sub-directory, such as C:\SAS\Config\Lev1\SASApp\WorkspaceServer\.

5 Restart the object spawner and any server processes whose autoexec files have
been modified. For information about restarting the servers, see “Starting,
Stopping, and Pausing Servers” in the SAS Intelligence Platform: System
Administration Guide.

6 Use SAS Management Console to grant read, write, create, and delete privileges to
users or groups as appropriate for your site.

Note: Remember that for libraries using the metadata engine, an administrator
must register tables after any create, update, or delete changes in metadata. You can
register table metadata by using PROC METALIB or SAS Management Console. �

Verifying Pre-assignments by Reviewing the Logs
After you specify that a library is to be pre-assigned by the server, the SAS server

process will start as follows:
1 Connect to the metadata server.
2 Retrieve library metadata.
3 Assign the library using the engine specified in the library metadata.

For example, if the Orion Gold Customers library is pre-assigned to the workspace
server, then the library assignment would be equivalent to a SAS programmer
submitting a LIBNAME statement such as the following:

LIBNAME ORGOLD BASE "D:\OrionStar\Gold";

In the case of an IOM server, such as the workspace server, you can verify the

70 Verifying Pre-assignments by Reviewing the Logs � Chapter 3

pre-assignment of this library by the server process by enabling logging and observing
the note generated from the first GetMetadata method call in the server’s log, as in the
following sample log:

Display 3.3 Verification of Pre-assignment in a Server Log

For non-IOM servers using the METAAUTORESOURCES option, a note like the
following is written to its log file:

NOTE: Libref ORGOLD successfully assigned from logical server.

For information about enabling the logging, see “Capture XML Information in the SAS
Metadata Server Log” in the SAS Intelligence Platform: System Administration Guide.
To verify pre-assignment, set the logging level to 1.

71

C H A P T E R

4
Managing Table Metadata

Overview of Managing Table Metadata 71
Creating Table Metadata for a New Library 72

Assessing Potential Changes in Advance 73

Updating Your Table Metadata to Match Data in Your Physical Tables 75

Adding and Updating Table Metadata 75

Example: Default PROC METALIB Behavior 75
Changing the Update Rule 75

Examples: Adding, Updating, and Deleting Metadata 76

Specifying Which Tables Are Affected 76

Examples: Specifying Tables 77

Overview of Managing Table Metadata
As explained in “Registering and Verifying Tables” on page 54, one way to create

metadata for the tables in a library is to use the Register tables feature of SAS
Management Console. You can also create this metadata programmatically by using
PROC METALIB. In addition, PROC METALIB provides you with options for
maintaining your table metadata that are not available in SAS Management Console.
For example, by default PROC METALIB creates metadata definitions for any physical
tables that are not registered in the metadata—for instance, tables that have been
added since the table definitions were first created—and updates the table definitions
for tables that have been altered since they were registered.

By using optional statements, you can also use PROC METALIB to perform the
following tasks:

� Delete table definitions for tables that have been removed from the library.
� Produce a report that lists the changes made by the procedure or the changes that

will be made when the procedure is executed.
� Operate on a subset of the tables in a library.

Note: For detailed information about PROC METALIB and its syntax, see
“METALIB Procedure” in SAS Language Interfaces to Metadata. �

Note: PROC METALIB cannot work with a library whose metadata is defined by
using the Pre-assigned Library resource template. When pre-assigning a library, be
sure to choose the resource template specific to the type of data source library you are
creating and select the This library is pre-assigned check box. Do not use the
specialized Pre-Assigned Library template. Also, if the library is pre-assigned and you
run the PROC METALIB in a Foundation SAS session, you must make sure the library
is allocated by either submitting a LIBNAME statement for the library in that SAS
session, or by using the METAAUTORESOURCES option to access the library through
a SAS server to which the library is assigned. �

72 Creating Table Metadata for a New Library � Chapter 4

The remainder of the chapter presents examples of how PROC METALIB is
commonly used. The examples assume that you have set the following metadata server
connection options in your SAS session:

options METAUSER = "metadata-server-userid"
METAPASS = "metadata-server-password"
METAPORT = metadata-server-port
METASERVER = "metadata-server-machine";

If you have not set these options, you can use PROC METALIB parameters to specify
this information.

Creating Table Metadata for a New Library

When you first register a SAS library, it has no related table metadata. You can add
this metadata by using the Register Tables wizard in SAS Management Console (see
“Overview of Managing Table Metadata” on page 71), or by using PROC METALIB.
Before you can successfully run PROC METALIB code, you must have Create,
ReadMetadata, and WriteMetadata access to the library metadata object.

The following example shows how to use PROC METALIB to create initial table
definitions for the tables in a library. The REPORT statement causes the procedure to
write information to SAS output about the table definitions that it creates.

proc metalib;
omr (library="sas91 lib2" repname="Meta Proc repos");
report;
run;

The report that this code writes would resemble the following sample.

The METALIB Procedure

Summary Report for Library sas91 lib2
Repository Meta Proc repos

17MAR2005

Metadata Summary Statistics

Total tables analyzed 2
Tables Updated 0
Tables Added 2
Tables matching data source 0
Tables not found 0

--
Tables Added

--

Metadata Name Metadata ID SAS Name

COUNTRY A5HJ58JU.AX001LPV COUNTRY
POSTAL A5HJ58JU.AX001LPW POSTAL

Managing Table Metadata � Assessing Potential Changes in Advance 73

Assessing Potential Changes in Advance

Before you use PROC METALIB to update existing table metadata, it is a good idea
to execute the procedure with the NOEXEC and REPORT statements. The NOEXEC
statement tells the procedure not to actually add, update, or delete any metadata. The
REPORT statement tells the procedure to create a report that explains what actions it
would have taken if the NOEXEC statement had not been present. If you want to make
all of the changes that are shown in the report, you can then remove the NOEXEC
statement and rerun the procedure to update the metadata.

The following example shows how to use the NOEXEC and REPORT statements to
assess potential metadata changes:

ods html "myfile";
proc metalib;
omr (library="SAS91 lib" repname="Meta Proc repos");
update_rule=(delete);
noexec;
report;
run;

Note: The UPDATE_RULE statement tells the procedure to delete table definitions
for any tables that have been deleted from the library. For more information about this
statement, see “Changing the Update Rule” on page 75. �

Here is the resulting SAS log:

55 proc metalib;
56 omr (library="SAS91 lib" repname="Meta Proc repos");
57 update_rule=(delete);
58 noexec;
59 report;
60 run;

NOTE: A total of 22 tables were analyzed for library "SAS91 lib".
NOTE: NOEXEC statement in effect. No Metadata changes applied.
NOTE: Metadata for 4 tables would have been updated.
NOTE: Metadata for 2 tables would have been deleted.
NOTE: Metadata for 2 tables would have been added.
NOTE: Metadata for 13 tables matched the data sources.
NOTE: 0 other tables were not processed due to error or UPDATE_RULE.
NOTE: PROCEDURE METALIB used (Total process time):

real time 31.26 seconds
cpu time 8.12 seconds

SAS output is the default. This example specifies ODS output. Specifying ODS
produces reports in both ODS and SAS output formats unless you specify the following
to suppress SAS output:

ods listing close;

74 Assessing Potential Changes in Advance � Chapter 4

Here is the resulting ODS output:

Managing Table Metadata � Changing the Update Rule 75

Updating Your Table Metadata to Match Data in Your Physical Tables

Adding and Updating Table Metadata
By default, PROC METALIB creates table definitions for any tables in the library

that do not have table definitions and updates any table definition that does not reflect
the current structure of the table that it represents. It does not, however, delete table
metadata.

Use REPORT when you want an output listing that summarizes metadata changes,
either before changes are made (by using NOEXEC) or to see afterward what changes
were actually made. SAS output is the default.

Example: Default PROC METALIB Behavior
The following example uses the default PROC METALIB behavior. Summary notes

are written to the SAS log regardless of whether you request a report. Unlike the
example shown in “Assessing Potential Changes in Advance” on page 73, the summary
does not mention any deleted tables.

proc metalib;
omr (library="v9SASlib" repname="Meta Proc repos");
run;

Here is the resulting SAS log.

85 proc metalib;
86 omr (library="v9SASlib" repname="Meta Proc repos");
87 run;

NOTE: A total of 1 tables were analyzed for library "v9SASlib".
NOTE: Metadata for 0 tables was updated.
NOTE: Metadata for 1 tables was added.
NOTE: Metadata for 0 tables matched the data sources.
NOTE: 0 other tables were not processed due to error or UPDATE_RULE.
NOTE: PROCEDURE METALIB used (Total process time):

real time 19.06 seconds
cpu time 5.39 seconds

Changing the Update Rule
By using the optional UPDATE_RULE statement, you can change the default

behavior of PROC METALIB. The principal rules that you can specify are shown as
follows:

NOADD specifies not to add table metadata to the metadata repository for
physical tables that have no metadata.

NOUPDATE specifies not to update existing table metadata to resolve
discrepancies with the corresponding physical tables.

DELETE specifies to delete table metadata if a corresponding physical table is
not found in the specified library.

76 Specifying Which Tables Are Affected � Chapter 4

Examples: Adding, Updating, and Deleting Metadata

The following example shows how to use PROC METALIB to add metadata for new
tables, update table definitions where necessary, and also delete table definitions that
are no longer valid. (You can also perform these functions using SAS Data Integration
Studio.)

proc metalib;
omr (library="sas91 lib2" repname="Meta Proc repos");
update_rule=(delete);
report;
run;

The following example shows how to use UPDATE_RULE with DELETE, NOADD,
and NO UPDATE to delete table definitions that are no longer valid, as well as
suppress the default add and update actions:

proc metalib;
omr (library="sas91 lib2" repname="Meta Proc repos");
update_rule (delete noadd noupdate);
report;
run;

The resulting SAS output resembles the following sample:

The METALIB Procedure

Summary Report for Library sas91 lib2
Repository Meta Proc repos

17MAR2005

Metadata Summary Statistics

Total tables analyzed 2
Tables Updated 0
Tables Added 0
Tables matching data source 0
Tables not found 0

Specifying Which Tables Are Affected
You can use the optional SELECT or EXCLUDE statements to perform an operation

against a subset of the tables in a library. SELECT and EXCLUDE are mutually
exclusive, so you should use only one or the other.

When you set the SELECT statement, you can choose the tables for processing:

� For tables, specify their SAS name. If no table definition is found in metadata, it
is created in the repository that contains the library object. If a matching table
definition is found in metadata, it is compared to the physical table. If differences
are found, the table definition is updated in metadata.

� For tables already registered in metadata, specify either the unique metadata
identifier or the value in the SASTableName attribute. If you specify the metadata
identifier, only the specified table definition is updated, not the first table
definition in the association list.

You can use EXCLUDE to specify a single table or a list of tables to exclude from
processing.

Managing Table Metadata � Specifying Which Tables Are Affected 77

Examples: Specifying Tables
The following example shows how to use SELECT to process only a subset of tables:

ods html "myfile";
proc metalib;
omr (library="SAS91 lib2" repname="Meta Proc repos");
select(spec_char_col ukeys ndx_multicol);
report;
run;

Here is the resulting ODS output:

The following example shows how to use EXCLUDE to exclude a specific subset of
tables:

proc metalib;
omr (library="Geography Lib" repname="Foundation");
exclude(country postal mystate2);
noexec;
report;
run;

78

79

C H A P T E R

5
Optimizing Data Storage

Overview of Optimizing Data Storage 79
Compressing Data 80

Indexing Data 82

Sorting Data 83

Overview to Sorting Data 83

Multi-Threaded Sorting 85
Sorting a Database Table 85

Buffering Data for Base SAS Tables 85

Buffering Data for DB2 (UNIX and PC), ODBC, OLE DB, Oracle, SQL Server, and Sybase Tables 86

Using Threaded Reads 87

Validating SPD Engine Hardware Configuration 87

Setting LIBNAME Options That Affect Performance of SAS Tables 88
Setting LIBNAME Options That Affect Performance of SAS/ACCESS Databases 89

Setting LIBNAME Options That Affect Performance of SPD Engine Tables 91

Grid Computing Data Considerations 93

Application Response Monitoring 94

Overview of Optimizing Data Storage

For the purposes of querying, cube loading, and creating data marts and data
warehouses, all four data storage structures (explained in Chapter 1, “Overview of
Common Data Sources,” on page 1) can be optimized to improve performance. Some
optimization can be achieved, for example, by specifying transformation options in SAS
Data Integration Studio. Some optimization requires hardware configuration, as in the
case of SPD Engine tables. Cubes can be optimized for querying and loading during the
cube loading process. For SAS tables, database tables, and SPD Engine tables, libraries
can be defined in the metadata with options that enhance performance.

For more information, see these sections:

� “Compressing Data” on page 80

� “Indexing Data” on page 82

� “Sorting Data” on page 83

� “Buffering Data for Base SAS Tables” on page 85

� “Buffering Data for DB2 (UNIX and PC), ODBC, OLE DB, Oracle, SQL Server,
and Sybase Tables” on page 86

� “Using Threaded Reads” on page 87

� “Validating SPD Engine Hardware Configuration” on page 87

� “Grid Computing Data Considerations” on page 93

80 Compressing Data � Chapter 5

Compressing Data
Compression is a process that reduces the number of bytes that are required to

represent each table row. In a compressed file, each row is a variable-length record. In
an uncompressed file, each row is a fixed-length record. Compressed tables contain an
internal index that maps each row number to a disk address so that the application can
access data by row number. This internal index is transparent to the user. Compressed
tables have the same access capabilities as uncompressed tables. Here are some
advantages of compressing a file:

� reduced storage requirements for the file
� fewer I/O operations necessary to read from or write to the data during processing

Here are some disadvantages of compressing a file:
� More CPU resources are required to read a compressed file because of the

overhead of uncompressing each observation.
� There are situations when the resulting file size might increase rather than

decrease.

These are the types of compression that you can specify:
� CHAR to use the RLE (Run Length Encoding) compression algorithm, which

works best for character data.
� BINARY to use the RDC (Ross Data Compression) algorithm, which is highly

effective for compressing medium to large (several hundred bytes or larger) blocks
of binary data. (The SPD Engine does not support binary compression.)

You can compress these types of tables:
� all tables that are created during a SAS session. Besides specifying SAS system

options on the command line or inside a SAS program with the OPTIONS
statement, you can use SAS Data Integration Studio to set system options. For
example, you can use the System Options field to set the COMPRESS= system
option on a table loader transformation. (A table loader transformation generates
or retrieves code that puts data into a specified target table.)

Figure 5.1 The Options Tab in a Table Loader Properties Dialog Box in SAS Data
Integration Studio

� all tables for a particular library. For example, when you register a Base SAS
engine library in the metadata, you can specify the COMPRESS= option in the
Other options to be appended field on the Options for any host tab (see

Optimizing Data Storage � Compressing Data 81

“Setting LIBNAME Options That Affect Performance of SAS Tables” on page 88).
For third-party relational database tables, you can use the Options to be
appended field on the Other Options tab (see “Setting LIBNAME Options That
Affect Performance of SAS/ACCESS Databases” on page 89).

Note: You cannot specify compression for an SPD Engine data library. �

� an individual table. In SAS Data Integration Studio, SAS tables have a
Compressed option that is available from the table properties dialog box. To use
CHAR compression, you select YES. To use BINARY compression, you select
Binary.

Figure 5.2 The Table Options Dialog Box in SAS Data Integration Studio

For SPD Engine tables and third-party relational database tables, you can use
the Table Options field in the table properties dialog box to specify the
COMPRESS= option.

Note: The SPD Engine compresses the data component (.dpf) file by blocks as the
engine is creating the file. (The data component file stores partitions for an SPD Engine
table.) To specify the number of observations that you want to store in a compressed
block, you use the IOBLOCKSIZE= table option in addition to the COMPRESS= table
option. For example, in the Table Options field in the table properties dialog box, you
might enter COMPRESS=YES IOBLOCKSIZE=10000. The default blocksize is 4096 (4k). �

When you create a compressed table, SAS records in the log the percentage of
reduction that is obtained by compressing the file. SAS obtains the compression
percentage by comparing the size of the compressed file with the size of an
uncompressed file of the same page size and record count. After a file is compressed,
the setting is a permanent attribute of the file, which means that to change the setting,
you must re-create the file. To uncompress a file, you can, for example, in SAS Data
Integration Studio, select Default (NO) for the Compressed option in the table
properties dialog box for a SAS table.

For more information about compression, see SAS Language Reference: Dictionary.

82 Indexing Data � Chapter 5

Indexing Data
An index is an optional file that you can create to provide direct access to specific

rows. The index stores values in ascending value order for a specific column or columns
and includes information about the location of those values within rows in the table. In
other words, an index enables you to locate a row by value. For example, if you use SAS
to find a specific Social Security number (123-45-6789), SAS performs the search
differently depending on whether there is an index on the row that contains the Social
Security numbers:

� Without an index, SAS accesses rows sequentially in the order in which they are
stored in the table. SAS reads each row, looking for SSN=123-45-6789 until the
value is found or all observations are read.

� With an index on column SSN, SAS accesses the row directly. SAS satisfies the
condition by using the index and going straight to the row that contains the value.
SAS does not have to read each row.

When you create an index, you designate which columns to index. You can create two
types of indexes:

� a simple index, which consists of the values of one column
� a composite index, which consists of the values of more than one column, with the

values concatenated to form a single value

For each indexed column, you can also perform these tasks:
� declare unique values. A unique index guarantees that values for one column or

the combination of a composite group of columns remain unique for every row in
the table. If an update tries to add a duplicate value to that column, then the
update is rejected.

� keep missing values from using space in the index by specifying that missing
values are not maintained by the index.

In addition to writing SAS code to create indexes, you can create indexes on target
tables by using SAS Data Integration Studio. In SAS Data Integration Studio, you use
the properties window for the table to index individual columns. When you create the
index, you can also specify Unique values and No missing values. Note that any
indexes registered in metadata for a target table are physically created when the job is
run. Simply editing the properties for an existing table and adding indexes does not
update the physical table. The following figure shows the SAS Data Integration Studio
properties dialog box for a table:

Optimizing Data Storage � Overview to Sorting Data 83

Figure 5.3 The Indexes Tab in the Properties Dialog Box for a Table Named
STORE_ID

In general, SAS can use an index to improve performance in these situations:
� For cube loading, a composite index on the columns that make up the cube’s

hierarchies might provide best results.
� For WHERE processing, an index can provide faster and more efficient access to a

subset of data. Note that to process a WHERE expression, SAS decides whether to
use an index or to read the table sequentially.

Note: For WHERE processing, the Base SAS engine uses a maximum of one
index. The SPD Engine can use multiple indexes. �

Even though an index can reduce the time that is required to locate a set of rows,
especially for a large table, there are costs that are associated with creating, storing,
and maintaining the index. When deciding whether to create an index, you must
consider increased resource usage, along with the performance improvement.

Once an index exists, SAS treats it as part of the table. That is, if you add or delete
columns or modify values, the index is automatically updated.

For more information about creating indexes, see SAS Language Reference: Concepts.

Sorting Data

Overview to Sorting Data
You can sort table rows by the values of one or more character or numeric columns.

For Base SAS tables and third-party relational database tables, the process either
replaces the original table or creates a new table. You can perform sorting in two ways:

� using the SAS SORT procedure

84 Overview to Sorting Data � Chapter 5

� setting properties for a SAS sort template in SAS Data Integration Studio, as
shown in the following figure:

Figure 5.4 The Sort By Columns Tab in the Sort Properties Dialog Box

To manage the memory that is used for the sorting process, you can specify the
maximum amount of memory that is available to the sort. Generally, the sort size
should be less than the physical memory available to the process. If the sorting
requires more memory than you specify, then SAS creates a temporary utility file on
disk. To specify a sort size in SAS Data Integration Studio, access the Options tab in
the properties window for the sort template and enter a value in the Sortsize field, as
shown in the following figure:

Figure 5.5 The Options Tab in the SAS Sort Properties Dialog Box

The SPD Engine has implicit sorting capabilities, which saves time and resources for
SAS applications that process large tables. When the SPD Engine encounters a BY

Optimizing Data Storage � Buffering Data for Base SAS Tables 85

clause, if the data is not already sorted or indexed on the BY column, then the SPD
Engine automatically sorts the data without affecting the permanent table or producing
a new table. You can change the implicit sorting options when you define an SPD
Engine library in the metadata. See “Setting LIBNAME Options That Affect
Performance of SPD Engine Tables” on page 91.

For more information about the SORT procedure, see the Base SAS Procedures Guide.

Multi-Threaded Sorting
The SAS system option THREADS activates multi-threaded sorting, which achieves

a degree of parallelism in the sorting operations. This parallelism is intended to reduce
the real time to completion for a given operation; however, the parallelism comes at the
possible cost of additional CPU resources. For more information, see "Support for
Parallel Processing" in SAS Language Reference: Concepts.

The performance of the multi-threaded sort is affected by the value of the SAS
system option CPUCOUNT=. CPUCOUNT= indicates how many system CPUs are
available for use by the multi-threaded sort. The multi-threaded sort supports
concurrent input from the partitions of a partitioned table.

Note: For information about the support of partitioned tables in your operating
environment, see the SAS documentation for your operating environment. �

For more information about THREADS and CPUCOUNT=, see the chapter about
SAS system options in SAS Language Reference: Dictionary.

Sorting a Database Table
When you use a third-party database table, the column ordering that is produced by

the SORT procedure depends on whether the DBMS or SAS performs the sorting. If
you use the BEST value of the SAS system option SORTPGM=, then either the DBMS
or SAS performs the sort. If the DBMS performs the sort, then the configuration and
characteristics of the DBMS sorting program affect the resulting data order. Most
database management systems do not guarantee sort stability, and the sort might be
performed by the database table regardless of the state of the SORTEQUALS or
NOSORTEQUALS system options and the EQUALS or NOEQUALS procedure options.

If you set the SAS system option SORTPGM= to SAS, then unordered data is
delivered from the DBMS to SAS and SAS performs the sorting. However, consistency
in the delivery order of columns from a database table is not guaranteed. Therefore,
even though SAS can perform a stable sort on the DBMS data, SAS cannot guarantee
that the ordering of columns within output BY groups will be the same, run after run.
To achieve consistency in the ordering of columns within BY groups, first populate a
SAS table with the database table, then use the EQUALS or SORTEQUALS option to
perform a stable sort.

Buffering Data for Base SAS Tables
For Base SAS tables, you might be able to make performance improvements by

performing these tasks:
� tuning the size of table pages on disk by using the BUFSIZE= system option. SAS

uses the BUFSIZE= option to set the permanent page size for the SAS table. The
page size is the amount of data that can be transferred for an I/O operation to one
buffer. If you know that the total amount of data is going to be small, you can set

86 Buffering Data for DB2 (UNIX and PC), ODBC, OLE DB, Oracle, SQL Server, and Sybase Tables � Chapter 5

a small page size, so that the total table size remains small and you minimize the
amount of wasted space on a page. Large tables that are accessed sequentially
benefit from larger page sizes because sequential access reduces the number of
system calls that are required to read the table.

� adjusting the number of open page buffers when the SAS table is processed.
Increasing the value of the BUFNO= option can improve performance by enabling
applications to read more data with fewer passes; however, your memory usage
increases. You must determine the optimal value for your needs.

Besides specifying SAS system options on the command line or inside a SAS program
with the OPTIONS statement, you can set the BUFSIZE= and BUFNO= system options
in SAS Data Integration Studio. For example, you can set these System Options in
the properties window for a table loader transformation.

For more information about the BUFSIZE= and BUFNO= options, see the SAS
Language Reference: Dictionary and the documentation for your operating environment.

Note: In addition, the SASFILE statement enables you to store the entire Base SAS
table in memory, and the table remains open until you close it because SASFILE caches
the data and the open request. For more information about the SASFILE statement,
see the SAS Language Reference: Dictionary. �

Buffering Data for DB2 (UNIX and PC), ODBC, OLE DB, Oracle, SQL
Server, and Sybase Tables

For DB2 (UNIX and PC), ODBC, OLE DB, Oracle, SQL Server, and Sybase, you can
adjust page buffers by setting the INSERTBUFF= and READBUFF= options on the
library (see “Setting LIBNAME Options That Affect Performance of SAS/ACCESS
Databases” on page 89) or on the individual table. The options are described as follows:

� The INSERTBUFF= option specifies the number of rows to insert. SAS allows the
maximum that is supported by the DBMS. The optimal value for this option varies
with factors such as network type and available memory. You might need to
experiment with different values in order to determine the best value for your site.

� The READBUFF= option specifies the number of rows to hold in memory. SAS
allows the maximum number that is supported by the DBMS. Buffering data

Optimizing Data Storage � Validating SPD Engine Hardware Configuration 87

reads can decrease network activities and increase performance. However, because
SAS stores the rows in memory, higher values for READBUFF= use more memory.
In addition, if too many rows are selected at once, then the rows that are returned
to the SAS application might be out of date. For example, if someone else modifies
the rows, you might not see the changes.

For more information about the INSERTBUFF= and READBUFF= options, see
SAS/ACCESS for Relational Databases: Reference.

Using Threaded Reads

Most SAS/ACCESS interfaces support threaded reads. With a threaded read, the
table read time can be reduced by retrieving the result set on multiple connections
between SAS and a DBMS. To perform a threaded read, SAS performs these tasks:

1 It creates threads, which are standard operating system tasks that are controlled
by SAS, within the SAS session.

2 It establishes a DBMS connection on each thread.

3 It causes the DBMS to partition the result set and reads one partition per thread.
To cause the partitioning, SAS appends a WHERE clause to the SQL so that a
single SQL statement becomes multiple SQL statements, one for each thread.

Threaded reads only increase performance when the DBMS result set is large.
Performance is optimal when the partitions are similar in size. In most cases, threaded
reads should reduce the elapsed time of the SAS job. However, threaded reads
generally increase the workload on the DBMS. For instance, threaded reads for DB2
under z/OS involve a trade-off, generally reducing job elapsed time but increasing DB2
workload and CPU utilization.

Threaded reads are most effective on new, faster computer hardware running SAS,
and with a powerful parallel edition of the DBMS. For example, if SAS runs on a fast
uniprocessor or on a multiprocessor machine and your DBMS runs on a high-end SMP
server, you will receive substantial performance gains.

For information about how to turn the threaded read function on or off for a DBMS
library, see “Setting LIBNAME Options That Affect Performance of SAS/ACCESS
Databases” on page 89.

For information about threaded reads, see SAS/ACCESS for Relational Databases:
Reference.

Validating SPD Engine Hardware Configuration

The SPD Engine automatically determines the optimal process to use to evaluate
observations for qualifying criteria specified in a WHERE statement. WHERE
statement efficiency depends on such factors as whether the columns in the expression
are indexed. A SAS configuration validation program that measures I/O scalability with
respect to WHERE processing can help you determine whether your system is properly
configured for performing WHERE processing with the SPD Engine. The program
performs these tasks:

1 It creates a table with two numeric columns.

2 It repeatedly reads the entire table, each time doubling the number of threads
used until the maximum number is reached. The maximum number of threads is

88 Setting LIBNAME Options That Affect Performance of SAS Tables � Chapter 5

determined by the CPUCOUNT= SAS system option and is specified when SAS is
started.

The resulting log file shows timing statistics for each cycle. You can examine this
information to determine whether your system is configured correctly. The program is
available at http://support.sas.com/rnd/scalability/spde/valid.html.

Setting LIBNAME Options That Affect Performance of SAS Tables
You can set LIBNAME options that might affect performance of the Base SAS

engine. You set these options when you use the New Library wizard to register a Base
SAS engine library in the metadata repository. The LIBNAME options are available on
the Options for any host tab and the Host-specific options tab in the Advanced
Options dialog box. To access the Advanced Options dialog box, click the Advanced
Options button on the Library Options window of the New Library wizard.

Figure 5.6 The Options for Any Host Tab in the Advanced Options Dialog Box for
a Base SAS Library

Here are some examples of options that might affect performance:

Data
representation
for the output
file (OUTREP=)

For all operating environments, you can specify the data
representation for the output file. Specifying this option enables you
to create files within the native environment by using a foreign
environment data representation. For example, an administrator
who works in a z/OS operating environment might want to create a
file on an HFS system so that the file can be processed in an HP
UNIX environment. Specifying HP_UX_64 as the value for this
option forces the data representation to match the data
representation of the UNIX operating environment that will process
the file. This method of creating the file can enhance system
performance because the file does not require data conversion when
being read by an HP UNIX machine.

Optimizing Data Storage � Setting LIBNAME Options That Affect Performance of SAS/ACCESS Databases 89

Input/output
block size
(BLKSIZE=)

For Windows, UNIX, and z/OS environments, you can specify the
number of bytes that are physically read during an I/O operation.
The default is 8 kilobytes, and the maximum value is 1 megabyte.

Number of page
caches to use for
each open
member
(CACHENUM=)

For VMS, you can specify the number of page caches to use during
I/O operations. The number of caches can potentially reduce the
number of I/Os that are required to access the data. You can also set
the size of each cache (CACHESIZE= option).

The Other option(s) to be appended field can be used to specify LIBNAME
options such as COMPRESS= (see “Compressing Data” on page 80).

For information about each of the LIBNAME options in the Advanced Options dialog
box, click the Help button.

Setting LIBNAME Options That Affect Performance of SAS/ACCESS
Databases

The following LIBNAME options can be used to tune performance of the
SAS/ACCESS engines. You can set these options when you use the New Library wizard
to register the database libraries in the metadata repository. To access the Advanced
Options dialog box, click the Advanced Options button on the Library Options window
of the New Library wizard.

Figure 5.7 The Optimization Tab in the Advanced Options Dialog Box for a DB2
Library for UNIX and PC

90 Setting LIBNAME Options That Affect Performance of SAS/ACCESS Databases � Chapter 5

The tabs that are available in the Advanced Options dialog box, as well as the
options on each of the tabs, vary between database management systems. The following
list provides a description of the options on Optimization tab for DB2 libraries for
UNIX and PC:

Block insert
buffer size
(INSERTBUFF=)

specifies the number of rows in a single insert operation. See
“Buffering Data for DB2 (UNIX and PC), ODBC, OLE DB, Oracle,
SQL Server, and Sybase Tables” on page 86.

Block read
buffer size
(READBUFF=)

specifies the number of rows of DBMS data to read into the buffer.
See “Buffering Data for DB2 (UNIX and PC), ODBC, OLE DB,
Oracle, SQL Server, and Sybase Tables” on page 86.

Pass functions
to the DBMS
that match those
supported by
SAS (SQL_
FUNCTIONS=)

when set to ALL, specifies that functions that match functions
supported by SAS should be passed to the DBMS. The functions that
are passed are: DATE, DATEPART, DATETIME, TIME, TIMEPART,
TODAY, QRT, COMPRESS, SUBSTR, DAY, SECOND, INDEX,
TRANWRD, HOUR, WEEKDAY, LENGTH, TRIMN, MINUTE,
YEAR, REPEAT, MOD, MONTH, BYTE, and SOUNDEX. Use of this
option can cause unexpected results, especially if used for NULL
processing and date, time, and timestamp handling. Exercise care
when using this option.

Pass DELETE
to the DBMS
(DIRECT_EXE=)

specifies that an SQL delete statement is passed directly to the
DBMS for processing. Selecting this option improves performance
because SAS does not have to read the entire result set and delete
one row at a time.

Whether to use
indexes
(DBINDEX=)

specifies whether SAS uses indexes that are defined on DBMS
columns to process a join. Valid values are YES or NO. For more
information about indexes, see “Indexing Data” on page 82.

Whether to check
for null keys
when generating
WHERE clauses
(DBNULLKEYS=)

specifies whether the WHERE clause should detect NULL values in
columns. Valid values are YES or NO. YES is the default for most
interfaces and enables SAS to prepare the statement once and use it
for any value (NULL or NOT NULL) in the column.

Multi data
source
optimization
(MULTI_
DATASRC_OPT=)

when processing a join between two tables, specifies whether an IN
clause should be created to optimize the join. Valid values are
NONE and IN_CLAUSE. IN_CLAUSE specifies that an IN clause
containing the values read from a smaller table will be used to
retrieve the matching values in a larger table based on a key column
designated in an equi-join.

When processing a join between a SAS table and a DBMS table,
the SAS table should be smaller than the DBMS table for optimal
performance.

Whether to
create a spool
file for two-pass
processing
(SPOOL=)

specifies whether to create a utility spool file during transactions
that read data more than once. In some cases, SAS processes data
in more than one pass through the same set of rows. Spooling is the
process of writing rows that have been retrieved during the first
pass of a data read to a spool file. In the second pass, rows can be
re-read without performing I/O to the DBMS a second time. In cases
where the data needs to be read more than once, spooling improves
performance. Spooling also guarantees that the data remains the
same between passes. Valid values are YES or NO.

Threaded
DBMS access
(DBSLICEPARM=)

specifies the scope of DBMS threaded reads and the number of
threads. If this option is set to the default, then PROC SQL will not

Optimizing Data Storage � Setting LIBNAME Options That Affect Performance of SPD Engine Tables 91

use threading to read, for example, data for a Web report. To force a
specified number of threads for a threaded read from the DBMS
server, change the default to (ALL,number-of-threads).

Note: If PROC SQL attempts implicit pass-through, then
threading will be disabled, regardless of the Threaded DBMS access
setting. To disable implicit pass-through, set the Pass generated
SELECT SQL to the DBMS - DBMS processing option to NO. �

For more information about threaded reads, see “Using Threaded
Reads” on page 87.

Pass generated
SELECT SQL to
the DBMS -
DBMS
processing
(DIRECT_SQL=)

specifies whether generated SQL is passed to the DBMS for
processing. Valid values are YES or NO.

Pass generated
SELECT SQL to
the DBMS -
exceptions to
DBMS
processing
(DIRECT_SQL=)

if the value for the previous option is YES, then this option specifies
how generated SQL is passed to the DBMS for processing. For
example, NOWHERE prevents WHERE clauses from being passed
to the DBMS for processing.

The Other Options tab, which is available for all database management systems,
can be used to specify LIBNAME options such as COMPRESS= (see “Compressing
Data” on page 80).

For information about each of the LIBNAME options in the Advanced Options dialog
box, click the Help button. For information about all SAS/ACCESS LIBNAME options,
see SAS/ACCESS for Relational Databases: Reference.

Setting LIBNAME Options That Affect Performance of SPD Engine Tables
The following LIBNAME options can be used to tune performance of the SPD

Engine. You can set these options when you use the New Library wizard to register an
SPD Engine library in the metadata repository. The LIBNAME options are available on
the Options for any host tab in the Advanced Options dialog box. To access the
Advanced Options dialog box, click the Advanced Options button on the Library
Options window of the New Library wizard. The Advanced Options dialog box is
shown in the following figure:

92 Setting LIBNAME Options That Affect Performance of SPD Engine Tables � Chapter 5

Figure 5.8 The Options for Any Host Tab in the Advanced Options Dialog Box for
an SPD Engine Library

Data path
(DATAPATH=)

specifies a list of paths in which to store partitions (.dpf files) for an
SPD Engine table. The engine creates as many partitions as are
needed to store all the data. The size of the partitions is set using
the PARTSIZE= option. Partitions are created in the specified paths
in a cyclic fashion. The data path area is best configured as multiple
paths. Allot one I/O controller per data path to provide high I/O
throughput, which is the rate at which requests for work are
serviced by a computer system. The data path area is best
configured for redundancy (RAID 1).

Index path
(INDEXPATH=)

specifies a path or a list of paths in which to store the two index
component files (.hbx and .idx) that are associated with an SPD
Engine table. Additional specified paths accept the overflow from
the immediately preceding path. The index path area is best
configured as multiple paths. Use a volume manager file system
that is striped across multiple disks (RAID 0) to enable adequate
index performance, both when evaluating WHERE clauses and
creating indexes in parallel. Redundancy (RAID 5 or RAID 10) is
also recommended.

Meta path
(METAPATH=)

specifies a list of overflow paths in which to store metadata
component (.mdf) files for an SPD Engine table. The metadata
component file for each table must begin in the primary path. When
that primary path is full, the overflow is sent to the specified

Optimizing Data Storage � Grid Computing Data Considerations 93

METAPATH= location. The metadata path area is best configured
for redundancy (RAID 1) so that metadata about the data and its
indexes is not lost.

Partition size
(PARTSIZE=)

specifies the size (in megabytes) of the data component partitions
when an SPD Engine table is created. By splitting the data portion
of an SPD Engine table at fixed-size intervals, you can gain a high
degree of scalability for some operations. For example, the SPD
Engine can spawn threads in parallel, up to one thread per partition
for WHERE evaluations.

Temp(TEMP=) specifies whether to create a temporary subdirectory of the directory
specified in the Path field on the Library Properties wizard window.
The directory is used to temporarily store the metadata component
files associated with table creation. It is deleted at the end of the
SAS session.

By sort
(BYSORT=)

specifies that the SPD Engine should perform an automatic implicit
sort when it finds a BY statement for processing data in the library
(unless the data is indexed on the BY column). Valid values are YES
(perform the sort) and NO (do not perform the sort). The default is
YES.

Starting
observation
number
(STARTOBS=)

specifies the number of the starting observation in a user-defined
range of observations that are qualified with a WHERE expression.
By default the SPD Engine processes all observations in the table.

Ending
observation
number
(ENDOBS=)

specifies the number of the ending observation in a user-defined
range of observations that are qualified with a WHERE expression.
By default the SPD Engine processes all observations in the table.

In addition to the LIBNAME options, there are also table and system options that
can be used to tune SPD Engine performance. For example, the SPDEUTILLOC=
system option allots space for temporary files that are generated during SPD Engine
operations. This area is best configured as multiple paths. Use a volume manager file
system that is striped across multiple disks (RAID 0) to reduce out-of-space conditions
and improve performance. Redundancy (RAID 5 or RAID 10) is also recommended
because losing the work area could stop the SPD Engine from functioning.

The SAS Scalable Performance Data Engine: Reference includes a “Quick Guide to
the SPD Engine Disk-I/O Set-Up” that helps you to do the following:

� determine the amount of space that needs to be allocated to the data, metadata,
index, and work areas

� evaluate the advantages and disadvantages of different RAID groups for each of
the different types of areas

For more information about table and other system options for the SPD Engine, see
http://support.sas.com/rnd/scalability/spde/syntax.html. For more
information about each of the LIBNAME options in the Advanced Options dialog box,
click the Help button.

Grid Computing Data Considerations
Grid computing has become an important technology for organizations that:
� have long-running applications that can benefit from parallel execution

94 Application Response Monitoring � Chapter 5

� want to leverage existing IT infrastructure to optimize computing resources and
manage data and computing workloads

The function of a grid is to distribute tasks. Each of the tasks that are distributed
across the grid must have access to all the required input data. Computing tasks that
require substantial data movement generally do not perform well in a grid. To achieve
the highest efficiency, the nodes should spend the majority of the time computing rather
than communicating. With grid computing using SAS Grid Manager, the speed at
which the grid operates is related more to the storage of the input data than to the size
of the data.

Data must either be distributed to the nodes before running the application or—
much more commonly—made available through shared network libraries. Storage on
local nodes is discouraged. The data storage must scale to maintain high performance
while serving concurrent data requests.

The parallel data load is monitored throughout.

Application Response Monitoring
SAS implements the Application Response Monitoring 4.0 (ARM) specification. SAS

offers macros, system options, and LOG4SAS as an ARM agent for collecting
application availability, performance, usage, and transaction response time. For more
information about the ARM implementation, see the SAS Interface to Application
Response Measurement (ARM): Reference.

SAS Data Integration Studio can report the following measures for jobs:
� number of records processed
� duration of step in the job
� I/O statistics

To view the metrics within SAS Data Integration Studio, right-click the diagram
background for the job and select Collect Runtime Statistics. When the job is run,
view the Statistics tab in the Details area of the window.

95

C H A P T E R

6
Managing OLAP Cube Data

Introduction to Managing OLAP Cube Data 95
Data Storage and Access 95

Exporting and Importing Cubes 96

About OLAP Schemas 96

Create or Assign an OLAP Schema 97

Building a Cube 97
Overview of Building a Cube 97

Preparations for Building a Cube 98

Storage Location Requirements for Cube Metadata and Related Objects 99

Making Detail Data Available to a Cube for Drill-Through 99

Making Detail Data Available to an OLAP Server for Drill-Through 100

Making Detail Data Available to an Information Map for Drill-Through 102
Display Detail Data for a Large Cube 102

Introduction to Managing OLAP Cube Data
Online Analytical Processing (OLAP) is a technology that is used to create decision

support software. OLAP enables application users to quickly analyze information that
has been summarized into multidimensional views and hierarchies. By summarizing
predicted queries into multidimensional views before run time, OLAP tools provide the
benefit of increased performance over traditional database access tools. Most of the
resource-intensive calculation that is required to summarize the data is done before a
query is submitted. One of the advantages of OLAP is how data and its relationships
are stored and accessed. OLAP systems house data in structures that are readily
available for detailed queries and analytics.

Data Storage and Access
Organizations usually have databases and data stores that maintain repeated and

frequent business transaction data. This provides simple yet detailed storage and
retrieval of specific data events. However, these data storage systems are not well
suited for analytical summaries and queries that are typically generated by decision
makers. For decision makers to reveal hidden trends, inconsistencies, and risks in a
business, they must be able to maintain a certain degree of momentum when querying
the data. An answer to one question usually leads to additional questions and review of
the data. Simple data stores do not generally suffice.

The data warehouse is a structure better suited for this type of querying. In a data
warehouse, data is maintained and organized so that complicated queries and

96 Exporting and Importing Cubes � Chapter 6

summaries can be run. OLAP further organizes and summarizes specific categories and
subsets of data from the data warehouse. One particular kind of data structure derived
from a data warehouse is the cube. A cube is a set of data that is organized and
structured in a hierarchical, multidimensional arrangement. Such an arrangement
results in a robust and detailed level of data storage with efficient and fast query
returns. Stored, precalculated summarizations called aggregations can be added to the
cube to improve cube access performance.

Exporting and Importing Cubes
Cubes are exported and imported as part of a SAS package. SAS Management

Console is one of the user interfaces that can perform the import and export of
packages. For more information about creating SAS packages, see “Overview of the
Promotion Tools” in the SAS Intelligence Platform: System Administration Guide.

The data administrator impact of exporting and importing cubes is that when cubes
are imported, the tables used in the cube must be available and that building the
aggregations for the cube is computationally intensive. The following list highlights
some best practices:

� It is impractical to package the detail tables and summary data for large cubes.
Do not export them in the package.

� If the cube is being imported to a new metadata server (as opposed to being moved
to a new folder on the same metadata server) then make sure the same data
sources for the detail tables used by the original cube are available and registered.
Accomplish this by registering the same data servers and data libraries on the
destination metadata server. If the cube uses a drill-through table, ensure that the
library is pre-assigned.

� When importing the cubes, be prepared to associate the cube with an OLAP
schema. Consider that the OLAP schema determines the group of cubes that an
OLAP server can access.

� Once the cube is imported, the cube and its job are registered in metadata with
relationships to an OLAP schema, tables, and folders. By default, the aggregations
for the cube must be built after the cube is imported. Due to the computational
intensity, consider rebuilding the cube during a period of low activity.

About OLAP Schemas
OLAP schemas provide an organizational function. An OLAP schema is a list of

cubes that are grouped together so that they can be accessed by one or more SAS OLAP
Servers. Each cube is listed in one and only one OLAP schema. Each SAS OLAP Server
is required to use one OLAP schema. Multiple servers can use the same schema.To
assign cubes to specific servers you create new OLAP schemas. This might be necessary
if you have multiple large cubes. In that case you might want to assign one cube to one
host, to one SAS OLAP Server, and to one OLAP schema.

New OLAP schemas are created with the Create OLAP Schema wizard in SAS OLAP
Cube Studio or SAS Management Console. SAS OLAP Servers are assigned to new
OLAP schemas by changing server properties in SAS Management Console. To create a
new OLAP schema or assign an OLAP schema to a SAS OLAP Server using SAS
Management Console, see “Create or Assign an OLAP Schema” on page 97. A SAS
OLAP Server reads its assigned OLAP schema from metadata only as the server starts.
Assigning a new OLAP schema to a server requires that you restart the SAS OLAP
Server.

Managing OLAP Cube Data � Overview of Building a Cube 97

When building, updating, or deleting cubes, you can specify OLAP schemas in the
Cube Designer wizard of SAS OLAP Cube Studio. Alternatively, if you choose to write
SAS code for PROC OLAP, the schema is specified in the OLAP_SCHEMA= option of
the METASVR statement.

Create or Assign an OLAP Schema

To create a new OLAP schema or assign an OLAP schema to a SAS OLAP Server,
perform the following steps:

1 Open SAS Management Console.

2 In the left pane, expand Server Manager.

3 Under Server Manager, locate the SAS Application Server that contains the SAS
OLAP Server. The name of one such SAS Application Server might be SASApp, for
example.

4 Right-click the top-level SAS Application Server and select Properties.

5 In the Properties window, click the OLAP Schema tab.

6 Click New to create a new OLAP schema, or select the down arrow to choose an
existing OLAP schema.

7 Click OK to save changes and close the Properties window.

8 Restart the SAS OLAP Server using the SAS OLAP Server Monitor.

Building a Cube

Overview of Building a Cube
The following is a summary of the cube-building process. For additional information

about building and modifying SAS OLAP cubes, see the SAS OLAP Server: User’s
Guide.

Before building a cube, you should collect and scrub your data in addition to
planning a dimensional design. When you define the cube, you define the dimensions
and measures for the cube along with information about how aggregations should be
created and stored. There are two methods of creating a cube:

� You can submit PROC OLAP code by using either the SAS Program Editor or a
batch job. If you use PROC OLAP, the cube is created, and then the cube
definition is stored in a metadata repository. This is referred to as the long form of
PROC OLAP.

� You can use the Cube Designer interface in SAS OLAP Cube Studio to define and
create the cube. The Cube Designer first stores the cube definition in a metadata
repository, and then submits a shorter form of PROC OLAP code to create the
cube. This is referred to as the short form of PROC OLAP.

Note: The Cube Designer can also be launched from SAS Data Integration Studio. �

98 Preparations for Building a Cube � Chapter 6

Preparations for Building a Cube
To build a cube by using either PROC OLAP or SAS OLAP Cube Studio, you must

perform several preliminary tasks:
� Configure a metadata server.
� Define an OLAP server in the metadata. The server does not need to be running

to create cubes, but it must be defined in the metadata.
� Analyze the data to determine the location of the table or tables that will be used

to build your cubes and what dimensions and measures will be created.
� Register the table or tables that will be used to create the cube in the metadata.

You do this by using SAS Data Integration Studio or by using SAS OLAP Cube
Studio and SAS Management Console as follows:

� Use SAS Management Console to register the metadata for the server that
will access the tables. This is a SAS Application Server with a workspace
server component.

� Use SAS Management Console to register metadata for the library that
contains the table.

� In SAS OLAP Cube Studio, specify the server that will access the tables. To
set the server, select Tools � Options. Or, if the shortcut bar is displayed,
select Options to set the server.

� In SAS OLAP Cube Studio, select Source Designer to load the table
definitions (or other information source) as follows:

� From the shortcut bar, select Tools � Source Designer or select Source
Designer.

� Select a Source Type (SAS, ODBC, and so on), and then select Next.
� If you have not specified a server, or if the server that is specified is not

valid, then you will be prompted again for a server.
� Select the library that contains the tables that you want to use, and

then select Next.
� Select the tables to register and then select Next.
� Select Finish. The table definitions are register in metadata.

� If you start to create a cube and do not see the table that you need to
continue, then you can click the Define Table button in any of the windows
that prompt for tables.

� In the Finish window of the cube designer, you are given the option to create the
physical cube. The metadata definition is always stored as you leave the Finish
window. However, you can defer creation of the physical cube because it might be
a resource and time intensive process. If you choose to create the cube as you
leave the Finish window, then you must have a SAS Workspace Server defined
that you can submit PROC OLAP code to. This server is defined in SAS
Management Console.

For more information about the different data types that you can use to load cubes
from, see “Loading Cubes” in the SAS OLAP Server: User’s Guide.

Note: The SAS Metadata Server enables duplicate librefs to be defined in the
metadata. To ensure that the correct library definition is found on the metadata server,
you should assign the libref by using the LIBNAME statement for the metadata engine
before submitting the PROC OLAP code. Otherwise, PROC OLAP will select the first

Managing OLAP Cube Data � Making Detail Data Available to a Cube for Drill-Through 99

library definition that it finds with your specified libref, and it will associate your cube
metadata with that definition. The selected library definition might or might not
contain a description of the data that was actually used to build your cube. For more
information about using the LIBNAME statement for the metadata engine, see
“Statements” in SAS Language Reference: Dictionary. �

When a SAS OLAP cube is created, a directory for that cube is also created. This
directory is assigned the same name as the cube, but in uppercase letters. For example,
if you save a cube in c:\olapcubes and name the cube Campaigns, the cube is saved in
the directory c:\olapcubes\CAMPAIGNS.

Storage Location Requirements for Cube Metadata and Related
Objects

When storing metadata that describes a cube, the metadata objects that describe the
cube and the cube’s associated libraries and source tables must be stored in the same
repository, or the metadata that describes the cube must be in a custom repository that
is dependent on the repository that contains the library and table objects. Otherwise,
you will not be able to create the cube. In addition, the library and table objects that
are referenced by a cube must always be in the same repository. The following options
illustrate these conditions:

� The library, table, and cube objects can be in a Foundation repository.
� The library, table, and cube objects can be in Project A, which is dependent on the

Foundation repository.
� The library and table objects can be in the Foundation repository, and the cube

object can be in Project A.
� The cube object cannot be in the Foundation repository, and the library and table

objects cannot be in Project A.
� The table object cannot be in the Foundation repository, and the library and cube

objects cannot be in Project A.
� The library object cannot be in the Foundation repository, and the table and cube

objects cannot be in Project A.

Making Detail Data Available to a Cube for Drill-Through
You can drill through an OLAP report to the underlying detail data only after you

make the detail data available to the cube. You can use either SAS OLAP Cube Studio
or the OLAP procedure to make detail data available to the cube:

� In SAS OLAP Cube Studio, you can specify a table for drill-through when you
create or edit the cube using the Cube Designer wizard. On the Drill-Through
page of the wizard, either select a table and click the right-arrow and then Next to
specify the drill-through table, or just click Next if drill-through is not needed.
The following figure shows the Cube Designer - Drill Through page of the
Cube Designer wizard:

100 Making Detail Data Available to an OLAP Server for Drill-Through � Chapter 6

For more information about the Cube Designer wizard, see the SAS OLAP Cube
Studio Help. Note that for star schema tables, a view that fully joins the fact and
dimension tables is the drill-through table.

� In the PROC OLAP statement, use the DRILLTHROUGH_TABLE option to
specify the name of the drill-through table to use. For more information about the
DRILLTHROUGH_TABLE option, see "PROC OLAP Statement" in the SAS OLAP
Server: User’s Guide.

Making Detail Data Available to an OLAP Server for Drill-Through
You can drill through an OLAP report to the underlying detail data only after you

make the detail data available to the OLAP Server. In order for the OLAP server to
make detail data available for a cube, the library for the table that contains the detail
data must be registered so that the OLAP server can identify the library to use, and
that the library permissions allow ReadMetadata. The simplest way to register the
library to the server is to pre-assign it in the metadata repository and store the library
in a folder that grants ReadMetadata permission to PUBLIC.

To specify a library as pre-assigned for an OLAP server, perform the following steps:
1 In Data Library Manager (in SAS Management Console), find the Libraries

folder and perform one of the following tasks to get to the dialog box that lets you
select advanced options:
� For a new library, right-click the Libraries folder and select New Library to

start the New Library wizard. Then navigate to the page that enables you to
specify the libref.

� For an existing library, open the Libraries folder and right-click the desired
library. Select Properties from the drop-down menu, and then select the
Options tab in the properties dialog box.

Managing OLAP Cube Data � Making Detail Data Available to an OLAP Server for Drill-Through 101

2 Click Advanced Options.

3 Select the Library is pre-assigned check box on the Pre-Assign tab in the
Advanced Options dialog box.

4 On the Assign tab of the properties dialog box or the server selection page of the
New Library wizard, ensure that the selected application server is the server
container that contains your OLAP server.

5 Click OK in the properties dialog box, or finish entering information in the wizard.

6 Restart the OLAP server.

The selected library is assigned after the selected OLAP server starts. After the
OLAP server starts, ensure that the library is pre-assigned to the correct SAS OLAP
server. The OLAP server also generates a record in the log file stored at
SAS-config-dir\Lev1\SASApp\OLAPServer\Logs\. The following example shows how
pre-assigned libraries are identified in the log file:

2008-08-04T13:00:13,068 WARN [00000010] :SYSTEM@host - NOTE: Libref odbc successfully assigned from logical server.

2008-08-04T13:00:13,068 WARN [00000010] :SYSTEM@host - NOTE: Libref wrstemp successfully assigned from logical server.

2008-08-04T13:00:13,068 WARN [00000010] :SYSTEM@host - NOTE: Libref wrsdist successfully assigned from logical server.

2008-08-04T13:00:13,068 WARN [00000010] :SYSTEM@host - NOTE: Libref stpsamp successfully assigned from logical server.

2008-08-04T13:00:13,068 WARN [00000010] :SYSTEM@host - NOTE: Libref SASDATA successfully assigned from logical server.

102 Making Detail Data Available to an Information Map for Drill-Through � Chapter 6

Making Detail Data Available to an Information Map for Drill-Through
You can drill through an OLAP report to the underlying detail data only after you

make the detail data available to the information map. In order for an information map
to produce a report that has drill-through capabilities, an option must first be set in the
information map.

For an existing information map, open the information map, right-click it, and then
select Properties from its drop-down menu. Select the Allow drill-through to
detail data check box on the Definition tab in the Information Map Properties
dialog box. This check box is displayed only when a drill-through table is specified for
the cube that the OLAP information map is using as its data source.

Display Detail Data for a Large Cube
If your cube contains an extremely large amount of detail data, then in order to view

that data from within SAS Information Map Studio, you might need to increase the
Java heap size for SAS Information Map Studio or increase the maximum number of
drill-through rows that your SAS OLAP Server can handle. The default number of
drill–through rows that can be displayed by a query is 300,000 rows.

You can increase the number of drill-through rows that your OLAP server can handle
by changing the OLAP server definition with the Server Manager plug-in to SAS
Management Console. To increase the number of drill-through rows, perform the
following steps:

1 In the navigation tree for Server Manager, find the node that represents your
physical OLAP server.

2 Right-click the icon and select Properties

3 In the properties dialog box, select the Options tab, and then click Advanced
Options.

Managing OLAP Cube Data � Display Detail Data for a Large Cube 103

4 In the Advanced Options dialog box, select the Server tab, and then enter the
desired value for the Maximum number of flattened rows field.

5 Click OK to save the setting.

104

105

A P P E N D I X

1
Recommended Reading

Recommended Reading 105

Recommended Reading

Here is the recommended reading list for this title:
� SAS Data Integration Studio: User’s Guide
� SAS Intelligence Platform: Application Server Administration Guide

� SAS Intelligence Platform: System Administration Guide
� SAS Intelligence Platform: Security Administration Guide
� SAS Language Reference: Concepts

� SAS Language Reference: Dictionary
� SAS Management Console: User’s Guide
� SAS Metadata LIBNAME Engine: User’s Guide

� SAS Scalable Performance Data Engine: Reference
� Special Considerations for Customers Upgrading to SAS 9.2

For a complete list of SAS publications, go to support.sas.com/bookstore. If you
have questions about which titles you need, please contact a SAS Publishing Sales
Representative at:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: 1-800-727-3228
Fax: 1-919-531-9439
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

Customers outside the United States and Canada, please contact your local SAS office
for assistance.

106

107

Glossary

aggregation
a summary of detail data that is stored with or referred to by a cube. Aggregations
support rapid and efficient answers to business questions.

application server
a server that is used for storing applications. Users can access and use these server
applications instead of loading the applications on their client machines. The
application that the client runs is stored on the client. Requests are sent to the
server for processing, and the results are returned to the client. In this way, little
information is processed by the client, and nearly everything is done by the server.

authentication domain
a SAS internal category that pairs logins with the servers for which they are valid.
For example, an Oracle server and the SAS copies of Oracle credentials might all be
classified as belonging to an OracleAuth authentication domain.

buffer
a portion of computer memory that is used for special holding purposes or processes.
For example, a buffer might simply store information before sending that information
to main memory for processing, or it might hold data after the data is read or before
the data is written.

client application
an application that runs on a client machine.

cube
a logical set of data that is organized and structured in a hierarchical,
multidimensional arrangement. A cube is a directory structure, not a single file. A
cube includes measures, and it can have numerous dimensions and levels of data.

data mart
a collection of data that is optimized for a specialized set of users who have a finite
set of questions and reports.

data warehouse
a collection of data that is extracted from one or more sources for the purpose of query,
reporting, and analysis. In contrast to a data mart, a data warehouse is better suited
for storing large amounts of data that originates in other corporate applications or
which is extracted from external data sources such as public databases.

108 Glossary

database management system
a software application that enables you to create and manipulate data that is stored
in the form of databases. Short form: DBMS. See also relational database
management system.

DBMS
See database management system.

Extensible Markup Language
a markup language that structures information by tagging it for content, meaning, or
use. Structured information contains both content (for example, words or numbers)
and an indication of what role the content plays. For example, content in a section
heading has a different meaning from content in a database table. Short form: XML.

libref
a name that is temporarily associated with a SAS library. The complete name of a
SAS file consists of two words, separated by a period. The libref, which is the first
word, indicates the library. The second word is the name of the specific SAS file. For
example, in VLIB.NEWBDAY, the libref VLIB tells SAS which library contains the
file NEWBDAY. You assign a libref with a LIBNAME statement or with an operating
system command.

metadata LIBNAME engine
the SAS engine that processes and augments data that is identified by metadata.
The metadata engine retrieves information about a target SAS data library from
metadata objects in a specified metadata repository.

metadata promotion
in the SAS Open Metadata Architecture, a feature that enables you to copy the
contents of a metadata repository to another repository, and to specify changes in the
metadata that will be stored in the target repository. For example, you can use this
feature to move metadata from a development environment to a testing environment.
In such a scenario, you would probably have to change some ports, hosts, and/or
schema names as part of the process of moving metadata from one environment to
another.

OLAP
See online analytical processing.

OLAP schema
a group of cubes. A cube is assigned to an OLAP schema when it is created, and an
OLAP schema is assigned to a SAS OLAP Server when the server is defined in the
metadata. A SAS OLAP Server can access only the cubes that are in its assigned
OLAP schema.

online analytical processing
a software technology that enables users to dynamically analyze data that is stored
in multidimensional database (MDDB) tables. Short form: OLAP.

resource
any object that is registered in a metadata repository. For example, a resource can be
an application, a data store, a dimension in an OLAP cube, a metadata item, an
access control template, or a password.

resource template
an XML file that specifies the information that is needed for creating a metadata
definition for a SAS resource.

SAS Metadata Repository
one or more files that store metadata about application elements. Users connect to a
SAS Metadata Server and use the SAS Open Metadata Interface to read metadata

Glossary 109

from or write metadata to one or more SAS Metadata Repositories. The metadata
types in a SAS Metadata Repository are defined by the SAS Metadata Model.

SAS OLAP Cube Studio
a Java interface for defining and building OLAP cubes in SAS System 9 or later. Its
main feature is the Cube Designer wizard, which guides you through the process of
registering and creating cubes.

SAS Open Metadata Architecture
a general-purpose metadata management facility that provides metadata services to
SAS applications. The SAS Open Metadata Architecture enables applications to
exchange metadata, which makes it easier for these applications to work together.

schema
a map or model of the overall data structure of a database. An OLAP schema
specifies which group of cubes an OLAP server can access.

XML
See Extensible Markup Language.

110

111

Index

A
Access

defining ODBC data sources 45
ODBC connectivity to databases 9, 45
registering database libraries 47
registering database server 46

accessibility features 1
ADD command

SPDO procedure 12
aggregations 96
APIs (application programming interfaces) 8
ARM (application response monitoring) 94
asynchronous communication 6
Attunity 15
authorization facility 61
autoexec files

pre-assigning libraries using information in 68

B
Base SAS engine

metadata engine invocation of 61
Base SAS library

registering 19
Base SAS tables

buffering data 85
BLKSIZE= LIBNAME option 89
block insert buffer size 90
block read buffer size 90
block size 89
buffer size

for block insert 90
for block read 90

buffering table data 85, 86
BYSORT= LIBNAME option 93

C
cache

page caches 89
CACHENUM= LIBNAME option 89
change data capture (CDC) 14
CLUSTER CREATE command

SPDO procedure 11
cluster tables, dynamic 11
CLUSTER UNDO command

SPDO procedure 12
clustered data tables 11

columns
defining for flat files 32

Composite Information Server 13
configuring 25
connectivity to 24

Composite ODBC Driver
configuring 27

Composite Software 13
connectivity using 13

compression 80
configuration

Composite Information Server 25
Composite ODBC Driver 27
libnames.parm file 48
SPD Engine hardware 87

configuration files
editing for pre-assigned libraries 67
for user-defined formats 21

connectivity
ODBC 8
ODBC, to Access databases 9, 45
ODBC, to Oracle databases 8, 41
to Composite Information Server 24
to data sets 2
to Excel files 30
to external files 5
to flat files 31
to information maps 35
to library of data sets 19
to Oracle databases 7, 37
to SAP servers 14, 51
to SPD Server 11, 48
to XML data 34
to XML files 6
using Composite Software 13

CRM systems 13
connectivity to Composite Information Server 24

cube metadata
storage location requirements 99

cubes
See OLAP cubes

D
data access

local and remote 3
OLAP cubes 95
read-only for reporting libraries 55
verifying in SAS applications 55

112 Index

data-access engines 61
data component partitions 93
data compression 80
data extraction 14
data quality 15
data registration 3
data representation

for output files 88
data sets 2

connectivity to 2
connectivity to library of 19
shared access to 2, 22

data source optimization, multi 90
data sources 1

change data capture 14
connecting to 18
data sets 2
DataFlux Integration Server 15
ERP and CRM systems 13
Excel files 30
external files 5
local and remote data access 3
message queues 6
ODBC 8
relational database sources 7
SAP servers 51
SAS Data Quality Server 15
shared access to data sets 2
SPD Server and SPD Engine 10
XML data 6

data storage
OLAP cubes 95

data storage optimization 79
application response monitoring (ARM) 94
buffering data for Base SAS tables 85
buffering data for other tables 86
compressing data 80
grid computing 93
indexing data 82
LIBNAME options affecting SAS/ACCESS database per-

formance 89
LIBNAME options affecting SAS table performance 88
LIBNAME options affecting SPD Engine table perfor-

mance 91
multi-threaded sorting 85
sorting data 83
sorting database tables 85
threaded reads 87
validating SPD Engine hardware configuration 87

Data Surveyor for SAP 14
data surveyors 13
data synchronicity 14
data tables, clustered 11
data warehouses

cubes and 95
database libraries

registering for Access 47
registering for Oracle 39, 43

database servers
registering for Access 46
registering for Oracle 38, 42
registering SPD Server 49

database tables
sorting 85

databases
connectivity to Oracle 7, 37

LIBNAME options affecting SAS/ACCESS perfor-
mance 89

ODBC connectivity to Access 9, 45
ODBC connectivity to Oracle 8, 41
relational 7
third-party 7

DataFlux Integration Server 15
DATAPATH= LIBNAME option 92
DB2

buffering table data 86
DBINDEX= LIBNAME option 90
DBMS

passing DELETE statement (SQL) to 90
passing functions to 90
passing generated SQL to 91
registering libraries 19
registering server 18
threaded access 90

DBNULLKEYS= LIBNAME option 90
DBSLICEPARM= LIBNAME option 90
DELETE statement (SQL)

passing to DBMS 90
delimited external file wizard 5
detail data

displaying for large cubes 102
making available to cubes for drill-through 99
making available to information map for drill-

through 102
making available to OLAP server for drill-through 100

dfPower Studio 15
DIRECT_EXE= LIBNAME option 90
DIRECT_SQL= LIBNAME option 91
drill-through

making detail data available to cubes for 99
making detail data available to information map for 102
making detail data available to OLAP server for 100

dynamic cluster tables 11

E
ending observation number 93
ENDOBS= LIBNAME option 93
engines

Base SAS engine 61
data-access engines 61
metadata engine 61, 62
pre-assigning libraries 65

environment variables
for SAS/ACCESS on UNIX 56

ERP systems 13
connectivity to Composite Information Server 24

Excel files
as data source 30
connectivity to 30

EXCLUDE statement
METALIB procedure 76

exporting
cubes 96

External File Source Designer
connecting to flat files 32

external files 5
connectivity to 5
creating metadata objects for 5
defining columns 32
delimited 5
fixed-width 5

Index 113

flat files 31
extracting data 14
extracting SAP metadata 53

F
file system path 3
fixed-width external file wizard 5
flagging pre-assigned libraries 66
flat files

connecting to 32
connectivity to 31
defining columns for 32

format catalog 21
formats

user-defined 21
functions

passing to DBMS 90

G
generated SQL

passing to DBMS 91
grid computing

data considerations 93

H
hardware configuration

validating for SPD Engine 87

I
I/O block size 89
implicit sort 93
importing

cubes 96
index component files 92
indexes 82, 90
INDEXPATH= LIBNAME option 92
information map tables 36
information maps

connectivity to 35
making detail data available for drill-through 102

INSERTBUFF= LIBNAME option 90

L
LIBNAME options

affecting SAS/ACCESS database performance 89
affecting SAS table performance 88
affecting SPD Engine table performance 91

LIBNAME statement
for metadata engine 62

libnames.parm file
configuring 48

libraries
See also pre-assigning libraries
assigning 59
connectivity to 19
creating table metadata for 72
data-access engines and 61
default assignment for 62
metadata engine and 61
platform client assignments 63

read-only access for reporting libraries 55
registering 18
registering Base SAS library 19
registering database libraries for Access 47
registering database libraries for Oracle 43
registering DBMS libraries 19
registering for SAP servers 53
registering for SPD Server 50
registering ODBC database library 29
registering Oracle database library 39
SAS/SHARE Remote Engine library 23
stored processes and assigning 64

librefs
assigning libraries 59
for XML data 6

LIST command
SPDO procedure 12

local data access 3
logs

reviewing to verify pre-assigned libraries 69

M
message queues 6
metadata

See also table metadata
component files 92
extracting SAP metadata 53
storage location requirements for cube metadata 99

metadata engine 61
LIBNAME statement for 62
pre-assigning libraries to 68

metadata objects
creating for external files 5

METALIB procedure 71
assessing potential table metadata changes 73
changing the update rule 75
creating table metadata for new library 72
EXCLUDE statement 76
NOEXEC statement 73
pre-assigned libraries and 71
REPORT statement 73
SELECT statement 76
specifying which tables are affected 76
UPDATE_RULE statement 75
updating table metadata to match physical tables 75

METAPATH= LIBNAME option 92
multi data source optimization 90
multi-threaded sorting 85
MULTI_DATASRC_OPT= LIBNAME option 90

N
NOEXEC statement

METALIB procedure 73
null keys

when generating WHERE clauses 90
number of ending observation 93
number of starting observation 93

O
observations

ending observation number 93
starting observation number 93

114 Index

ODBC
buffering table data 86
components and features 8
connectivity to Access databases 45
connectivity to Oracle databases 41

ODBC database library
registering 29

ODBC database server
registering 28

ODBC sources 8
defining for Access 45
defining for Oracle 42

OLAP cubes 95
aggregations 96
building 97
creating or assigning OLAP schemas 97
data storage and access 95
detail data for drill-through 99
detail data for information map drill-through 102
detail data for OLAP server drill-through 100
displaying detail data for large cubes 102
exporting and importing 96
OLAP schemas and 96
storage location for metadata and related objects 99

OLAP schemas 96
creating or assigning 97

OLAP server
detail data for drill-through 100

OLE DB
buffering table data 86

optimizing data storage
See data storage optimization

Oracle
buffering table data 86
connectivity to databases 7, 37
connectivity to databases, using ODBC 8, 41
defining ODBC data source 42
registering database library 39, 43
registering database server 38, 42

Oracle Applications 13
output files

data representation for 88
OUTREP= LIBNAME option 88
overflow paths 92

P
page caches 89
partitions

paths for storing 92
size of 93

PARTSIZE= LIBNAME option 93
PeopleSoft 13
performance

See also data storage optimization
SAS/ACCESS databases 89
SAS tables 88
SPD Engine tables 91

physical tables
updating table metadata to match 75

platform clients
assigning libraries 63

pre-assigning libraries 60
editing configuration files 67
engines other than metadata engine 65
flagging libraries as pre-assigned 66

large number of libraries 66
METALIB procedure and 71
to use metadata engine 68
using information in autoexec file 68
verifying by reviewing logs 69

Q
Quality Knowledge Base 15
quality of data 15

R
RDBMS

SAS/ACCESS connections to 18
troubleshooting SAS/ACCESS connections to 56

read-only access
for reporting libraries 55

READBUFF= LIBNAME option 90
registering

Access database library 47
Access database server 46
Base SAS library 19
data 3
DBMS library 19
DBMS server 18
libraries 18
ODBC database library 29
Oracle database library 39, 43
Oracle database server 38, 42
SAP server library 53
SAP servers 51
SPD Server 49
SPD Server library 50
tables 54

relational database sources 7
ODBC 8
SAS/ACCESS 7

remote data access 3
Remote Engine library, SAS/SHARE 23
REPORT statement

METALIB procedure 73
reporting libraries

read-only access for 55

S
Salesforce.com 13, 24
SAP

Data Surveyor 14
extracting metadata 53
on z/OS 54

SAP servers
as data source 51
connectivity to 14, 51
registering 51
registering libraries for 53

SAS/ACCESS 7
connections to RDBMS 18
environment variables on UNIX 56
LIBNAME options affecting database performance 89
troubleshooting RDBMS connections 56

SAS applications
verifying data access in 55

SAS Data Quality Server 15

Index 115

SAS Open Metadata Architecture
authorization facility 61

SAS/SHARE
Remote Engine library 23
shared access to data sets 2

SAS tables 2
LIBNAME options affecting performance 88

SAS XML Mapper 6
Scalable Performance Data Engine

See SPD Engine
Scalable Performance Data Server

See SPD Server
SELECT statement

METALIB procedure 76
Service Oriented Architecture (SOA) 13
shared access to data sets 2, 22
Siebel 13
SMP (symmetric multiprocessing) 10
sorting data 83

automatic implicit sort 93
database tables 85
multi-threaded sorting 85

source designer wizards 5
SPD Engine 10

LIBNAME options affecting table performance 91
validating hardware configuration 87

SPD Server 10
connectivity to 11, 48
dynamic clustering 11
registering 49
registering library for 50
symmetric multiprocessing 10

SPDO procedure 11
ADD command 12
CLUSTER CREATE command 11
CLUSTER UNDO command 12
LIST command 12

spool files 90
SPOOL= LIBNAME option 90
SQL

data services 13
passing DELETE statement to DBMS 90
passing generated SQL to DBMS 91

SQL Server
buffering table data 86

SQL_FUNCTIONS= LIBNAME option 90
starting observation number 93
STARTOBS= LIBNAME option 93
storage optimization

See data storage optimization
stored processes

assigning libraries and 64
subdirectories

temporary 93
Sybase

buffering table data 86
symmetric multiprocessing (SMP) 10
synchronicity 14

T
table metadata 71

adding 75

assessing potential changes 73

changing the update rule 75

creating for new library 72

excluding tables 76

selecting tables 76

specifying which tables are affected 76

updating 75

updating to match data in physical tables 75

tables

buffering table data 85, 86

clustered data tables 11

dynamic cluster tables 11

information map tables 36

LIBNAME options affecting SAS table performance 88

LIBNAME options affecting SPD Engine table perfor-
mance 91

registering and verifying 54

sorting database tables 85

TEMP= LIBNAME option 93

temporary subdirectories 93

third-party databases 7

threaded DBMS access 90

threaded reads 7, 87

troubleshooting

SAS/ACCESS connections to RDBMS 56

U
UNIX

environment variables for SAS/ACCESS 56

update rule 75

UPDATE_RULE statement

METALIB procedure 75

user-defined formats

configuration file 21

connectivity to library of data sets 21

user-written external file wizard 5

W
WHERE clauses

null keys when generating 90

X
XML data 6

connectivity to 6, 34

libref for 6

XML LIBNAME engine 6

XML Writer transformation 6

XMLMaps 6

Z
z/OS

SAP on 54

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online help that is built into the software.
•	 Tutorials that are integrated into the product.
•	 Reference documentation delivered in HTML and PDF – free on the Web.
•	 Hard-copy books.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2009 SAS Institute Inc. All rights reserved. 518177_1US.0109

	Contents
	What’s New
	Overview
	New Data Surveyors
	Documentation Enhancements

	Overview of Common Data Sources
	Overview
	Accessibility Features in the SAS Intelligence Platform Products
	SAS Data Sets
	Shared Access to SAS Data Sets
	Local and Remote Access to Data
	External Files
	XML Data
	Message Queues
	Relational Database Sources
	SAS/ACCESS
	ODBC Sources

	Scalable Performance Data Server and Scalable Performance Data Engine
	Overview of Scalable Performance Data Server and Scalable Performance Data Engine
	Symmetric Multiprocessing
	Dynamic Clustering

	ERP and CRM Systems
	Overview of ERP and CRP Systems
	New Data Surveyors
	Data Surveyor for SAP

	Change Data Capture
	DataFlux Integration Server and SAS Data Quality Server

	Connecting to Common Data Sources
	Overview of Connecting to Common Data Sources
	Overview of SAS/ACCESS Connections to RDBMS
	Register the DBMS Server
	Register the DBMS Library

	Establishing Connectivity to a Library of SAS Data Sets
	Register the Base SAS Library
	Working with User-Defined Formats

	Establishing Shared Access to SAS Data Sets
	Overview of Establishing Shared Access
	Create a SAS/SHARE Remote Engine Library

	Establishing Connectivity to a Composite Information Server
	Overview of Establishing Connectivity to a Composite Information Server
	Prerequisites
	Stage 1: Configuring the Composite Information Server
	Stage 2: Configuring the Composite ODBC Driver
	Stage 3: Register the ODBC Database Server
	Stage 4: Register the ODBC Database Library

	Establishing Connectivity to an Excel File
	Overview of Establishing Connectivity to an Excel File

	Establishing Connectivity to a Flat File
	Overview of Establishing Connectivity to a Flat File

	Establishing Connectivity to XML Data
	Establishing Connectivity to a SAS Information Map
	Overview of Establishing Connectivity to a SAS Information Map
	Special Considerations for Information Map Tables

	Establishing Connectivity to an Oracle Database
	Overview of Establishing Connectivity to an Oracle Database
	Stage 1: Register the Database Server
	Stage 2: Register the Database Library

	Establishing Connectivity to an Oracle Database by Using ODBC
	Overview of Establishing Connectivity to an Oracle Database by Using ODBC
	Stage 1: Define the ODBC Data Source
	Stage 2: Register the Database Server
	Stage 3: Register the Database Library

	Establishing Connectivity to a Microsoft Access Database by Using ODBC
	Overview of Establishing Connectivity to a Microsoft Access Database by Using ODBC
	Stage 1: Define the ODBC Data Source
	Stage 2: Register the Database Server
	Stage 3: Register the Database Library

	Establishing Connectivity to a Scalable Performance Data Server
	Overview of Establishing Connectivity to a Scalable Performance Data Server
	Stage 1: Configure the libnames.parm File
	Stage 2: Register the Server
	Stage 3: Register the Library

	Establishing Connectivity to an SAP Server
	Overview to Establishing Connectivity to an SAP Server
	Stage 1: Register the Server
	Stage 2: Register the Library
	Stage 3: Extract SAP Metadata
	Special Considerations for SAP

	Registering and Verifying Tables
	Stage 1: Register the Tables
	Stage 2: Verify Access to the Data in a SAS Application

	Read-only Access for Reporting Libraries
	Setting UNIX Environment Variables for SAS/ACCESS
	Troubleshooting SAS/ACCESS Connections to RDBMS

	Assigning Libraries
	Overview of Assigning Libraries
	What Does It Mean to Assign a Library?
	Pre-assigning Libraries
	Data-Access Engines and the Metadata Engine

	Using Libraries That Are Not Pre-assigned
	Default assignment for libraries
	How Do the Different Platform Clients Assign Libraries?
	Processing Stored Processes When the Library is Not Pre-assigned

	Pre-assigning Libraries Using Engines Other Than the Metadata Engine
	Overview of Pre-assigning Libraries Using Engines Other Than the Metadata Engine
	Stage 1: Flag the Library as Pre-assigned
	Stage 2: Edit Configuration Files
	Pre-assignment Using Information in an Autoexec File

	Pre-assigning Libraries to Use the Metadata Engine
	Verifying Pre-assignments by Reviewing the Logs

	Managing Table Metadata
	Overview of Managing Table Metadata
	Creating Table Metadata for a New Library
	Assessing Potential Changes in Advance
	Updating Your Table Metadata to Match Data in Your Physical Tables
	Adding and Updating Table Metadata
	Changing the Update Rule
	Specifying Which Tables Are Affected

	Optimizing Data Storage
	Overview of Optimizing Data Storage
	Compressing Data
	Indexing Data
	Sorting Data
	Overview to Sorting Data
	Multi-Threaded Sorting
	Sorting a Database Table

	Buffering Data for Base SAS Tables
	Buffering Data for DB2 (UNIX and PC), ODBC, OLE DB, Oracle, SQL Server, and Sybase Tables
	Using Threaded Reads
	Validating SPD Engine Hardware Configuration
	Setting LIBNAME Options That Affect Performance of SAS Tables
	Setting LIBNAME Options That Affect Performance of SAS/ACCESS Databases
	Setting LIBNAME Options That Affect Performance of SPD Engine Tables
	Grid Computing Data Considerations
	Application Response Monitoring

	Managing OLAP Cube Data
	Introduction to Managing OLAP Cube Data
	Data Storage and Access
	Exporting and Importing Cubes
	About OLAP Schemas
	Create or Assign an OLAP Schema
	Building a Cube
	Overview of Building a Cube
	Preparations for Building a Cube
	Storage Location Requirements for Cube Metadata and Related Objects

	Making Detail Data Available to a Cube for Drill-Through
	Making Detail Data Available to an OLAP Server for Drill-Through
	Making Detail Data Available to an Information Map for Drill-Through
	Display Detail Data for a Large Cube

	Recommended Reading
	Recommended Reading

	Glossary
	Index

