
SAS® 9.3 Intelligence
Platform
Application Server Administration
Guide

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc 2011. SAS® SAS 9.3 Intelligence Platform: Application Server
Administration Guide. Cary, NC: SAS Institute Inc.

SAS® SAS 9.3 Intelligence Platform: Application Server Administration Guide

Copyright © 2011, SAS Institute Inc., Cary, NC, USA.

All rights reserved. Produced in the United States of America.

For a hardcopy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is
subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227–19, Commercial Computer Software-Restricted Rights
(June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

Electronic book 2, August 2012

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For
more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at support.sas.com/
publishing or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

http://support.sas.com/publishing
http://support.sas.com/publishing

Contents

What's New in Application Server Administration for the SAS 9.3 Intelligence Platform .
vii

Recommended Reading . xi

PART 1 Getting Started 1

Chapter 1 • Before You Begin . 3
Introduction to This Guide . 3
Accessibility Features in the SAS Intelligence Platform Products 4

Chapter 2 • Understanding the SAS Application Server . 5
Overview of SAS Application Servers . 5
The Structure of a SAS Application Server . 6

PART 2 Server Concepts 9

Chapter 3 • Understanding Workspace Servers and Stored Process Servers 11
Overview of Workspace Servers and Stored Process Servers . 11
SAS Object Spawners . 13

Chapter 4 • Understanding SAS/CONNECT Servers . 15
Overview of SAS/CONNECT and the SAS Intelligence Platform 15
Introduction to SAS/CONNECT . 16
The Uses of SAS/CONNECT in the SAS Intelligence Platform 17
Initial Configuration of the SAS/CONNECT Server . 19

Chapter 5 • Understanding the Batch Servers . 23
Overview of SAS Batch Servers . 23
The SAS DATA Step Batch Server . 24
The SAS Java Batch Server . 25
Additional Information . 26

Chapter 6 • Understanding SAS Grid Servers . 27
Overview of SAS Grid Servers . 27
Overview of Grid Monitoring Servers . 28
The Role of the SAS Grid Server in the SAS Intelligence Platform 28
The Initial Configuration of the SAS Grid Server . 28

PART 3 Load Balancing and Pooling 31

Chapter 7 • Understanding Server Load Balancing . 33
Overview of Load Balancing . 34

Configuring OLAP Load-Balancing Clusters . 39
Planning a Load-Balancing Cluster . 39
Creating Metadata for Load-Balancing Clusters . 40
Installing and Configuring Software for Load-Balancing Servers 41
Stopping and Restarting Load-Balancing Servers . 44
Adding or Deleting Load-Balancing Servers . 44
Understanding the Load-Balancing Algorithms . 45

Chapter 8 • Understanding Server Pooling . 55
Overview of Pooling . 55
How Server-side Pooling Works . 56
Understanding the Server-side Pooling Connection Process . 56
How Client-side Pooling Works . 57
Understanding the Client-side Pooling Connection Process . 58

Chapter 9 • Configuring Client-side Pooling . 61
Client-side Pooling Concepts and Overview . 61
Configuring Client-side Pooling . 63
Configure Client-side Pooling across Multiple Machines . 69
Configuring a Client-side Pooling Workspace Server to Enforce

Row-Level Security . 72

PART 4 Server Administration 79

Chapter 10 • Managing SAS Application Servers . 81
Defining Multiple Application Servers . 81
Add a New Logical Server in an Existing SAS Application Server 91
Adding a New Server in an Existing Logical Server . 92
Modify a Server Definition . 95
Remove Logical Servers . 96

Chapter 11 • Managing Workspace Servers and Stored Process Servers 99
Managing Data and Catalogs for Servers on Multiple Machines 99
Adding or Modifying E-Mail Settings for SAS Application Servers 101
Moving Workspace Servers and Stored Process Servers . 102
Encoding and Locale Information . 105
Adding Environment Variables to Server Invocations . 106
Run SAS Code at Server Session Boundaries . 106
Workspace Server Configuration Tasks . 107

Chapter 12 • Managing the Object Spawner . 113
Object Spawner Configuration Tasks . 113
Configuring and Starting the Object Spawner on z/OS . 120
Spawner Invocation Options . 124

Chapter 13 • Administering SAS OLAP Servers . 133
Administrative Overview for SAS OLAP Servers . 134
Migrating OLAP Cubes . 135
Installing and Configuring SAS OLAP Servers . 135
Connecting to SAS OLAP Servers . 136
Starting SAS OLAP Servers . 136
Stopping, Pausing, and Resuming SAS OLAP Servers . 137
Disabling and Enabling Cubes . 137
Building Cubes: Overview for Administrators . 137

iv Contents

Updating Cubes: Overview for Administrators . 138
Coalescing Cubes . 139
Deleting Cubes . 140
Authorizing Access to SAS OLAP Servers . 140
Authorizing Access to OLAP Cubes and Cube Data . 141
Monitoring SAS OLAP Servers . 141
Managing OLAP Sessions and Queries . 142
Logging SAS OLAP Servers . 142
Tuning SAS OLAP Servers with Advanced Server Options . 142
Refreshing Cube Metadata for Calculated Members and Named Sets 146
Administering OLAP Schemas . 146

Chapter 14 • System Options for SAS Application Server Components 147
Overview of System Options for SAS Application Server Components 147
Dictionary . 147

Chapter 15 • IOMOPERATE Procedure . 161
Overview: IOMOPERATE Procedure . 162
Concepts: IOMOPERATE Procedure . 162
Syntax: IOMOPERATE Procedure . 162
Using: IOMOPERATE Procedure . 183
Examples: IOMOPERATE Procedure . 183

PART 5 Appendixes 191

Appendix 1 • Object Spawner and SAS OLAP Server Messages . 193
Object Spawner Messages . 193
Load Balancing Error Messages . 207

Glossary . 213
Index . 221

Contents v

vi Contents

What's New in Application Server
Administration for the SAS 9.3
Intelligence Platform

Overview

The SAS Intelligence Platform: Application Server Administration Guide explains how
to administer a SAS Application Server.

This document contains the following enhancements and changes to the SAS
Intelligence Platform:

• “Added Object Spawner Command Option for Load-balancing Peer without a Peer
Refresh” on page vii

• “Enhanced Support for Running SAS Code at Server Session Boundaries” on page
viii

• “Enhanced Support for Running SAS Code at Server Boundaries” on page viii

• “Added Single Sign-on Support, Based on Kerberos, for UNIX” on page viii

• “Added Object Spawner Support for FIPS” on page viii

• “Changed Server Credentials for Load Balancing” on page viii

• “Added Support for Grid Algorithm” on page ix

• “Changed Object Spawner Refresh” on page ix

• “Added New SAS Procedure: PROC IOMOPERATE” on page ix

Added Object Spawner Command Option for
Load-balancing Peer without a Peer Refresh

A new Object Spawner command option (-lbaddtocluster) enables you to add a new host
to an existing load balancing peer object without requiring a peer refresh. This feature is
required for cloud computing and software as a service models.

vii

Enhanced Support for Running SAS Code at
Server Session Boundaries

In addition to the stored process server, the workspace server and pooled workspace
server now support running SAS code at server session start up and shutdown. For more
information, see “Run SAS Code at Server Session Boundaries” on page 106.

Enhanced Support for Running SAS Code at
Server Boundaries

In SAS 9.3, the IOM servers also support running SAS code at server start up and
shutdown. For more information, see “INITSTMT= System Option” in SAS System
Options: Reference and “TERMSTMT= System Option” in SAS System Options:
Reference.

Added Single Sign-on Support, Based on
Kerberos, for UNIX

Single sign-on support based on Kerberos has been added for SAS servers running on
UNIX. For more information, see “SSPI System Option” on page 159.

Added Object Spawner Support for FIPS

The object spawner supports the Federal Information Processing Standards (FIPS)
compliance mode that is provided by SAS/SECURE software in its implementation of
the FIPS 140-2 specification. For more information, see “-encryptfips” on page 127.

Changed Server Credentials for Load Balancing

Server load balancing generates its own credentials internally in SAS 9.3. Logical server
credentials are no longer needed. For more information, see Chapter 7, “Understanding
Server Load Balancing,” on page 33.

viii Application Server Administration

Added Support for Grid Algorithm

The load-balancing grid algorithm is now supported for the OLAP, stored process, and
pooled workspace servers. For more information, see “Choose a Load-Balancing
Algorithm” on page 40.

Changed Object Spawner Refresh

In SAS 9.3, when you refresh the object spawner, the spawner now quiesces any servers
that it has started. The servers shut down when their clients have completed their work.
For more information, see “Refresh the Object Spawner” on page 118.

Added New SAS Procedure: PROC IOMOPERATE

There is a new SAS 9.3 procedure, PROC IOMOPERATE. It administers SAS servers
that support the SAS IOM infrastructure. For more information Chapter 15,
“IOMOPERATE Procedure,” on page 162.

Added New SAS Procedure: PROC IOMOPERATE ix

x Application Server Administration

Recommended Reading

• Grid Computing in SAS

• SAS Guide to BI Row-Level Permissions

• SAS Intelligence Platform: Data Administration Guide

• SAS Intelligence Platform: Desktop Application Adminstration Guide

• SAS Intelligence Platform: Installation and Configuration Guide

• SAS Intelligence Platform: Middle-Tier Administration Guide

• SAS Intelligence Platform: Migration Guide

• SAS Intelligence Platform: Overview

• SAS Intelligence Platform: Security Administration Guide

• SAS Intelligence Platform: System Administration Guide

• SAS Intelligence Platform: Web Application Administration Guide

• Scheduling in SAS

• SAS offers instructor-led training and self-paced e-learning courses to help you
administer the SAS Intelligence Platform. For more information about the courses
available, see support.sas.com/admintraining.

For a complete list of SAS publications, go to support.sas.com/bookstore. If you have
questions about which titles you need, please contact a SAS Publishing Sales
Representative:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-3228
Fax: 1-919-677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

xi

mailto:sasbook@sas.com
http://support.sas.com/bookstore

xii Recommended Reading

Part 1

Getting Started

Chapter 1
Before You Begin . 3

Chapter 2
Understanding the SAS Application Server . 5

1

2

Chapter 1

Before You Begin

Introduction to This Guide . 3

Accessibility Features in the SAS Intelligence Platform Products 4

Introduction to This Guide
This guide covers the administration of the SAS Application Server, which is a logical
entity that represents the SAS server tier in the SAS Intelligence Platform. This
application server contains a set of actual servers. For example, a SAS Application
Server usually contains the following servers:

Workspace Server
enables client applications to submit SAS code to a SAS session by using an
application programming interface (API). For example, when you use SAS Data
Integration Studio to submit an extract, transform, and load (ETL) job for processing,
the application generates the SAS code necessary to perform the processing and
submits it to a workspace server. You can run as many instances of workspace
servers as are needed to support your workload.

Pooled Workspace Server
enables client applications to submit SAS code to a SAS session by using an
application programming interface (API). Pooled workspace servers are workspace
servers in every respect except that these servers automatically use pooling and load
balancing.

Stored Process Server
interacts with SAS by submitting stored processes, which are SAS programs that are
stored and can be executed by client applications. You can use stored processes to
perform complex tasks such as analyzing data and creating reports, and then return
the results to the client or publish the results to a channel or repository.

OLAP server
delivers pre-summarized, multidimensional data (cubes) to business intelligence
applications. The data is queried using the multidimensional expressions language
(MDX).

In addition, a SAS Application Server might contain one of more of the following
servers:

SAS/CONNECT Server
enables clients to execute code on a remote host, or to move data between client and
server machines.

3

SAS batch server
stores information in metadata about how to execute a SAS command in batch mode.
A batch server is a required if you are using the SAS scheduling system. There are
three batch servers:

• DATA Step Batch Server

• Java Batch Server

• Generic Batch Server

SAS Grid Server
enables Platform LSF to start SAS/CONNECT servers on a SAS compute grid in
order to execute grid-enabled SAS programs or grid-enabled jobs that are created in
SAS Data Integration Studio and SAS Enterprise Miner.

This guide explains how to administer all of these server components and the SAS
Application Server as a whole.

This guide assumes that you are familiar with the concepts and terminology that are
introduced in the SAS Intelligence Platform: Overview document. For a list of all of the
documents that SAS publishes to support administration of the SAS Intelligence
Platform, see http://support.sas.com/93administration.

Accessibility Features in the SAS Intelligence
Platform Products

For information about accessibility for any of the products mentioned in this book, see
the documentation for that product. If you have questions or concerns about the
accessibility of SAS products, send e-mail to accessibility@sas.com.

4 Chapter 1 • Before You Begin

http://support.sas.com/93administration

Chapter 2

Understanding the SAS
Application Server

Overview of SAS Application Servers . 5
What are SAS Application Servers? . 5
A Collection of Server Components . 5
A Server Context . 6

The Structure of a SAS Application Server . 6
The SAS Application Server's Server Components . 6
The SASMeta Application Server . 8
The Hierarchy of Metadata Objects Used to Define a SAS Application Server 8

Overview of SAS Application Servers

What are SAS Application Servers?
When the SAS Intelligence Platform was installed at your site, a metadata object that
represents the SAS server tier in your environment was defined. In the SAS
Management Console interface, this type of object is called a SAS Application Server.
By default, the application server object is named SASApp.

Note: In SAS deployments prior to SAS 9.2, the default SAS application server is
named SASMain.

You can view the properties of this object by using the Server Manager plug-in to SAS
Management Console. Expand the Server Manager tree node. Then right-click the
SASApp node, and select Properties from the pop-up menu. You can also see the server
components that make up the application server by completely expanding the SASApp
node in the Server Manager tree.

In addition to this metadata object, a SASApp directory was created on each machine
that hosts a SAS server (under the SAS configuration directory). This directory contains
important files that you will use in the management of your SAS Application Server. In
particular, it contains a file called sasv9.cfg, a configuration file that is used in the
start-up of most SAS servers.

A Collection of Server Components
A SAS Application Server is not an actual server that can execute SAS code submitted
by clients. Rather, it is a logical container for a set of application server components,
which do execute code. Typically, these components execute SAS code, although some

5

components can execute Java code or MDX queries. For example, a SAS Application
Server might contain a standard workspace server and a pooled workspace server, which
can execute SAS code that is generated by clients such as SAS Data Integration Studio
or SAS Web Report Studio. A SAS Application Server might also contain a stored
process server, which executes SAS Stored Processes, and an OLAP server which
executes and processes multidimensional expressions language (MDX) code to query a
cube. If SAS runs on multiple machines, the SAS application might contain a
SAS/CONNECT Server, which can upload or download data and execute SAS code
submitted from a remote machine.

For a complete list of application server components, see “The SAS Application Server's
Server Components” on page 6.

A Server Context
A SAS Application Server knows its server context (the context in which it is being
used) and makes decisions based on that knowledge. For example, a client such as SAS
Data Integration Studio is assigned a default SAS Application Server, and when the
client generates code, it submits the code to that application server. The application
server determines what type of code is being submitted and directs it to the correct
server. That is, if the code is typical SAS code that could be run in the SAS Display
Manager, the code is executed by the application server's workspace server.

In addition, data-related objects such as SAS libraries, database libraries, and OLAP
schemas can be assigned to a SAS application server. Once this assignment is made, if a
client needs to access data in a particular library or OLAP schema, it uses a server
component belonging to the application server to which the library or schema has been
assigned.

The Structure of a SAS Application Server

The SAS Application Server's Server Components
As mentioned in “A Collection of Server Components” on page 5, a SAS Application
Server is a logical entity that encompasses a set of actual servers. Several types of
servers might belong to a SAS Application Server, as shown in the following list:

• SAS Workspace and SAS Pooled Workspace Servers - These servers are provided
with SAS Integration Technologies and are accessed through the Integrated Object
Model (IOM) workspace interface. This interface provides access to Foundation SAS
features such as the SAS language, SAS libraries, the server file system, results
content, and formatting services. A SAS workspace represents a session with the
SAS system and is functionally equivalent to the execution of the SAS System as a
batch job. A pooled workspace server is a workspace server in every respect except
that it automatically uses mechanisms—server-side pooling and load-balancing—to
improve performance on larger SAS deployments. (For standard workspace servers,
you must set up load balancing or client-side pooling manually.)

• Stored Process Server - The Stored Process Server is also part of SAS Integration
Technologies. It retrieves SAS Stored Processes from a repository and executes
them.

A stored process is a SAS program that is stored on a server and can be executed as
required by requesting applications. You can use stored processes for Web reporting,
analytics, building Web applications, delivering packages to clients or to the middle

6 Chapter 2 • Understanding the SAS Application Server

tier, and publishing results to channels or repositories. Stored processes can also
access any SAS data source or external file and create new data sets, files, or other
data targets that are supported by SAS.

• SAS OLAP Server - Similar to the way in which a database management system
(DBMS) can read an SQL query and return data from a database, the SAS OLAP
Server processes MDX queries and returns data from OLAP cubes.

An OLAP server has a close relationship with a workspace server, and the two
generally run on the same machine. The workspace server is used to build OLAP
cubes, and the OLAP server is used to query the cubes.

• SAS/CONNECT Server - The SAS/CONNECT server has several general
capabilities:

• SAS/CONNECT provides compute services. A SAS/CONNECT client running
on one machine can submit code to one or more remote SAS/CONNECT servers,
which execute the code.

• SAS/CONNECT provides Remote Library Services (RLS). These services
enable SAS code to read, write, and update remote data as if it were resident on
the client host. RLS can be used to access SAS data sets across machines that
have different architectures.

• SAS/CONNECT provides a set of Data Transfer Services (DTS). A
SAS/CONNECT client can download data from a remote host where a
SAS/CONNECT server is running, or the client can upload data to the server
host. The client and server host do not need to be running the same operating
system.

In addition, the SAS/CONNECT server has an important role in several features that
are unique to the SAS Intelligence Platform:

• SAS/CONNECT servers run on all of the nodes in the compute grid. Together,
the servers execute SAS Data Integration Studio and SAS Enterprise Miner jobs
that use parallel algorithms.

• SAS Data Integration Studio can also use a SAS/CONNECT server for regular
jobs. The application can generate code that uses the SAS/CONNECT server to
upload data to a remote machine, download data from a remote machine, or
execute the code for one or more transformations.

• batch servers - A batch server is actually a metadata object that stores a SAS
command that is run in batch mode to execute SAS or Java code. The batch server
contains an association between the stored command and the host on which it runs
and possibly a log file. These SAS commands are actually scheduled jobs that are
created with programs such as SAS Data Integration Studio and SAS Web Report
Studio.

Different types of batch servers are available for different types of code: a SAS
DATA Step Batch Server, a SAS Java Batch Server, and a SAS Generic Batch
Server. For more information about these subtypes of the batch server, see
“Understanding the Batch Servers” on page 23.

• SAS Grid Server - The SAS Grid Server is similar to the batch server in that it stores
a command. In this case, the server stores the command that Platform LSF will use to
start SAS/CONNECT sessions on the nodes in the grid. For more information about
the architecture of a system that supports grid computing, see Grid Computing in
SAS.

The Structure of a SAS Application Server 7

The SASMeta Application Server
The SAS Deployment Wizard creates a second SAS application server called SASMeta
by default. The SASMeta application server is used for certain metadata functions such
as backup and restore that depend on a SAS Workspace Server and (for some functions)
a SAS/CONNECT Server. For more information about these metadata utilities, see
“About Backups and Restores” in Chapter 11 of SAS Intelligence Platform: System
Administration Guide.

In addition, the SASMeta server context also contains the SAS Metadata Server,
although the metadata server is technically not an application server component.

The Hierarchy of Metadata Objects Used to Define a SAS
Application Server

When your system was first installed, an application server was created when the first
server—perhaps a workspace server—was defined. Defining the application server
involved creating three objects:

• an application server

• a logical server (for example, a logical workspace server)

• a server (for example, a workspace server)

The Server Manager plug-in to SAS Management Console has a tree structure similar to
the one shown in the following display:

The SASApp tree node represents the SAS Application Server. You assign resources
such as libraries and OLAP schemas to this object. The result is that when an application
such as SAS Web Report Studio needs to access a particular resource, it will use a
server, such as a workspace server, that belongs to this application server.

The object named SASApp - Logical Workspace Server is a logical server. An
application server such as SASApp can contain at most one logical server for each type
of server that is listed in the section “The SAS Application Server's Server Components”
on page 6. Generally, each logical server can contain one or more servers of the
appropriate type. However, logical Grid Servers can contain only a single server.

The logical server level in the hierarchy enables you not only to group related servers
together, but to control the behavior of the set of servers that belongs to the logical
server. For example, if you have two workspace servers in a logical workspace server,
you use the logical workspace server to indicate that you want to balance the workload
that goes to these two servers. A logical server also gives you a place at which to use
metadata access controls to secure all servers of a particular type in the same way.

The object named SASApp - Workspace Server represents the server that executes
SAS code. In the case of a workspace server, this object contains information about the
machine that the server runs on, the command that is used to start it, and the port on
which it listens for requests.

8 Chapter 2 • Understanding the SAS Application Server

Part 2

Server Concepts

Chapter 3
Understanding Workspace Servers and Stored Process Servers . . 11

Chapter 4
Understanding SAS/CONNECT Servers . 15

Chapter 5
Understanding the Batch Servers . 23

Chapter 6
Understanding SAS Grid Servers . 27

9

10

Chapter 3

Understanding Workspace
Servers and Stored Process
Servers

Overview of Workspace Servers and Stored Process Servers 11
What are Stored Process Servers and the Workspace Servers? 11
SAS Stored Process Servers . 11
SAS Workspace Servers . 12
SAS Pooled Workspace Servers . 12
The Default Stored Process Server and the Workspace Servers 12

SAS Object Spawners . 13
Overview of SAS Object Spawners . 13
Configuration File for Metadata Connection . 13
Spawner Tasks . 14

Overview of Workspace Servers and Stored
Process Servers

What are Stored Process Servers and the Workspace Servers?
Stored process servers and the workspace servers are crucial elements of the SAS
Intelligence Platform that enable clients to perform SAS processing and to access
Foundation SAS resources.

SAS Stored Process Servers
SAS Stored Process Servers interact with SAS by submitting stored processes, which are
SAS programs that are stored and can be submitted by SAS client applications. You can
use stored processes to perform complex tasks such as analyzing data and creating
reports, and then returning the results to the client or publishing the results to a channel
or repository.

Each stored process server process handles multiple users, and by default each server
uses multiple server processes or instances. A load-balancing algorithm distributes client
requests between the server processes. For more information about load balancing, see
“Overview of Load Balancing” on page 34.

If the job load for your stored process server is high, you might want to add additional
server processes to your server definition. Each server process is defined as a
MultiBridge connection in SAS Management Console.

11

SAS Workspace Servers
SAS Workspace Servers interact with SAS by creating a server process for each client
connection. The workspace server process is owned by the client user who made the
server request. Each workspace server process enables client programs to access SAS
libraries, perform tasks by using the SAS language, and retrieve the results.

In the default configuration, SAS presents you with a workspace server that is not pooled
(standard workspace server) and a workspace server that is pooled (pooled workspace
server).

For the standard, non-pooled workspace server, SAS creates a new server process each
time that a client requests a connection. For simple configurations and for sites that do
not place heavy loads on a workspace server, a non-pooled server might be adequate. In
situations where the demands on the workspace server are greater, you should
(depending on which SAS application you are using) consider configuring the
workspace server for either pooling (Web applications) or load balancing (desktop
applications).

In a pooling configuration, a set of server processes are reused to avoid the processing
time that is associated with starting a new process for each connection. SAS offers two
types of pooling: client-based and server-based. A pooling configuration can also be
shared across multiple machines. Pooling is recommended if your server supports SAS
Web Report Studio and other Web applications. For more information, see “Overview of
Pooling” on page 55.

In a load-balancing configuration, your workspace server processes are distributed
between multiple machines. Load balancing is recommended if your server supports
applications that submit large jobs, such as SAS Data Integration Studio. For more
information, see “Overview of Load Balancing” on page 34.

SAS Pooled Workspace Servers
SAS Pooled Workspace Servers are workspace servers in every respect except that these
servers automatically use pooling and load balancing. Like a standard workspace server,
each pooled workspace server enables client programs to access SAS libraries, perform
tasks by using the SAS language, and retrieve the results. For more information, see
“How Server-side Pooling Works” on page 56.

The Default Stored Process Server and the Workspace Servers
When the installer at your site runs the SAS Deployment Wizard, that person defines
metadata for a SAS Application Server.

12 Chapter 3 • Understanding Workspace Servers and Stored Process Servers

Usually, your application server contains a stored process server, a workspace server,
and a pooled workspace server.

The initial stored process server is configured as a load-balancing server named by
default SASApp - Stored Process Server. By default, the stored process server
definition includes three MultiBridge connections.

The initial workspace server is configured as a standard workspace server named
SASApp - Workspace Server.

The initial pooled workspace server is configured as a load-balanced, server-based
pooled workspace server named by default SASApp - Pooled Workspace Server.

SAS Object Spawners

Overview of SAS Object Spawners
Workspace servers and stored process servers are initialized by the SAS Object
Spawner. An object spawner runs on each machine where you want to run a workspace
server or stored process server, listens for requests, and launches the servers as
necessary.

The object spawner uses a configuration file that contains information for accessing the
metadata server. When you invoke the spawner, the spawner works as shown in the
following figure.

Figure 3.1 How the Spawner Obtains Metadata

1 The object spawner accesses a configuration file that contains information for
accessing the SAS Metadata Server.

2 The object spawner connects to the SAS Metadata Server for configuration
information.

(The spawner uses a proprietary SAS bridge protocol to communicate with the
metadata server, and uses TCP for communication.)

The spawner can then listen for requests for various spawner tasks. See “Spawner
Tasks” on page 14 .

Configuration File for Metadata Connection
A metadata configuration file contains information for accessing a metadata server. The
spawner uses the information that is contained in the configuration file to connect to a
metadata server and read the appropriate server definitions.

The default metadata configuration file is metadataConfig.xml. This file is located
in the ObjectSpawner subdirectory of your SAS configuration directory.

SAS Object Spawners 13

Spawner Tasks
When a request is received, the spawner accepts the connection and performs the action
that is associated with the port or service on which the connection was made. A
connection to a spawner can do the following:

• request a server

When a connection is made on a port or service that is associated with a Server
object, the spawner authenticates the client connection against either the metadata
server (default for stored process and pooled workspace servers) or the host
authentication provider for the server's machine (default for the standard workspace
server). The spawner then launches a server for use by the connecting client.

When you define a server in SAS Management Console, you must specify a
command that the spawner uses to start the server. When the object spawner starts, it
reads all server definitions for which it is associated. Therefore, if you change or add
a server start-up command, you must refresh (or restart) the object spawner for any
modified commands to be used to launch a server. For details about the server
command, see “Add System Options to the Workspace Server Launch Command”
on page 109. For SAS Stored Process Servers and SAS Pooled Workspace Servers,
on the server definition, you must also configure credentials for the spawner to use to
start a multi-user server. Every connection to the server is authenticated. Here are the
authentication methods used for each type of spawned server:

• standard workspace servers

These servers start under the client user's credentials when set up for host
authentication. (This is the default.) If metadata authentication is used (SAS
Token Authentication), then standard workspace servers run under a configured
user ID, referred to as launch credentials.

• stored process servers and pooled workspace servers

These servers start under a configured user ID, referred to as launch credentials.
Typically, this user ID is the SAS Spawned Servers user (sassrv, by default).

• initiate the operator interface

When a connection is made on the port or service that is identified as the operator
port or operator service in the spawner definition, the spawner initiates the
administration interface. Only one administrator can be active at a given time.

• balance the server workload between server processes by using load balancing

See “Overview of Load Balancing” on page 34.

14 Chapter 3 • Understanding Workspace Servers and Stored Process Servers

Chapter 4

Understanding SAS/CONNECT
Servers

Overview of SAS/CONNECT and the SAS Intelligence Platform 15

Introduction to SAS/CONNECT . 16
Overview of Services . 16
Compute Services . 16
Data Transfer Services . 16
Remote Library Services . 17

The Uses of SAS/CONNECT in the SAS Intelligence Platform 17
Overview of the Uses of SAS/CONNECT in the SAS Intelligence Platform 17
SAS/CONNECT, SAS Data Integration Studio, and SAS Enterprise Miner 17
SAS/CONNECT and Grid Computing . 18

Initial Configuration of the SAS/CONNECT Server . 19
Overview of the Initial Configuration of the SAS/CONNECT Server 19
SAS/CONNECT Metadata Objects . 19
SAS/CONNECT Configuration Files . 21
Changing the Logging Level of the SAS/CONNECT Spawner 21

Overview of SAS/CONNECT and the SAS
Intelligence Platform

SAS/CONNECT software provides the essential tools for sharing data and processing
power across multiple computing environments. SAS code uses these tools to perform
tasks such as the following:

• dividing time-consuming tasks into multiple units of work and executing these units
in parallel

• moving data from a client machine to a server machine, or vice versa, so that the data
is on the same machine as the code processing it

Any code that your company writes for use with the SAS Intelligence Platform, such as
stored processes, can use these SAS/CONNECT features. For more information about
the general capabilities of SAS/CONNECT, see “Introduction to SAS/CONNECT” on
page 16 or the SAS/CONNECT User's Guide.

In addition, SAS/CONNECT plays some special roles in the SAS Intelligence Platform.
For example, in a properly configured environment, some of the platform clients, such as
SAS Data Integration Studio and SAS Enterprise Miner, can generate code that includes
SAS/CONNECT statements. These statements enable the generated code to perform
tasks such as those mentioned in the previous paragraph. For more information about

15

these special roles, see “Overview of the Uses of SAS/CONNECT in the SAS
Intelligence Platform” on page 17.

If your environment contains SAS/CONNECT, the SAS Deployment Wizard might have
configured the product when your system was installed. If this configuration did take
place, it is important for you to know what metadata objects and files were created
during installation so that you can manage your environment effectively. For more
information about how the wizard configures SAS/CONNECT, see “Initial
Configuration of the SAS/CONNECT Server” on page 19.

Introduction to SAS/CONNECT

Overview of Services
SAS/CONNECT provides applications with three types of services:

• Compute Services. Use the Compute Services to synchronously or asynchronously
direct the execution of SAS programs to one or more server sessions.

• Data Transfer Servers. Use the Data Transfer Services to move a copy of your data
from one machine to another in order to translate data between machine architectures
and SAS versions, as necessary.

• Remote Library Services. Use the Remote Library Services to transparently access
SAS data that resides in server libraries on machines across the network.

The following sections describe these services briefly. For detailed information, see
Chapter 1, “SAS/CONNECT: Definitions and Services,” in SAS/CONNECT User's
Guide.

Compute Services
The compute services of SAS/CONNECT enable the use of multiple local processors
and remote computing resources"including hardware, software, and data"to most
efficiently execute an application.

You can move any or all portions of an application's processing to other processors
(either local or remote) in order to use hardware resources, use software in remote
environments, interface with legacy systems, and execute code against a remote copy of
the data. The results of the remote processing can be returned to the local machine. This
is useful when the remote machine has hardware or software that can perform a
particular task most efficiently.

Compute services are also helpful if the amount of data to be processed is too large to
move to the local machine or if the data is updated too frequently for a local static copy
of be useful.

Data Transfer Services
The data transfer services of SAS/CONNECT provide a method for moving a copy of
data from one machine to another where a physical copy is then created. Subsequent
local processing takes place against the local copy of the data without generating further
network traffic until you decide to update the original copy with another transfer. Data
transfer services automatically perform any conversion or translation necessary to move
data, such as from one SAS release to another or from one machine representation to

16 Chapter 4 • Understanding SAS/CONNECT Servers

another. These services can move data stored in SAS data sets, external databases, and
external files.

Remote Library Services
The remote library services of SAS/CONNECT provide access to remote data libraries
as if they were stored locally. The data moves through the network only as the local
program requests it. A copy of the data is not written to the local files system, and the
data must pass through the network on subsequent use by the local processor. This
enables you to maintain a single copy of your data and build applications that provide
seemingly identical access to local and remote data without requiring the user to know
where the data resides.

The Uses of SAS/CONNECT in the SAS
Intelligence Platform

Overview of the Uses of SAS/CONNECT in the SAS Intelligence
Platform

“Introduction to SAS/CONNECT” on page 16 explains the general capabilities that
SAS/CONNECT gives SAS programmers. This section explains how some of the SAS
Intelligence Platform clients and some of the SAS macros that are provided with the
platform use SAS/CONNECT. You must install SAS/CONNECT on the correct
machines (and possibly configure a SAS/CONNECT spawner and server) to use the
following features:

• the ability of SAS Data Integration Studio and SAS Enterprise Miner to generate
SAS/CONNECT code

• the ability of SAS Data Integration Studio and SAS Enterprise Miner to use grid
computing

For more information about providing the infrastructure for these features, see the
following sections.

SAS/CONNECT, SAS Data Integration Studio, and SAS Enterprise
Miner

If you have installed and configured SAS/CONNECT, then both SAS Data Integration
Studio and SAS Enterprise Miner can generate SAS/CONNECT code as part of a job.
For example, suppose that you are creating a SAS Data Integration Studio job that
processes a large amount of remote data. Instead of sending requests for data across the
network and results being returned across the network to you, the job can use
SAS/CONNECT compute services to submit the code that does the processing to a
SAS/CONNECT server that is running on the remote machine, as shown in the
following figure.

The Uses of SAS/CONNECT in the SAS Intelligence Platform 17

Figure 4.1 Using a SAS/CONNECT Server to Access Remote Data

Because the code is now executing on the machine where the data resides, the job can
execute much faster.

Alternatively, the job can use the data transfer service in SAS/CONNECT to download
the data from the remote host so that the job can run on the local processor. If necessary,
the job can also upload revised data.

For complete details about how to set up your environment in order to enable this
functionality, see “Setting Up Multi-Tier Environments” in Chapter 5 of SAS
Intelligence Platform: Desktop Application Adminstration Guide. For information about
creating data integration and data mining jobs, see the user's guides and online Help for
SAS Data Integration Studio and SAS Enterprise Miner.

SAS/CONNECT and Grid Computing
If you have invested in the SAS Grid Manager software application, then users of SAS
Data Integration Studio and SAS Enterprise Miner can use SAS/CONNECT not only to
submit code to a remote host, but to submit code to a grid of processors. The following
figure illustrates the role that SAS/CONNECT plays in grid computing.

18 Chapter 4 • Understanding SAS/CONNECT Servers

Figure 4.2 The Role of SAS/CONNECT in Grid Computing

The illustration is designed to give you an idea of how this type of system is set up. For
more information, see Chapter 1, “What Is SAS Grid Computing?,” in Grid Computing
in SAS.

Initial Configuration of the SAS/CONNECT Server

Overview of the Initial Configuration of the SAS/CONNECT Server
“Overview of the Uses of SAS/CONNECT in the SAS Intelligence Platform” on page 17
looks at several scenarios in which SAS/CONNECT plays an important role in the SAS
Intelligence Platform. In the first two scenarios, SAS/CONNECT must be configured on
at least one machine in the system. This means that not only was SAS/CONNECT
installed on the machine, but the SAS Deployment Wizard configured a
SAS/CONNECT spawner and a SAS/CONNECT server on that machine.

If SAS/CONNECT was configured, then the SAS Deployment Wizard will have created
metadata objects and files that are used in the management of the spawner and server.
The next two sections explain what metadata objects and files were created so that you
can understand how things are currently set up and where you might need to make
changes.

SAS/CONNECT Metadata Objects
When the SAS Deployment Wizard configures SAS/CONNECT, it creates at least three
metadata objects:

Initial Configuration of the SAS/CONNECT Server 19

• one representing a SAS/CONNECT spawner

• one representing a SAS/CONNECT server

• one representing a connection to the SAS/CONNECT server

You can see all of these objects in SAS Management Console. (In order to see the
connection, you must select the server.)

You can view the properties of each object by right-clicking its icon and selecting
Properties from the pop-up menu. A properties dialog box will be displayed.

The metadata definition for the SAS/CONNECT spawner is very simple. The main
pieces of information that it contains are the following items:

• name of the machine on which the spawner will run.

• name of the metadata definition for the SAS/CONNECT server that the spawner can
start. This will be set to SAS-application-server - Connect Server.

This metadata definition also specifies whether sign-on scripts are allowed. By default,
this value is set to Yes.

The SAS Deployment Wizard creates the metadata for the SAS/CONNECT server (and
the associated connection) and sets values for the following items:

• name of the CONNECT server, logical server, and spawner

• name of the CONNECT spawner log file

• name, display name, and description of the CONNECT spawner Windows service

The following table lists the SAS/CONNECT properties and their default values as set
by the SAS Deployment Wizard:

Table 4.1 Default CONNECT Server, Spawner, and Connection Properties

Setting Default

SAS invocation options -dmr -noterminal -nosyntaxcheck

Authentication domain DefaultAuth

Host name localhost

Port 7551

SASCMD options SAS-configuration-directory\Levn\SASApp\ConnectServer
\ConnectServer.bat

Requires encryption No

Encryption algorithm names (none)

Encryption algorithm key size 0

20 Chapter 4 • Understanding SAS/CONNECT Servers

Setting Default

Communication protocol TCP

SIGNON type Scriptless

Prompt for user ID and
password

No

Execute remote submits
synchronously

Yes

Display signon window Yes

Signon wait Yes

For more information about these settings, see the SAS/CONNECT User's Guide.

SAS/CONNECT Configuration Files
The SAS Deployment Wizard creates several directories and files in support of
SAS/CONNECT.

The wizard creates two directories under SAS-config-dir\Levn: ConnectSpawner and
ConnectSpawner\Logs. The Logs directory holds the SAS/CONNECT spawner log.
The ConnectSpawner directory contains configuration files and scripts related to the
operation of the SAS/CONNECT spawner. One of those files, metadataConfig.xml,
contains the information that the SAS/CONNECT spawner needs in order to connect to
the metadata server so that it can read the information that it needs to start a
SAS/CONNECT server. The file contains the following types of information:

• name of the machine on which the metadata server is running

• TCP/IP port on which the metadata server is listening

• authentication domain to which the metadata server belongs

• credentials that can be authenticated by the metadata server (those of the SAS
Trusted User)

• name of the metadata repository that contains the definition of the SAS/CONNECT
server

The wizard also creates a ConnectServer and a ConnectServer\Logs directory
under: SAS-config-dir\Levn\SASApp. These directories contain various configuration
files for the SAS/CONNECT server, the SAS/CONNECT server log, and a script that
the SAS/CONNECT spawner uses to start a SAS/CONNECT server process.

Changing the Logging Level of the SAS/CONNECT Spawner
By default, the SAS/CONNECT spawner does not write much information to its log file.
To debug SIGNON problems, you might need to change the logging mode to verbose.
For information about how to perform this task, see Chapter 9, “Administering Logging
for SAS Servers,” in SAS Intelligence Platform: System Administration Guide.

Initial Configuration of the SAS/CONNECT Server 21

22 Chapter 4 • Understanding SAS/CONNECT Servers

Chapter 5

Understanding the Batch Servers

Overview of SAS Batch Servers . 23

The SAS DATA Step Batch Server . 24

The SAS Java Batch Server . 25

Additional Information . 26

Overview of SAS Batch Servers
Batch servers are a required part of the SAS Intelligence Platform's scheduling system.
They are metadata objects that store information about how to execute a SAS command
in batch mode. For example, when a SAS Data Integration Studio job is scheduled, the
following things happen:

• The name of the SAS program that represents the job is read from a deployment
directory.

• Information about the program that will execute the job is read from a SAS DATA
Step Batch Server.

This information is passed to the scheduling server, which can then run the job at the
appropriate time.

There are three types of batch servers:

• SAS DATA Step Batch Server

• SAS Java Batch Server

• SAS Generic Batch Server

A SAS DATA Step Batch Server is used to locate a script that executes SAS programs
in batch mode. Generally, these programs are jobs that are created in and deployed from
SAS Data Integration Studio. If your deployment plan contained a scheduling
component, then a SAS DATA Step Batch Server object will have been defined during
the initial installation and configuration of your system. For more information about
SAS DATA Step Batch Servers, see “The SAS DATA Step Batch Server” on page 24.

A SAS Java Batch Server points to a Java application that SAS supplies. Each Java
Batch server has a subtype that refers to a particular application. If your deployment plan
contains a product that uses reporting, such as SAS Web Report Studio, then the SAS
Deployment Wizard automatically creates a SAS Java Batch Server for you. For more
information about SAS Java Batch Servers, see “The SAS Java Batch Server ” on page
25.

23

A SAS Generic Batch Server is not used frequently. It enables you to store the path to a
stand-alone command or executable that is supplied by SAS, for use cases that do not
pertain to the DATA step or Java batch servers.

Note: For a complete discussion of scheduling, see Scheduling in SAS.

The SAS DATA Step Batch Server
If your environment includes a SAS scheduling component, such as Platform Process
Manager, then the SAS Deployment Wizard will have defined a Logical SAS DATA
Step Batch Server and a SAS DATA Step Batch Server as part of your SAS Application
Server.

The properties of the SAS DATA Step Batch Server are shown in the following display:

These properties are explained in the following list:

Associated Machine
specifies the machine on which the SAS DATA Step Batch Server was configured.
This is also the machine on which the deployed job is presumed to reside. It is not
necessarily the machine on which the scheduled job will actually execute. The job
will execute on the machine where the scheduling server is running. Ensure that any

24 Chapter 5 • Understanding the Batch Servers

commands that you store in the batch server are capable of running on the scheduling
server.

SubType
specifies the operating system of the machine on which the job will execute.

Command Line
specifies the script that will start SAS in batch mode so that it can execute the job.
This script must be able to execute on the scheduling server host.

Logs Directory
specifies the log directory to which SAS can write a log file. This field is required
when defining a DATA step batch server. To specify the current directory, enter ./ or
an equivalent specification for your host environment.

Rolling Log Options
specifies the format for the name of the log file and indicates when a new log file
should be started.

The server is configured to start a new log file automatically when the value of any
directive in the name changes. By default, the log file will roll over every second
(%s). For information about the directives used in the log filename, see the
documentation for the SAS system option LOG=.

Note: If you want to use the SAS 9.3 logging facility instead of the traditional
logging feature (prior to SAS 9.2), enter a hyphen in this field, and append this
option to the sas command: -logconfiglocscript-path/logconfig.xml,
where script-path is the absolute path to the sasbatch script. For more
information, see “Enabling Server Logging” in Chapter 9 of SAS Intelligence
Platform: System Administration Guide.

The SAS Java Batch Server
If your environment includes a SAS product that relies on reporting, such as SAS Web
Report Studio, then the SAS Deployment Wizard will have defined a Logical SAS Java
Batch Server and a SAS Java Batch Server as part of your SAS Application Server. The
type of Java Batch Server that the wizard creates depends on the product configuration
and the subtype that it requires. For example, SAS Web Report Studio requires a
Reporting subtype that will execute the outputgen command.

The SAS Java Batch Server has the properties that are shown in the following display.

The SAS Java Batch Server 25

The properties are explained in the following list:

Associated Machine
specifies the machine on which the SAS Java Batch Server is configured. This is also
the machine on which the reports that are being scheduled must reside. It is not
necessarily the machine on which the scheduled job actually executes. The job
executes on the machine where the scheduling server is running. Ensure that any
commands that you store in the batch server are capable of running on the scheduling
server.

SubType
specifies the type of Java batch server that is being started (such as Marketing
Automation or Reporting)

Command Line
specifies the command to start a SAS program or the command to run the batch job.

Additional Information
The batch servers are just one part of the SAS Intelligence Platform scheduling system.
For information about the larger picture, see Scheduling in SAS.

26 Chapter 5 • Understanding the Batch Servers

Chapter 6

Understanding SAS Grid Servers

Overview of SAS Grid Servers . 27

Overview of Grid Monitoring Servers . 28

The Role of the SAS Grid Server in the SAS Intelligence Platform 28

The Initial Configuration of the SAS Grid Server . 28
Overview of the Initial Configuration of the SAS Grid Server 28
The Logical Grid Server Metadata Object . 29
Logical Grid Server Configuration Files . 29

Overview of SAS Grid Servers
The SAS Grid Server serves as a bridge between SAS applications and the grid
environment. It enables an application to recognize the grid and submit jobs to it.

The grid server is actually a logical server, which is a component under a SAS
Application Server. A grid consists of the following nodes:

• a grid control server a machine that distributes jobs to machines on the grid. A grid
control server can also do work allocated to the grid.

• one or more grid nodes a machine or machines that run a portion of the work
allocated to the grid.

A logical grid server is required on both types of nodes.

The grid control server and the grid node include the following components:

• grid middleware provider

• workspace server and spawner (grid control server only)

• DATA step batch server

• Base SAS

• SAS/CONNECT server and spawner

The logical grid server definition specifies the command that is used by the middleware
provider to start a SAS/CONNECT session.

To configure grid nodes, you first design the grid and designate a machine to be the grid
control server. Next, you set up the logical grid server definitions on all of the grid
nodes.

27

After a grid is configured, you can add grid nodes to increase grid capacity, create the
required logical server definitions on a machine, and install the required software on
each machine. Specific information about setting up and configuring a grid is on the
SAS Scalability and Performance focus area: http://support.sas.com/rnd/
scalability/grid/griddocs.html. If you are setting up a grid using middleware
other than Platform Suite for SAS (such as United Devices GridMP or DataSynapse
GridServer), specific values for the fields in a grid server definition are also on the SAS
Scalability and Performance focus area.

Overview of Grid Monitoring Servers
A Grid Monitoring Server is also required in order to use grid computing. It is not a
component of a SAS Application Server nor a SAS Management Console plug-in. The
grid monitoring server obtains grid usage information from the grid middleware provider
(Platform LSF or other). The information is then available for use by the Grid Manager
plug-in that is available through the SAS Management Console. During configuration,
the user has to specify the middleware provider and the program module that is used to
provide the usage information.

Specific configuration information (especially for non-LSF middleware providers) is
available on the SAS Scalability and Performance focus area: http://
support.sas.com/rnd/scalability/grid/gridinstall.html.

The Role of the SAS Grid Server in the SAS
Intelligence Platform

You will use the SAS Grid Server only if your company has purchased the SAS Grid
Manager software application. This software enables you to build a compute grid that
can execute grid-enabled jobs that are created in SAS Data Integration Studio or to
execute SAS Enterprise Miner or grid-enabled programs.

Either SAS Data Integration Studio or SAS Enterprise Miner submits a grid-enabled job
to a workspace server (through its object spawner) that is running on a grid-control
machine. SAS/CONNECT and Platform LSF (or another middleware provider) are also
installed on this grid-control machine. Platform LSF starts SAS/CONNECT servers on
the appropriate grid nodes. Then SAS/CONNECT statements in the job cause portions of
the job to be submitted to the remote SAS/CONNECT servers for execution.

The SAS Grid Server enables Platform LSF to start SAS/CONNECT servers on the grid
node. It provides Platform LSF with the command to start the servers, and it provides the
script that the command submits.

The Initial Configuration of the SAS Grid Server

Overview of the Initial Configuration of the SAS Grid Server
When you build a SAS compute grid, you configure a logical grid server on the grid-
control machine and on each grid node. When you configure a logical grid server on the
grid-control machine, two actions occur:

28 Chapter 6 • Understanding SAS Grid Servers

http://support.sas.com/rnd/scalability/grid/griddocs.html
http://support.sas.com/rnd/scalability/grid/griddocs.html
http://support.sas.com/rnd/scalability/grid/gridinstall.html
http://support.sas.com/rnd/scalability/grid/gridinstall.html

• A metadata object is created to represent the logical grid server. It is a server
component that belongs to your SAS Application Server. For more information
about this object, see “The Logical Grid Server Metadata Object” on page 29.

• A GridServer directory is created in the configuration directory on that machine.
This directory contains files and directories that are used in the operation and
management of the grid. For more information about the GridServer directory,
see “Logical Grid Server Configuration Files” on page 29.

When you configure a logical grid server on a grid node, only the GridServer
directory and its contents are created. Only one metadata object is needed per
environment. However, the files in the GridServer directory are needed on each grid
node.

For more detailed information about how to set up a grid, see Chapter 2, “Planning and
Configuring a Grid Environment,” in Grid Computing in SAS.

The Logical Grid Server Metadata Object
When you configure a logical grid server on a grid node, metadata objects that represent
the grid server and the associated connection are created. The grid server belongs to a
logical grid server, which in turn belongs to your application server. To display the icon
for the grid server in SAS Management Console navigation tree, expand the Server
Manager icon. Then, expand the application server icon, and expand the Logical Grid
Server icon.

You can display the properties of the grid server by right-clicking its icon and selecting
Properties from the pop-up menu. To see the connection object (in the right pane),
select the grid server icon. You can view the properties of the connection by opening its
properties dialog box.

The SAS Deployment Wizard populates the logical grid server properties with user input
that is supplied during the SAS 9.3 installation. For more information about these
properties, see Grid Computing in SAS.

Logical Grid Server Configuration Files
When you configure a logical grid server on a grid node, a GridServer directory is
created on the machine. This directory contains the following two items:

• the script sasgrid.extension. This is the script that Platform LSF calls to start a
SAS/CONNECT server on that machine.

• a logs directory. By default, no program writes a log file to this directory. However,
you can change the command that is used to start the SAS/CONNECT server so that
the server writes a log file to this directory.

The Initial Configuration of the SAS Grid Server 29

30 Chapter 6 • Understanding SAS Grid Servers

Part 3

Load Balancing and Pooling

Chapter 7
Understanding Server Load Balancing . 33

Chapter 8
Understanding Server Pooling . 55

Chapter 9
Configuring Client-side Pooling . 61

31

32

Chapter 7

Understanding Server Load
Balancing

Overview of Load Balancing . 34
What Is Load Balancing? . 34
Overview of Planning, Installation, and Configuration . 36
MultiBridge Connections (SAS Stored Process Servers Only) 36
Overview of the Initial Load Balancing Setup for Stored Process Servers 37
Security . 38
Load-Balancing Algorithms . 38
Log Files . 39

Configuring OLAP Load-Balancing Clusters . 39

Planning a Load-Balancing Cluster . 39
Overview . 39
Select Hosts and Port Numbers . 39
Choose a Load-Balancing Algorithm . 40

Creating Metadata for Load-Balancing Clusters . 40
Overview . 40
Convert the Logical Server to Load Balancing . 40
Edit Metadata and Convert the Server Instance to Load Balancing 41
Create Metadata for the Other Load-Balancing Servers . 41

Installing and Configuring Software for Load-Balancing Servers 41
Overview . 41
Install Server and Spawner Software . 42
Edit sasv9_usermods.cfg . 42
Edit logconfig.xml . 43
Edit the .bat File . 43
Edit shortcuts.ini . 43
Edit OLAPServerSSCU.ini and Install the Service . 43
Edits for the UNIX and z/OS Operating Environments . 43
Start or Refresh the Object Spawners or OLAP Servers . 44

Stopping and Restarting Load-Balancing Servers . 44

Adding or Deleting Load-Balancing Servers . 44

Understanding the Load-Balancing Algorithms . 45
Overview . 45
Cost Algorithm: Overview . 45
Cost Algorithm: Parameters . 46
Cost Algorithm: SAS Workspace Server Example . 47
Cost Algorithm: SAS Stored Process Server Example . 48
Response Time Algorithm . 50
Grid Algorithm . 50

33

Most Recently Used (MRU) Algorithm . 51
Least Recently Used (LRU) Algorithm . 51
MRU and LRU Algorithms: Pooled Workspace Server Examples 51

Overview of Load Balancing

What Is Load Balancing?
Load balancing distributes SAS sessions across a cluster of servers. You can add or
subtract servers to accommodate changes in peak demand.

You can create load-balancing clusters of SAS Workspace Servers, SAS Stored Process
Servers, SAS Pooled Workspace Servers, and SAS OLAP Servers. For all clusters
except OLAP, load balancing is handled by the object spawners that are associated with
each server. SAS OLAP Servers do not use object spawners, so OLAP servers handle
load balancing directly.

Pooled workspace servers are deployed in load-balancing clusters when you install them
with the SAS Deployment Wizard. You can create clusters of the other server types at
initial deployment, or at any time thereafter, without having to restart your SAS
Metadata Server.

Load-balancing clusters use a peer-to-peer connection. One of the peers in the cluster
acts as the parent for the cluster.

The following diagram depicts how peers read cluster metadata at initialization.

Figure 7.1 Cluster Initialization

1 Peers connect to and read configuration from the metadata server.

2 Peers attempt to connect to each other. One peer is designated to accept connections
only from the other peers. This peer is known as the parent peer. Other peers are
known as child peers. (Peers can be either object spawners or OLAP servers.)

The parent peer runs a load-balancing algorithm to determine the server that is best
suited to accept another client. When the parent receives a client request, the parent
either begins the session itself or redirects the client to a specific child peer.

If a child peer receives a connection request directly from a client, the child peer routes
the request to the parent peer for assignment to the server with the least load.

The following diagram depicts how clients are assigned to a server in the cluster for
workspace servers and stored process servers.

34 Chapter 7 • Understanding Server Load Balancing

Figure 7.2 Client Assignment to Server (Workspace and Stored Process Servers)

1 The parent receives a client request, applies it to its load-balancing algorithm, and
redirects the client to connect to a specific peer.

2 In the case of a workspace server or a stored process server, the object spawner
creates new server instance.

3 The client connects to that peer server.

The following diagram depicts how clients are assigned to a server in the cluster for
OLAP servers.

Figure 7.3 Client Assignment to Server (OLAP Servers)

1 The parent receives a client request, applies it to its load-balancing algorithm, and
redirects the client to connect to a specific peer.

2 The client connects to that peer server.

During operation, if the parent peer terminates, one of the child peers assumes the role of
parent peer. When you restart the former parent peer, it restarts as a child peer instead of
the parent peer. The new parent peer remains the parent until that peer is restarted.

If a child peer terminates, load balancing continues across the remaining peers. When a
child peer is restarted, the parent peer includes that peer in its routing of client requests
with no interruption of service.

Overview of Load Balancing 35

When you add or remove servers from a cluster, restart all of the peers (object spawners
and OLAP servers) in the cluster to ensure that all servers read the latest metadata.

The following display shows how load balancing clusters are defined under a single
application server and logical server in SAS Management Console.

Display 7.1 Clustered Workspace Servers in SAS Management Console

Overview of Planning, Installation, and Configuration
To create a load-balancing cluster, you need to plan the configuration, create server
metadata, install server and spawner software, configure the server software, and start
the servers on their respective hosts.

In the planning stage, you select an application server, a logical server, separate server
hosts, unique port numbers, a load-balancing algorithm, and server login credentials.

In the metadata creation stage, you use SAS Management Console to create metadata
objects for each server and spawner in the cluster. You then convert the servers and
spawners to load balancing.

In the server installation and configuration stage, you use the SAS Deployment Wizard
in Install Only mode to install server software (without configuration files) on host
computers. For clusters of workspace servers, stored process servers, and pooled
workspace servers, you then use the SAS Deployment Wizard to install a spawner on
each host. (SAS OLAP Servers do not use spawners.)

After software installation, you copy server configuration files from the cluster's logical
server to the new servers that reside on different hosts. You then edit the configuration
files and refresh the spawners or servers.

MultiBridge Connections (SAS Stored Process Servers Only)
When you configure load balancing for SAS Stored Process Servers, you must define at
least one MultiBridge connection for each server in the cluster. A MultiBridge
connection is a specialized bridge connection that is used for stored process servers.

36 Chapter 7 • Understanding Server Load Balancing

Each MultiBridge connection represents a separate server process and runs on a specific
port.

The bridge connection for a stored process server is used only for the initial server
request. After the spawner determines which server process has the least load, the client
is redirected to the appropriate MultiBridge connection. That is, a client requests the
bridge connection for a stored process server, and then the spawner redirects the client to
the appropriate MultiBridge connection.

Overview of the Initial Load Balancing Setup for Stored Process
Servers

In the initial load balancing SAS Stored Process Server configuration, three MultiBridge
connections are set up for the stored process server so that the object spawner can start
up to three stored process server processes. The object spawner balances the work load
across these processes. The object spawner runs on the server host, listens for client
requests, and redirects clients to the appropriate server process.

The metadata server's foundation repository contains the spawner, server, and security
metadata for the load balancing stored process server configuration. The object spawner
must connect to the metadata server, and the metadata must be configured appropriately,
in order for the spawner to start the load balancing stored process server processes.

Note: On Windows, all user IDs are host or domain qualified, for example (domain-
name\sastrust).

The object spawner obtains the metadata that it needs to start a load balancing stored
process server as follows:

1. When the spawner is started, it reads a metadata configuration file named
metadataConfig.xml that contains information that is required to access the
metadata server. This metadata configuration file specifies the following
information:

• the location of the metadata server

• the user ID that the spawner will use to connect to the metadata server

By default, the metadataConfig.xml file contains the user ID sastrust, which
is owned by the SAS Trusted User (in the metadata).

2. The object spawner connects to the metadata server with the user ID that is specified
in metadataConfig.xml. This user's credentials are authenticated by the
metadata server's authentication provider.

3. On the metadata server, the connection from the object spawner is associated with
the user that owns the sastrust user ID, SAS Trusted User. The spawner, as the
SAS Trusted User, reads the metadata for the server and spawner configuration.

Note: The SAS Trusted User can view the stored process server's multi-user login
credentials (sassrv) because the SAS Trusted User is a member of the SAS
General Servers group. The SAS General Servers group owns the server's multi-
user login credentials.

At this point, the object spawner has the necessary metadata to launch a stored process
server.

When a client requests a server, the client connects to the spawner and is authenticated
using the token that the client received when it connected to the metadata server.

Overview of Load Balancing 37

If the object spawner needs to launch a new stored process server, then the object
spawner uses the server's multi-user login credentials (sassrv) to launch the load-
balancing stored process server.

Note: Because the stored process server runs under the multi-user login credentials that
are specified in the stored process server definition, each client can access
information that only sassrv has permission to access.

In your initial load balancing stored process server configuration, you must ensure that
the following security is set up properly:

• Ensure that the SAS Trusted User's credentials are specified in the metadata
configuration file metadataConfig.xml.

• Using the Authentication Manager in SAS Management Console, ensure that, in the
foundation metadata repository, the SAS Trusted User is a member of the SAS
General Servers group.

• Ensure that the SAS Trusted User has access to the metadata definitions for the
object spawner and any servers that it manages.

• Ensure that, in the foundation metadata repository, the group login that is owned by
the SAS General Servers group is specified in the stored process server definition.
The server login credentials are provided on the Options tab of the server's
Properties window.

• Ensure that the user ID and password of the group login for the SAS General Servers
group match the credentials in a user account that is defined in the stored process
server's host authentication provider.

Security
With load balancing, every connection to the server is authenticated with the credentials
of the client. Also, every client must have ReadMetadata permission on the server.

The credentials that the server runs under depend on the type of the server:

• SAS Workspace Servers run under the credentials of the client.

• SAS Stored Process Servers and SAS Pooled Workspace Servers run under the
multi-user login credentials that are specified in the stored process server definition.

Note: Because the load-balancing stored process server runs under the multi-user
login credentials, the operating system account for these credentials must have
access to any operating system resources used by stored processes that are hosted
on the stored process server.

• SAS OLAP Servers run under credentials of whoever launches it. If it is launched as
a service on Windows, this is the local system account by default.

Load-Balancing Algorithms
The parent peer in a load-balancing cluster runs a load-balancing algorithm to evaluate
server load and select child peers for new SAS sessions. Five algorithms are available:
Cost, Response Time, Grid, Most Recently Used, and Least Recently Used. SAS OLAP
Servers are required to use the Least Recently Used or the Grid algorithms. Other types
of load-balancing clusters enable you to select between two or more available
algorithms.

38 Chapter 7 • Understanding Server Load Balancing

Log Files
At installation, clustered servers are configured to generate the same error log files that
are generated by default on servers that are not clustered, as described in the chapter
“Administering Logging for SAS Servers” in the SAS Intelligence Platform: System
Administration Guide.

Clusters of SAS OLAP Servers, SAS DATA Step Batch Servers, and SAS/CONNECT
Servers generate separate ARM log files in addition to their error log files. You should
enable ARM logs only when you are tuning and testing your clusters.

CAUTION:
To ensure the accuracy of your ARM log files, be sure to configure your cluster
so that each server writes to a separate ARM log file.

Log files are configured as described in “Edit logconfig.xml” on page 43 .

Configuring OLAP Load-Balancing Clusters
In SAS 9.3, you can configure SAS OLAP servers for load balancing using the SAS
OLAP Server Monitor. For more information, see the SAS OLAP Server Monitor online
Help.

Planning a Load-Balancing Cluster

Overview
To plan for a new load-balancing cluster, you choose hosts, port numbers, a load-
balancing algorithm, and logical server login credentials (for OLAP clusters).

Select Hosts and Port Numbers
To select the hosts that will make up your load-balancing cluster, follow these steps:

1. Determine the number of hosts that you will need in your cluster based on your
average number of concurrent users and your maximum number of concurrent users.

2. Decide on the logical server that will contain your cluster of servers. You can use an
existing logical server or create a new one using the SAS Deployment Wizard. In
either case, you will have one configured server available under that logical server,
as shown in SAS Management Console. Note that the additional processing load on
the parent peer is not significant, so the parent peer does not have to be the highest
performing host in your cluster.

3. Select and configure the hosts that will comprise your cluster.

4. Select and write down unique server names and unique port numbers for each host.
(Unique ports are required when configuring load balancing on a single machine.)
You will enter the server names when you copy and update the server configuration
files between hosts. In the server names, you might want to identify the servers as
load balancing and include the port number for quick reference.

Planning a Load-Balancing Cluster 39

Choose a Load-Balancing Algorithm
Select a load-balancing algorithm based on the choices that are available for your server
type. Clusters of SAS OLAP Servers are required to use either the Least Recently Used
or Grid algorithm. The Cost algorithm is recommended for clusters of SAS Workspace
Servers and SAS Stored Process Servers.

The following table depicts the algorithms that are available for each server type.

Table 7.1 Available Load-Balancing Algorithms

SAS Server Cluster

Load Balancing Algorithms

Cost
Response
Time Grid

Most
Recently
Used

Least
Recently
Used

Workspace Server X X

Stored Process Server X X X

Pooled Workspace
Server

X X X

OLAP Server X X

For more information about the load-balancing algorithms, see “Understanding the
Load-Balancing Algorithms” on page 45.

Creating Metadata for Load-Balancing Clusters

Overview
At this stage in the process of creating a load-balancing cluster, you have identified
hosts, chosen server names and port numbers, and selected server login credentials. In
the metadata creation stage, you will establish metadata identities for the servers in your
cluster and set load-balancing parameters. After this stage, you will install and configure
the server software on your hosts.

If you need to install a new SAS Application Server and SAS Logical Server on a new
host, do so now using the SAS Deployment Wizard in Configuration Mode. Return to
this section afterwards. For information about creating new servers, see “Overview of
Adding an Additional SAS Application Server” on page 81.

Convert the Logical Server to Load Balancing
To convert your logical server to load balancing (workspace and OLAP servers only),
follow these steps:

1. Open SAS Management Console and click Server Manager to display the available
servers.

40 Chapter 7 • Understanding Server Load Balancing

2. To display the SAS Logical Server that will contain your cluster, double-click the
appropriate SAS Application Server.

3. Right-click the logical server and select Convert To ð Load Balancing.

4. In the Load Balancing Options window, choose a load-balancing algorithm and
choose values for the other available options. For information about the load-
balancing algorithms, see “Understanding the Load-Balancing Algorithms” on page
45. Click Help to learn about the load-balancing options.

5. Provide data for the remaining fields in the wizard.

Edit Metadata and Convert the Server Instance to Load Balancing
At this point, your logical server should contain one server instance and one associated
spawner process (for all cluster types except OLAP). To edit metadata for the first server
and convert the server to load balancing, follow these steps:

1. Open the properties window of the initial server instance beneath the load-balancing
logical server.

2. On the General tab, rename the server according to the naming convention of your
cluster. In the Description field, mention the purpose of your load-balancing cluster.
Then click OK to close the properties window.

Note: This step is optional. Renaming the server helps identify that it is configured
as load balanced in the SAS Management Console Server Manager and in log
files.

3. For an OLAP server only, move to the Connections tab and open the properties
window of the server connection. On the Options tab, change the port number if
necessary, and then click OK to close the properties window.

Create Metadata for the Other Load-Balancing Servers
To create metadata for the new servers in your cluster, follow these steps:

• Right-click the logical server that has been converted to load balancing and select
Add Server.

• In the New Server Wizard, select the server type that you want to add to your cluster
and fill out the rest of the information that is requested. Be sure to enter the
appropriate host name, server name, and port number.

• Repeat these steps for the rest of the new servers in your cluster.

Move to the server software installation and configuration stage.

Installing and Configuring Software for Load-
Balancing Servers

Overview
At this point, you have planned your cluster and created metadata for your servers and
spawners. In this last stage, you will install and configure the server and spawner

Installing and Configuring Software for Load-Balancing Servers 41

software on the hosts of your cluster, copy and edit server configuration files, and then
start or refresh your spawners or OLAP servers.

Install Server and Spawner Software
The last stage in the process of creating a load-balancing cluster involves the installation
of server and spawner software on the hosts of your cluster, and the copying and editing
of server configuration files onto your hosts.

To install server software and configuration files on your hosts, follow these steps:

1. Use the SAS Deployment Wizard in Install Only mode to install the server software
on the first new host in your cluster. Use Install Only mode so that you do not install
server configuration, start up, or log files. Instead of installing those files
automatically, you will add and edit the configuration files manually, later in this
procedure. For now, to install server software, see “Adding a New Server in an
Existing Application Server” in the chapter “Managing SAS Application Servers.”

2. For the same host, and for all server types other than OLAP (workspace, pooled
workspace, or stored process), use the SAS Deployment Wizard to install an object
spawner on the same host. Use Configuration Mode to automatically install spawner
configuration files.

3. Copy all of the server start-up files from the logical server to the host that received
the new server. Be sure to include the subdirectories named logs and sasuser, along
with all of their contents. The path to the source files on the logical server should be
of the form: SAS-config-dir/Levn/SASApp1/OLAPServerLB1/*.*. The path to
the target on the new host should be of the form: SAS-config-dir/
Levn/SASApp1/OLAPServerLB1/OLAPLB1_2249, where
OLAPServerLB1_2249 is the name of the new server on the new host.

4. Edit the server files as described in the remainder of this section, according to the
operating environment of each host, so that the files reflect the name and port of the
new server.

5. Repeat these steps for the other hosts, servers, and spawners in your cluster.

Edit sasv9_usermods.cfg
SAS asks that you not edit sasv9.cfg. Instead, edit sasv9_usermods.cfg. The user
modifications file serves the same purpose as sasv9.cfg, because the contents of
the .cfg files are hierarchical and inherited.

To edit the file that was originally copied from the cluster's logical server, on each new
host in your cluster, follow these steps:

1. In the –OBJECTSERVERPARMS option, change SERVER= to point to the new
server.

2. Add the PORT= option to specify the unique port number for the new server.

3. In the Windows operating environment, add the PROTOCOL=BRIDGE option.

4. Change the –LOGCONFIGLOC option to point to the logconfig.xml file on the new
server.

5. Change the –SASUSER option to point to the subdirectory of the same name on the
new server.

42 Chapter 7 • Understanding Server Load Balancing

6. Change the –CONFIG and –AUTOEXEC search paths. Give thought to the
configuration settings and AUTOEXEC actions that you will share among the
servers in your cluster. Add your settings and actions to the appropriate level of the
search paths.

Edit logconfig.xml
To edit the log configuration file logconfig.xml, follow these steps:

1. For the Rolling File Appender, change the value of the fileNamePattern parameter to
specify the location of the .log file on the new host.

2. For the ARM File Appender, change the value of fileNamePattern parameter to
specify the location of the .arm file on the new host.

All logging behavior can be configured, as described in the SAS Intelligence Platform:
System Administration Guide.

CAUTION:
For clusters of SAS OLAP Servers, SAS DATA Step Batch Servers, and
SAS/CONNECT Servers, make sure that each server in your cluster writes to a
separate ARM log file. Sharing log files results in inaccurate log information.

Edit the .bat File
On Windows, to edit the .bat file for your new server, follow these steps:

1. Change the value of CONFIGDIR= to include the name of the new server. Be sure
not to change the application server context, which is commonly specified by
%APPSERVER_ROOT%. The new server needs to point to the application server of
the first server in the cluster, which runs on a different host.

2. Change the start command to include the name of the new server.

Edit shortcuts.ini
Files with names such as OLAPServer_shortcuts.ini might contain user-defined
shortcuts. Update the server name in the paths that appear in this file.

Edit OLAPServerSSCU.ini and Install the Service
In the Windows operating environment, edit the server name that appears in various
option values in this file. When the edits are complete, run the .bat file in install mode.
For example, you might execute the following command:

C:\SAS\Config\Lev1\SASApp1\OLAP_LB1_2249\OLAPServer.bat install

Edits for the UNIX and z/OS Operating Environments
Edit the following configuration files in the UNIX operating environment, or in UNIX
System Services for the z/OS operating environment: rexx.cfg, tkmvsenv.fg, and

Installing and Configuring Software for Load-Balancing Servers 43

the server shell file (with a name such as OLAPserver.sh). In all of these files, you
need to change the name of the server.

Start or Refresh the Object Spawners or OLAP Servers
You should now start or refresh the object spawners or OLAP servers in the load-
balancing cluster. Refreshing a spawner reinitializes it. The spawners or OLAP servers
reread their configuration out of the metadata. As part of this refresh, the spawner shuts
down any servers that it currently has started. If changes are made to the server or
spawner configurations, the spawner can be refreshed in order to pick up and apply these
new changes. For more information, see “Refresh the Object Spawner” in the chapter
“Managing SAS Application Servers”.

At this point, your load balancing cluster should be operational. Check the log files as
needed to confirm operation.

Stopping and Restarting Load-Balancing Servers
You must restart the object spawner and the OLAP server. (Any other servers that are
servers associated to the object spawner are started by demand.) For information about
how to restart these servers, see Chapter 5, “Operating Your Servers,” in SAS
Intelligence Platform: System Administration Guide.

Be sure to restart all of the servers in a cluster after you add or delete servers.

When you stop a child peer, or if it fails, the parent peer continues to distribute SAS
sessions to the remaining servers in the cluster, with no loss of service. You can restart
the child peer at any time. In that case, the parent peer simply adds the new child peer
into its distribution of SAS sessions.

If the parent peer stops, the next server in the list becomes the parent peer. The new
parent peer continues the distribution of SAS sessions without interruption.

When you restart the former parent peer, it restarts as a child peer. The new parent peer
remains in that role until you restart that server.

Adding or Deleting Load-Balancing Servers
After you create a load-balancing cluster, you might need to add or delete servers in
response to accommodate changes in peak demand.

To add or delete servers from a cluster, follow these steps:

1. To add a server, follow the instructions in “Creating Metadata for Load-Balancing
Clusters” on page 40 and “Installing and Configuring Software for Load-Balancing
Servers” on page 41.

2. To delete a server, open the Server Manager in SAS Management Console, right-
click the server, and select Delete. Remove server software as necessary.

3. Restart all of the peers (object spawners and OLAP servers) in the cluster to ensure
that all servers read the latest metadata.

44 Chapter 7 • Understanding Server Load Balancing

Understanding the Load-Balancing Algorithms

Overview
The following algorithms support load balancing on SAS workspace server, stored
process servers, pooled workspace servers, and OLAP servers:

• Cost on page 45

(SAS Workspace Servers and SAS Stored Process Servers only) The cost algorithm
assigns a cost value (determined by the administrator) to each client that connects to
the server. The algorithm can also assign cost values to servers that have not started
yet. When a new client requests a connection, load balancing redirects the client to
the connection with the lowest cost on the machine with the lowest total cost. This is
the default algorithm for stored process and standard workspace servers.

• Response Time on page 50

(SAS Stored Process Servers only) Each spawner's load balancer maintains an
ordered list of machines and their response times. Load balancing updates this list
periodically at an interval that is specified by the administrator. When a new client
requests a connection, load balancing redirects the client request to the machine at
the top of the list.

• Grid on page 50

The Grid algorithm communicates with a SAS Grid Manager to allow load balancing
access to grid-related load information. This information is used by the object
spawner to find the least loaded server machine that will accept the client request.
(This algorithm is available only when the SAS Grid Server has been deployed.)

• Most Recently Used (MRU) on page 51

(SAS Pooled Workspace Servers only) The Most Recently Used algorithm
emphasizes reusing workspace servers. This algorithm attempts to send clients into
running servers before starting new servers. The goal of this algorithm is to reduce
the overhead of starting new servers by using servers that are already running. This is
the default algorithm for pooled workspace servers.

• Least Recently Used (LRU) on page 51

(SAS OLAP Servers and SAS Pooled Workspace Servers only) The Least Recently
Used algorithm attempts to use the least recently used server. This algorithm
provides more of a breadth-first approach to balancing the client load.

Cost Algorithm: Overview
The Cost algorithm uses a cost value to represent the work load that is assigned to each
server (or server process) in the load-balancing cluster. Each time a client connects or a
stored process is executed, the spawner updates the cost value for the appropriate server.
When a client requests a connection to the load-balancing cluster, the spawner examines
the cost values for all of the servers in the cluster, and then redirects the client to the
server that has the lowest cost value.

The Cost algorithm supports SAS Workspace Servers and SAS Stored Process Servers
only. This algorithm works differently depending on the server type:

Understanding the Load-Balancing Algorithms 45

• SAS Workspace Servers. The cost algorithm uses the server with the lowest cost on
the host with the lowest cost.

When a new client requests a connection, the load-balancing spawner redirects the
client to the server that has the lowest cost value. When the client connects to the
designated server, the spawner increments that server's cost by a specified value (cost
per client). When that client disconnects, the spawner decrements that server's cost
by the same value (cost per client).

• SAS Stored Process Servers. The cost algorithm uses the server process with the
lowest cost on the host with the lowest cost.

When a new client requests a connection, the load-balancing spawner redirects the
client to the server process that has the lowest cost value on the machine with the
lowest total cost. When the client connects to the designated server process, the
spawner increments the cost for that process by the same value (cost per client).

The stored process server cost is determined by three values: the cost per client is
used when the client connects; session cost; and server context cost. The default
values for session and context costs are 1 and 100 respectively. To change the default
values, use the Options tab in the properties window of the logical stored process
server.

Because stored process servers are reused, there might be processes already running that
can be reused if their cost is lowest. Workspace servers are not reused, so SAS is always
starting a new server process for workspace servers.

See also:

• “Cost Algorithm: Parameters” on page 46

• “Cost Algorithm: SAS Workspace Server Example” on page 47

• “Cost Algorithm: SAS Stored Process Server Example” on page 48

Cost Algorithm: Parameters
The Cost algorithm uses the following cost parameters, which are treated as weighted
values:

Cost per client
(field on the load-balancing logical server definition) specifies the default amount of
weight (cost) that each client adds (when it connects) or subtracts (when it
disconnects) to the total cost of the server.

Startup cost
(field on the server definition) specifies the start-up cost of the server. When a
request is made to the load-balancing spawner, the spawner assigns this start-up cost
value to inactive servers. A new server is not started unless it is determined that its
cost (the start-up cost) is less than that of the rest of the servers in the cluster. This
field enables the administrator to control the order in which servers are started. After
a server is started, the cost value is 0. When a client connects to the server, the
server's cost value is increased.

Maximum cost
(field on the load-balancing logical server definition) specifies the maximum cost
value that each server can have. After a server reaches maximum cost, the load-
balancing spawner will not redirect any more clients to the server until its cost value
decreases.

See also:

46 Chapter 7 • Understanding Server Load Balancing

• “Cost Algorithm: Overview” on page 45

• “Cost Algorithm: SAS Workspace Server Example” on page 47

• “Cost Algorithm: SAS Stored Process Server Example” on page 48

Cost Algorithm: SAS Workspace Server Example
A load balancing cluster contains two workspace servers on two different machines,
Machine A and Machine B. The following table displays the initial status of the cluster:

Table 7.2 Initial Cluster Status

Parameters Workspace Server A Workspace Server B

Clients 3 2

Maximum Cost 500 200

Cost Per Client 100 100

Cost to Connect 300 200

At the start of the example, five clients have connected to the cluster and the client
connections are balanced between the two servers. Workspace Server A has three clients
and Workspace Server B has two clients. The following figure illustrates what happens
when an additional client requests a connection:

Figure 7.4 New Client Connection

1 The client requests a connection to Workspace Server B. The spawner on Machine B
examines the cost values of all of the servers in the cluster. Workspace Server B has
the least cost, but it has reached its Maximum Cost value and cannot accept any
more clients. The spawner redirects the client to Workspace Server A.

Understanding the Load-Balancing Algorithms 47

2 The client requests a connection to Workspace Server A. The spawner on Machine A
creates a server connection for the client, and then increments the cost value for
Workspace Server A by the cluster's Cost Per Client value (100).

Table 7.3 Final Cluster Status

Parameters Workspace Server A Workspace Server B

Clients 4 2

Maximum Cost 500 200

Cost Per Client 100 100

Cost to Connect 400 200

At the end of the example, the cost to connect to Workspace Server A is 400, because
there are four clients and the Cost Per Client value is 100.

See also:

• “Cost Algorithm: Overview” on page 45

• “Cost Algorithm: Parameters” on page 46

• “Cost Algorithm: SAS Stored Process Server Example” on page 48

Cost Algorithm: SAS Stored Process Server Example
A load-balancing cluster contains one stored process server with two server processes
(MultiBridge connections), Server Process A and Server Process B. The following table
displays the initial status of the cluster:

Table 7.4 Initial Cluster Status

Parameters Server Process A Server Process B

Status Running Not Running

Clients 2 0

Stored Processes 2 0

Startup Cost 300 300

Cost to Connect 402 300

Cost Per Client 100 100

At the start of the example, Server Process A is running and has two clients. Each client
on Server Process A is running one stored process, so the cost to connect for Server A is
402 (2 clients * 100 + 2 stored processes running * 101). 100 represents the cost per
client. 101 represents the context cost (100) and the session cost (1).

48 Chapter 7 • Understanding Server Load Balancing

Server Process B has not started yet, so the cost to connect to Server Process B is the
Startup Cost (300). The following figure illustrates what happens when an additional
client connects:

Figure 7.5 New Client Connection

1 The client requests a connection to the stored process server. The load-balancing
spawner examines the cost values of all of the servers in the cluster and determines
that Server Process B has the lowest cost. The spawner redirects the client to Server
Process B.

2 The client requests a connection to Server Process B. The spawner starts the server
process and then provides a connection to the client. The spawner increments the
cost value for Server Process B by the cluster's Cost Per Client value (100).

The following table displays the final status of the cluster:

Table 7.5 Final Cluster Status

Parameters Server Process A Server Process B

Status Running Running

Clients 2 1

Stored Processes 2 0

Startup Cost 300 300

Cost to Connect 402 100

Cost Per Client 100 100

At the end of the example, the cost for Server Process B is 100, because there is one
client and the Cost Per Client value is 100. There are no stored processes running, and
the Startup Cost value does not apply because the server process has been started. If the

Understanding the Load-Balancing Algorithms 49

client submits a stored process, the cost will increase by 101 (the standard cost per stored
process).

See also:

• “Cost Algorithm: Overview” on page 45

• “Cost Algorithm: Parameters” on page 46

• “Cost Algorithm: SAS Workspace Server Example” on page 47

Response Time Algorithm
The Response Time algorithm uses a list of server response times in order to determine
which server process has the least load. For each server process in the load-balancing
cluster, the load-balancing spawner maintains an ordered list of servers and their average
response times. Each time the spawner receives a client request, it redirects the client to
the server process at the top of the list. The spawner updates the server response times
periodically. You can specify the update frequency for the response time (response
refresh time) in the metadata for the load-balancing cluster.

The Response Time algorithm supports Stored Process Servers only.

The Response Time algorithm uses the following parameters:

Refresh rate
(field on the load-balancing logical server definition) specifies the length of the
period in milliseconds that the load-balancing spawner will use the current response
times. At the end of this period the spawner updates the response times for all of the
servers in the cluster and then reorders the list of servers.

Note: If this field is set to 0, the load-balancing spawner does not use the response
time list to redirect clients to servers. Instead, the spawner redirects clients to
servers sequentially, in the order in which the servers are defined in the metadata.

Maximum clients
(field on the server definition) specifies the maximum number of clients that a server
can have. After a server reaches its maximum number of clients, the spawner will not
redirect any more clients to the server until a client disconnects.

Grid Algorithm
If you have a SAS grid installed and configured, then you can leverage the functionality
of the SAS Grid Manager to identify the SAS IOM server best suited to handle a SAS
client's request in your cluster of workspace servers. The Grid algorithm communicates
with a SAS Grid Manager to allow load-balancing access to grid-related load
information. This information is used by the object spawner or the OLAP server to find
the least loaded server machine that will accept the client request.

The Grid algorithm uses the following parameters:

Grid server
(field on the load-balancing logical server definition) specifies the name of the SAS
Grid Server with which the object spawner gathers grid-related load information.

Grid server credentials
(field on the load-balancing logical server definition) specifies valid credentials that
the object spawner uses to authenticate with the grid server.

50 Chapter 7 • Understanding Server Load Balancing

Grid server connect timeouts
(field on the load-balancing logical server definition) specifies the amount of time (in
seconds) to wait for a connection to the grid server.

Most Recently Used (MRU) Algorithm
The Most Recently Used algorithm emphasizes reusing workspace servers. This
algorithm attempts to send clients into running servers before starting new servers. The
goal of this algorithm is to reduce the overhead of starting new servers by using servers
that are already running.

The MRU algorithm supports Pooled Workspace Servers only.

The Most Recently Used algorithm uses the following parameters:

Server process maximum
(field on the server definition) specifies the maximum number of server processes
that can be created for this server definition.

Server process minimum
(field on the server definition) as server pools grow and shrink on demand, Server
process minimum specifies smallest the pool can shrink to.

See also, “MRU and LRU Algorithms: Pooled Workspace Server Examples” on page
51.

Least Recently Used (LRU) Algorithm
The Least Recently Used (LRU) algorithm attempts to use the least recently used server.
This algorithm balances provides more of a breadth-first approach to balancing the client
load.

The LRU algorithm supports the Pooled Workspace and SAS OLAP Servers only.

The Least Recently Used algorithm uses the following parameters:

Server process maximum
(field on the server definition) specifies the maximum number of server processes
that can be created for this server definition.

Server process minimum
(field on the server definition) as server pools grow and shrink on demand, Server
process minimum specifies smallest the pool can shrink to.

See also, “MRU and LRU Algorithms: Pooled Workspace Server Examples” on page
51.

MRU and LRU Algorithms: Pooled Workspace Server Examples

Overview of MRU and LRU Algorithm Examples
The topics in this section examine three examples of load balancing a pooled workspace
server using the Most Recently Used (MRU) and Least Recently Used (LRU) load-
balancing algorithms:

• “Example 1: Default LRU and MRU Settings” on page 52

• “Example 2: Server Process Minimum Increased” on page 53

• “Example 3: Recycle Activation Limit Set” on page 53

Understanding the Load-Balancing Algorithms 51

You specify load balancing settings in the SAS Management Console on the Servers
tab: Pooled Workspace server ð Properties ð Options ð Adavanced Options ð
Load Balancing.

Figure 7.6 Advanced Options Dialog Box in SAS Management Console

Example 1: Default LRU and MRU Settings
The following table displays the default load balancing settings for a pooled workspace
server:

Table 7.6 Example 1: Load Balancing Settings (Advanced Options dialog box)

Field Definition Value

Server Process Maximum 10

Server Process Minimum 0

Inactive process shutdown timeout 600

This pool manages a maximum of 10 clients concurrently. Each server process accepts
only one client at a time. The Server Process Maximum property determines how many
processes can be started. If a client disconnects from one of the servers in the pool, the
process continues running and is returned to the pool. The reuse of the server from the
pool is determined by the load-balancing algorithm.

The LRU algorithm attempts to use the least recently used server. LRU pools tend to
grow faster because the processes that are not running are at the top of the list when
looking at least recently used processes.

52 Chapter 7 • Understanding Server Load Balancing

The MRU algorithm attempts to use a server that was recently used. MRU pools try to
reuse processes rather than start new ones, but they will start new processes as needed,
up to the maximum. Server processes in the pool that are inactive shut down after 10
minutes (600 seconds). There is no minimum set on this pool, so all the processes in this
pool can time out if they are inactive.

Example 2: Server Process Minimum Increased
In example 2, clients are managed in the same manner as in example 1. However, here
the Server Process Minimum is set to three. When server processes begin to time out,
the pool does not shrink below three servers.

Table 7.7 Example 2: Load Balancing Settings (Advanced Options Dialog Box)

Field Definition Value

Server Process Maximum 10

Server Process Minimum 3

Inactive process shutdown timeout 600

Example 3: Recycle Activation Limit Set
In example 3, clients are managed in the same manner as in example 1. However, here,
the Recycle Activation Limit is set to 100. This setting allows processes in the pool to
be reused for a maximum of 100 times. After the 100th client returns the server to the
pool, the pool is restarted.

Table 7.8 Load Balancing Settings (Advanced Options Dialog Box)

Field Definition Value

Server Process Maximum 10

Server Process Minimum 0

Recycle Activation Limit 100

Inactive process shutdown timeout 600

Understanding the Load-Balancing Algorithms 53

54 Chapter 7 • Understanding Server Load Balancing

Chapter 8

Understanding Server Pooling

Overview of Pooling . 55

How Server-side Pooling Works . 56

Understanding the Server-side Pooling Connection Process 56

How Client-side Pooling Works . 57

Understanding the Client-side Pooling Connection Process 58

Overview of Pooling
A collection of reusable workspace server and stored process server processes is referred
to as a pool. By reusing server processes, pooling avoids the cost that is associated with
creating a new process for each connection. If your client application uses frequent,
short-duration connections to SAS, pooling might greatly improve your server
performance.

SAS versions, after 9.1.3 support the following two types of pooling:

• server-side pooling

Server-side pooling (introduced after SAS 9.1.3) is the process by which the SAS
Object Spawner maintains a collection of workspace servers that are available for
clients. The usage of servers in this pool is governed by the authorization rules that
are set on the servers in the SAS metadata. For more information, see “How Server-
side Pooling Works” on page 56.

• client-side pooling

Client-side pooling is the process by which the client application maintains a
collection of reusable workspace server processes. For more information, see “How
Client-side Pooling Works” on page 57.

For a discussion on the strengths, weaknesses, and scope for each type of pooling, see
“Choices in Workspace Server Pooling” in Chapter 12 of SAS Intelligence Platform:
Security Administration Guide.

55

How Server-side Pooling Works
The usage of the servers in a server-side pool is governed by the authorization rules that
are set on the servers in the SAS metadata. Server-side pools use the ReadMetadata
permission on the server component metadata objects in the pool to control access.
Server-side pooling allows more flexibility than client-side pooling, which limits access
to a single group.

Another benefit of server-side pooling is that workspace server load balancing
functionality is automatically built in. When a user connects to a pool, the spawner
determines the server to send the user to based on the user's access rights and on current
server loads.

By using access controls on servers in metadata, the server that actually runs a user's job
can be controlled by the user's identity in metadata. (A server defined in metadata, can
be one or more processes that are running on one or more machines.) Because different
servers can have different command lines, you can use server-side pooling to ensure that
a user is assigned to a server process that was launched with a specific command line.
One useful implementation of this feature is to launch server-side pooled workspace
servers that use an operating system's run priority level.

For example, on UNIX, an administrator might manage server performance by creating
the server with the UNIX nice command. Lower priority users might use a server that
was launched with a higher system value such as 5. Higher priority users might use a
server that was launched with a lower system value such as -2. On Windows, the
administrator might manage server performance using the /<priority class> option on
the start command. (A user with a lower priority might run on a pooled workspace
server started with a start-up command that is similar to: start/low sas.exe.
Higher priority users might run on a pooled workspace server with a start-up command
that is similar to: start/high sas.exe.) For more information, refer to your
documentation for the appropriate operating system.

Understanding the Server-side Pooling
Connection Process

Server-side pooling is the process by which the object spawner maintains a pool of
servers available for a client. (The object spawner maintains a port bank to facilitate
client connections to this server pool.) The usage of servers in this pool is governed by
the authorization rules that are set on the servers in the metadata. The following process
describes how an application retrieves and uses a pooled workspace server to handle a
user request:

1. A user accesses a SAS client application, and the application requests a connection
to a workspace server.

2. The spawner receives the application connection request (on behalf of the user) and
decides which server to send the request to based on two criteria:

• the application user's identity (On which servers does the user have
authorization?)

• the load-balancing algorithm

56 Chapter 8 • Understanding Server Pooling

3. The spawner receives the user connection request and passes the user's credentials to
the SAS Metadata Server to determine what servers in the pool the user is authorized
to access.

4. The spawner decides which server to send the user to based on the selected load-
balancing algorithm, the user's identity, and which servers the user is authorized to
use.

5. The spawner performs one of the following actions based on server availability:

• If there are servers available, then the spawner redirects the user to an available
server.

• If there are no servers available in the pool and one can be started, then the
spawner starts a new server under the launch credentials, adds this new server to
the pool, and redirects the user to this server.

• If the pool has reached it maximum size, then the spawner cannot add any more
servers to the pool. The user must wait until there is an available server in the
pool or fail after an amount of time. (The maximum size of the pool is
determined by the Server Process maximum property for each server. The
application wait time is determined by the Availability timeout property that is
found on the Logical Pooled Workspace server.)

6. The workspace server is available to the application to run SAS code. Because the
pooled workspace server runs under an administrator-defined host identity, any
physical file access that is done by the workspace server process is done under that
host identity. This includes access to SAS data sets.

7. When the user has finished using the pooled workspace server, the server is returned
to the pool, and it can be reused by other users.

How Client-side Pooling Works
The server processes within a pool are divided into one or more puddles. A puddle is a
group of server processes that are accessible to a specific user group and that connect to
SAS by using a single set of credentials called the puddle login.

The metadata administrator might choose to create several puddles to control the data
that users are authorized to access. Because the SAS server uses the puddle login both to
connect to the metadata and to run the server process, this authorization (access control)
can be applied in the metadata or on the physical data (by using file system
authorization). For example, the metadata administrator might give one puddle Read and
Write access to a table on an IOM server, although giving another puddle only Read
access.

Another reason for using multiple puddles is to control how available the server
processes are for different users. If you are a member of only one puddle access group,
then you can access only those connections. If you are a member of multiple puddle
access groups, then you have access to more connections.

Note: By default, the SAS Deployment Wizard deploys a server-side pooled workspace
server. To completely eliminate use of server-side pooling, delete this logical pooled
workspace server. For more information, see “Remove Logical Servers” on page
96.

How Client-side Pooling Works 57

Understanding the Client-side Pooling
Connection Process

Consider an example of a client-side pool configuration that consists of:

• two puddles: Puddle1 and Puddle2

• two groups: Puddle1Access and Puddle2Access

• two SAS server machines with an object spawner on each

The following figure shows a connection to a pooled workspace server:

Figure 8.1 The Connection Process for a Client-side Pooled Server

The following process describes how a user retrieves and uses a client-side pooled
connection:

1 A user, User B, accesses a SAS client application, and the client requests a
connection to SAS for the user.

2 The client application uses a special account called the pool administrator to connect
to the SAS Metadata Server and to read the pool metadata. The pool administrator
must be able to view the metadata for all the logins (puddle logins) that are used to
make connections for the pool. The pool administrator also needs to be able to view
the membership of the puddle access groups. The SAS Trusted User is the default
pool administrator.

Note: The pool administrator does not need to be able to view the login definition
for the requesting user ID.

3 For each puddle, if the minimum number of servers and minimum available servers
are not met, the client application uses the appropriate puddle login credentials to
launch new server processes.

The pool determines which puddle the requesting user ID can access. The pool
selects a puddle where one of the following is true:

58 Chapter 8 • Understanding Server Pooling

• The requesting user ID is a member of the group that is granted access to the
puddle.

• The requesting user ID matches the puddle login's user ID, or is owned by the
same user or group that owns the puddle login's user ID. (An example for this
usage is rare: a single-user application wants to set up a personal connection pool
for benefits such as reconnecting after an abnormal disconnect.)

In this example, User B is a member of the Puddle2Access group. The
Puddle2Access group has access to the Puddle2 puddle. Therefore, User B will
access Puddle2.

4 The pool manager returns a server connection from the selected puddle as follows:

• If a server process is available, then the pool returns a connection to the
requesting user.

• If there are no available server processes, and the maximum number of server
processes has not been met, then the pool uses the puddle login to create a new
server process and returns a connection to the requesting user.

• If there are no available server processes and the maximum number of server
processes has been met, then the requesting user must wait for a server process to
become available. When a process becomes available, the pool returns a
connection to the requesting user.

Note: For Java client applications, the pool balances the number of connections for
each puddle among the server machines. For Windows client applications, all of
the connections are assigned to the first server machine, until the maximum
number of connections for that machine is met.

The user accesses resources and services on the SAS server. Authorization for
content on the SAS server is performed by using the puddle login.

When the user has finished using the server connection, the server process is
returned to the pool, and it can be reused by other users.

Understanding the Client-side Pooling Connection Process 59

60 Chapter 8 • Understanding Server Pooling

Chapter 9

Configuring Client-side Pooling

Client-side Pooling Concepts and Overview . 61
Is Client-side Pooling Right for My Site? . 61
Understanding Client-side Pooling Concepts . 62
Overview of Configuring Client-side Pooling . 62

Configuring Client-side Pooling . 63
Plan the Metadata Identities and Logins for Puddle Access 63
Plan the Puddles for the Client-side Logical Pooled Server 63
Convert a Logical Workspace Server to Client-side Pooling 64
Configure Client-side Pooling Properties for Each Server . 65
Setting Client-side Pooling Application Properties . 67
Verify That Client-side Connection Pooling Is Working for

SAS Web Report Studio . 69

Configure Client-side Pooling across Multiple Machines . 69

Configuring a Client-side Pooling Workspace Server to
Enforce Row-Level Security . 72

About Row-Level Permissions Configuration . 72
Defining the Necessary Users and Groups . 72
Create a Restricted Workspace Server Client-side Pool . 74
Assign Libraries to the New Server . 76
Create a Second SAS Web Report Studio Deployment . 77
Secure Sensitive Data Resources . 77

Client-side Pooling Concepts and Overview

Is Client-side Pooling Right for My Site?
Prior to SAS 9.2, client-side pooling was the only option for configuring SAS
Workspace servers in a pool. SAS 9.3 continues to support client-side pooling and
server-side pooling. For more information about the relative strengths of each method,
see these topics:

• “Overview of Pooling” on page 55

• “Choices in Workspace Server Pooling” in Chapter 12 of SAS Intelligence Platform:
Security Administration Guide.

61

Understanding Client-side Pooling Concepts
Before performing this configuration, it is important that you understand a couple of
concepts. For example, what does it mean to set up a client-side pooling workspace
server? If a workspace server has not been converted to pooling, then each time a SAS
Web Report Studio or SAS Information Delivery Portal user starts a session, a
workspace server process must be created and the user must establish a connection to
this process. This can be a time-consuming sequence of events. When you set up a
client-side pooling workspace server, a pool (or set) of connections to workspace servers
are opened when SAS Web Report Studio or SAS Information Delivery Portal makes its
first request for a workspace server. A user can then obtain a preexisting connection
from the pool instead of having to establish the connection.

Another important concept is that of a puddle. A puddle is a subset of the connections in
a client-side pool. Setting up puddles enables you to associate a different set of users
with different puddles. The Pool Administrator is the user who reads metadata regarding
the entire pool. This ID defaults to sastrust@saspw. It is not used for the actual
workspace server, just to process the pool. Each puddle has a login that is specific to the
puddle. Typically, the reason for setting up different groups of users is to give the
different groups different levels of access.

For more information, see “Choices in Workspace Server Pooling” in Chapter 12 of SAS
Intelligence Platform: Security Administration Guide.

Overview of Configuring Client-side Pooling
This topic summarizes the steps required for setting up client-side pooling for your
workspace server for use with SAS Web Report Studio and SAS Information Delivery
Portal. To contrast client-side pooling with server-side pooling, see “Overview of
Pooling” on page 55. The result of this configuration has better performance than
connecting to a standard workspace server.

To set up a client-side pool, you must do the following:

1. “Plan the Metadata Identities and Logins for Puddle Access” on page 63

2. “Plan the Puddles for the Client-side Logical Pooled Server” on page 63

3. “Convert a Logical Workspace Server to Client-side Pooling” on page 64

4. “Configure Client-side Pooling Properties for Each Server” on page 65

5. “Verify That Client-side Connection Pooling Is Working for SAS Web Report
Studio” on page 69

Note: By default, the SAS Deployment Wizard deploys a server-side pooled workspace
server. To completely eliminate use of server-side pooling, delete this logical pooled
workspace server. For more information, see “Remove Logical Servers” on page
96.

If your deployment requires more than one host for client-side pooled workspace
servers, then you can configure client-side pooling across multiple machines. For more
information, see “Configure Client-side Pooling across Multiple Machines” on page
69.

62 Chapter 9 • Configuring Client-side Pooling

Configuring Client-side Pooling

Plan the Metadata Identities and Logins for Puddle Access
To plan the client-side pooling security, you must determine the user metadata identities,
and the logins for the group metadata identities, that can access the puddles in the pool.
Your user, group, and login definitions for the users and groups that will access the pool
should already be set up when SAS was installed. However, before you determine which
identities and logins to use, do the following:

1. Review the access controls on the server. For more information, see Chapter 7,
“Permissions on Servers,” in SAS Intelligence Platform: Security Administration
Guide.

2. Review access control for data on the server. The puddle login requires operating
system access to any data sets that the server will retrieve.

For puddle access to the pool, there are two types of logins that you can define:

• a login that is used to launch the workspace server for the puddle users. All users of
the puddle use this login when connecting to the SAS server. This login must be
accessible to client-side pool administrators. (Pool users are not required to have
access to this login).

• logins for the client-side pool administrator in the metadata configuration file that is
used with the Windows Object Manager. Important Note: Do not specify an
unrestricted user for the user ID of the client-side pool administrator.

Plan the Puddles for the Client-side Logical Pooled Server
To plan a client-side pooled logical server, you need to determine how many puddles
you want to use and which groups will be used to access each of the puddles. When you
convert the logical server to a client-side pooled logical server, you can then divide the
pool into one or more puddles that associate the appropriate login definition and group
metadata identity to use for access to the puddle. The login for each puddle is used to
launch the server.

Note: Multiple puddles are not required. It is very common to have only a single puddle.

Determine the following parameters for each puddle that is associated with the client-
side pooled logical server definition. Retain this information because you will need it
later in “Convert a Logical Workspace Server to Client-side Pooling” on page 64.

Table 9.1 New Puddle Information

Field Explanation

Name Specifies the name of the puddle (for example, Puddle1).

Configuring Client-side Pooling 63

Field Explanation

Minimum available servers Specifies the minimum number of servers that should be idle and
available in the pool at any time. The number of running servers
never exceeds the Maximum Clients value specified on the server.
If the number of available servers falls below the value specified
in this field, additional server connections are created.

Minimum number of
servers

Specifies the minimum number of servers (both idle and active)
that should be present in the pool at any time. This value also
specifies how many servers should be started when the pool is
first created.

Login Specifies the user ID under which connections to the server are
made. The SAS server only sees this login when a connection is
made, rather than the user ID of the user who is actually using the
pool. The menu on this field lets you select from the three most
recently used logins or the More Logins option. Selecting More
Logins displays the Login Search window, which you can use to
search for a defined login.

Grant access to group Specifies the logon group whose members are allowed to access
the puddle. Users who are not members of the group are not
allowed access. When a user requests a connection to a server
pool, the software searches for a puddle whose access group
contains that user.

If you want to allow all users to access the system, you should
change this value to PUBLIC.

Note: If you do not want members of PUBLIC to be able to use
SAS Web Report Studio, and you want to present such users with
a clear and user-friendly error message, follow these directions.
First, set the value of the Grant Access To Group field to
SASUSERS (to control access to the pool). Then, edit the
properties file WEB-INF
\WebReportStudioProperties.xml, and change the
value of the wrs.pfs.allowPublicUsers element to false (to
provide useful application-level feedback to members of
PUBLIC).

Convert a Logical Workspace Server to Client-side Pooling
To convert your workspace server to client-side pooling and to define a puddle, follow
these steps:

Note: You are setting up client-side pooling for a specified client and certain types of
requests. This logical workspace server also supports standard workspace servers for
other clients.

1. Log on to SAS Management Console as the SAS Administrator (sasadm@saspw).

2. In SAS Management Console, expand the Server Manager tree node and the node for
the SASApp application server. One of the tree nodes under SASApp is SASApp -
Logical Workspace Server.

3. Right-click the icon for the logical workspace server, and select Convert To ð
Pooling. The Information dialog box asks whether you want to continue with the
conversion. Click Yes. The Pooling Options dialog box appears.

64 Chapter 9 • Configuring Client-side Pooling

4. In the Pooling Options dialog box, click New to indicate that you want to define a
puddle.

The New Puddle dialog box appears.

5. Enter the values that you chose in “Plan the Puddles for the Client-side Logical
Pooled Server” on page 63 .

Note: If you are not logged on to SAS Management Console as the SAS
Administrator (sasadm@saspw), you might not see sassrv in the Login drop-
down list box. In this case, click Cancel in the New Puddle dialog box. Then,
reconnect to the metadata server by using the metadata profile for the SAS
Administrator.

6. Click OK in the New Puddle dialog box.

7. Click OK in the Pooling Options dialog box.

Configure Client-side Pooling Properties for Each Server
To set the configuration options for the client-side pool, follow these steps:

1. In SAS Management Console, expand the SASApp - Logical Workspace Server to
reveal the icon for the workspace server.

2. Right-click the workspace server icon, and select Properties from the pop-up menu.
A Workspace Server Properties dialog box appears.

3. In the Workspace Server Properties dialog box, select the Options tab.

Note: If the workspace server is converted to use client-side pooling, information
about this tab might not accurately reflect behavior for connections that use this
server as a standard workspace server. For a logical workspace server that offers
client-side pooling, the Options tab is disabled and always indicates that
credential-based host authentication is configured. However, if you selected
some other setting before configuring client-side pooling, that selection is
persisted in metadata and is honored when the server is used as a standard
workspace server. To avoid confusion, do not use a workspace server for both
client-side pooling and standard use. Instead, if you choose to use client-side
pooling, create a dedicated workspace server for that purpose, in a separate
server context.

4. On the Options tab, click Advanced Options. The Advanced Options dialog box
appears.

5. In the Advanced Options dialog box, select the Performance tab.

Configuring Client-side Pooling 65

6. Fill the fields in the dialog box as shown in the preceding display. The following
table explains the meaning of each value.

Table 9.2 Pooling Properties

Field Explanation

Maximum clients Each client requires a workspace server process on the
workspace server host. These processes constitute the pool that
will be available to SAS Web Report Studio and SAS
Information Delivery Portal. Each process requires
approximately 150 MB for efficient operation. As a guide, we
recommend two processes per CPU. If the server is not also
acting as the metadata server, you can add one or two to this
maximum. If you have long-running queries, you can add one
or two servers. This will make the system seem more
responsive to short-running queries, at the expense of total
throughput. A typical setting is between 8 and 10. Applications
should not share the same pooled workspace configuration as
this creates duplicate pools, one for each application, and an
unexpectedly high workload for the server host.

Recycle activation limit Places a limit on how often workspace server processes are
reused to satisfy puddle connections.

Inactivity timeout A workspace server process can have an inactivity time-out.
Having a short time-out reduces the workload on the server
host, but might reduce response time for client connection
requests.

7. Click OK in the Advanced Options dialog box.

8. Click OK in the Workspace Server Properties dialog box.

66 Chapter 9 • Configuring Client-side Pooling

Setting Client-side Pooling Application Properties
To turn on client-side pooling properties for SAS applications such as SAS Web Report
Studio, the SAS Information Delivery Portal, and SAS BI Dashboard, follow these steps:

1. Using SAS Management Console, access the SAS Configuration Manager plug-in
(Plug-ins ð Application Management ð Configuration Manager).

2. Make sure that client-side pooling is not locked at the application infrastructure
level, by following these steps:

a. Expand the Configuration Manager icon, right-click on Application
Infrastructure, and in the pop-up menu choose Properties.

b. In the Properties dialog box, choose the Settings tab.

c. In the right pane of the Settings tab, under Application > Pooling, click the lock
icon. It should toggle to an unlocked state, and then click OK.

3. In the left pane of the SAS Management Console under Configuration Manager,
right-click on Web Report Studio 4.2, and in the pop-up menu choose Properties.

4. In the Properties dialog box, choose the Settings tab.

5. In the right pane of the Settings tab, under Application > Pooling, choose true from
the drop-down list box.

Configuring Client-side Pooling 67

6. Click the Advanced tab, and in the Property Value column for
App.ClinetSidePoolingAdminID, enter the login for the client-side pooling
administrator, and then click OK.

7. Restart your Web application server for these changes to take effect.

For more information, see “Starting and Stopping Web Application Servers” in
Chapter 5 of SAS Intelligence Platform: System Administration Guide.

68 Chapter 9 • Configuring Client-side Pooling

Verify That Client-side Connection Pooling Is Working for SAS Web
Report Studio

If you have not configured client-side connection pooling correctly, SAS Web Report
Studio will continue to work. However, it will not be able to take advantage of a
connection pool. Therefore, it is important that you verify that your system is configured
correctly. You can verify this by temporarily changing the logging level for connections,
viewing a SAS Web Report Studio report, and then checking the contents of the SAS
Web Report Studio log file.

To verify that your system is configured correctly, follow these steps:

1. Using SAS Management Console, add a new logging context
(com.sas.services.connections) and set its logging level to DEBUG.

For more information, see “Configuring Logging for SAS Web Report Studio” in
Chapter 4 of SAS Intelligence Platform: Web Application Administration Guide.

2. Start SAS Web Report Studio and log on.

3. View a report that accesses relational data (for example, a SAS table).

4. View the SAS Web Report Studio log file (path-to-config-dir\Web\Logs
\WebReportStudio.log). If pooling is working, you will see information that is
similar to this message about the connection to the workspace server:

privileged user name: D9588\sastrust@saspw
pd#0: putting cx#8 on the available queue
rq#0 routed to pd#0

If pooling is not working correctly, you will see a message similar to this message:

request served by unshared connection #9

After you have confirmed that connection pooling is working, you can undo the changes
that you made in step 1.

Configure Client-side Pooling across Multiple
Machines

If your deployment requires more than one host for client-side pooled workspace
servers, then you can configure client-side pooling across multiple machines.

An important aspect of multi-machine workspace client-side pooling involves the puddle
login ID that you supplied in the topic “Convert a Logical Workspace Server to Client-
side Pooling” on page 64. In order to implement multi-machine, client-side pooling, this
login must be valid for all machines in the cluster.

This topic describes a basic configuration where the client-side pool has only one
puddle. For this basic implementation, the account that you use for the login ID must be
able to authenticate on every machine in the cluster. This means that the login ID must
be a network account, and it must be associated with a single authentication domain in
metadata (for example, NTDomain).

If you require a workspace client-side pool that consists of host servers in different
authentication domains (for example, Windows and UNIX), then you can configure a
pool with a separate puddle for each host. Each puddle has its own login ID as

Configure Client-side Pooling across Multiple Machines 69

appropriate for the host's authentication domain (for example, NTDomain or UnixAuth).
Each login ID must be able to authenticate on every machine in its respective cluster.
With this configuration, the pool manager software can identify which machine is used
for a given process, based on the puddles that are defined for the pool, and it uses the
appropriate login to make a connection.

The following instructions explain how to configure workspace client-side pooling
across two machines in the same authentication domain, both supporting the same
puddle. Repeat these instructions as appropriate for each additional machine that you
want to configure for that same puddle.

Note: These instructions assume that you have already set up and verified client-side
pooling on a single machine, as explained in the previous sections.

To configure client-side pooling across two machines, follow these steps:

1. Log on to SAS Management Console as the SAS Administrator (sasadm@saspw).

2. If the puddle login ID is not accessible to all machines in the client-side pooling
cluster, then you must create a new user. Follow these steps:

a. On the host, identify or create a network account. For example, on Windows the
user name might be NTDomain\myaccount. The user must authenticate against
each machine in this cluster.

If creating the account on Windows, grant the "Log on as a batch job" user right
for the account on each Windows machine in the cluster.

b. In the SAS Metadata Console User Manager plug-in, add a login to the SAS
General Servers group with the user ID and password of the user that you just
created.

This login should be associated with the server's authentication domain (for
example, DefaultAuth or ServerAuth), even if you are using middle-tier trusted
authentication. The login is used to start processes on the server machine rather
than to authenticate against the metadata server.

c. Change the login ID that is used for the puddle to this newly established login
ID. Make this change in the Edit Puddle dialog box, which is accessed from the
Logical Workspace Server Properties dialog box under the Server Manager
plug-in. For details, see “Convert a Logical Workspace Server to Client-side
Pooling” on page 64 .

3. In the SAS Metadata Console Server Manager plug-in, add a pooled workspace
server definition for the machine that you are adding to the client-side pool. Follow
these steps:

a. Expand the SASApp application server, right-click Logical Workspace Server,
and then select Add Server from the pop-up menu. The New Server Wizard
appears.

b. Specify the name for the new server that is being added to the client-side pool
and click Next.

c. Click New. In the Add New Machine dialog box, enter the name of the new
machine where the server resides, and click OK.

d. In the Available list, select the new machine.

e. Click Advanced Options, and then select the Performance tab.

f. On the Performance tab, set the client-side pooling options for this machine and
then click OK. The maximum number of clients can vary for each server that is
included in the pool, and should be configured based on the capacity of each

70 Chapter 9 • Configuring Client-side Pooling

physical server that is being used. For details, see “Configure Client-side Pooling
Properties for Each Server” on page 65 .

4. Click Next.

5. Click Next to accept the default authentication domain and port.

6. Review the information in the Summary dialog box. If no changes are required, click
Finish.

7. To define a new object spawner, in the Server Manager plug-in, follow these steps:

a. Right-click the Server Manager and select New Server from the pop-up menu.
The New Server Wizard appears.

b. In the wizard, choose Object Spawner as the type of server, and then click Next.

c. Provide information in the wizard as appropriate, by using these guidelines:

• Select the host name that you are adding to the pool.

• Select the newly created pooled workspace server as the server to be spawned
by this object spawner.

• Accept defaults for operator connection, ports, and authentication, unless you
have implemented these differently.

8. Under SASApp, expand the logical pooled workspace server, and verify that both
physical workspace servers appear under the logical client-side pooled workspace
server.

9. Install the necessary SAS software on the machine that is being added to the pool. At
a minimum, you should install Base SAS, the SAS Workspace Server, and the SAS
Object Spawner. When configuring the object spawner, make sure that the object
spawner can connect to the metadata server (running on another machine). If the
spawner cannot access the metadata server, then the object spawner cannot be
started.

10. Verify that pooling works for SAS Web Report Studio.

a. Start the metadata server.

b. Start the object spawner on the machine that is being added to the pool.

c. Start or restart the middle-tier components.

Note: Because the client-side pool administrator did not change, there is no need
to change the middle-tier configuration. Recall that the pool administrator
(typically sastrust@saspw) is used by the middle-tier application to
process client-side pooling requests.

Depending on the puddle configuration and the maximum number of clients that are
allowed for each server under the logical client-side pooled workspace server, the
number of pooled workspace server processes that show up on each machine will
vary.

For more information, see “Verify That Client-side Connection Pooling Is Working
for SAS Web Report Studio” on page 69.

As mentioned earlier in this section, if you require a workspace client-side pool that
consists of host servers in different authentication domains, then you can add more
puddles to the pool. For each puddle, provide a login ID that is able to authenticate
against all machines in the cluster.

Configure Client-side Pooling across Multiple Machines 71

The data sets that are accessed by the client-side pooled workspace server processes
must either be replicated on each machine that will execute the pooled workspace server
processes or accessed via a shared location that uses a common shared path (for
example, a UNC or NFS path). For more information about putting the data in a shared
location, see “Overview of Managing Data and Catalogs for Servers on Multiple
Machines” on page 99. Alternatively, the workspace server processes can access data
by using some other sharing mechanism, such as a SAS/CONNECT server. All
LIBNAME assignments use the same path information, regardless of which physical
machine the process runs on.

The object spawner process on the machine that has been added to the client-side pool
cannot be started until the metadata server is running. If the object spawner is configured
to run as a service that starts automatically, then this dependency cannot be enforced via
the Windows services configuration.

Configuring a Client-side Pooling Workspace
Server to Enforce Row-Level Security

About Row-Level Permissions Configuration
After the initial installation and configuration of the SAS Intelligence Platform, most
sites have a single workspace server, which is part of the default SAS Application
Server, SASApp. By default, this workspace server is a standard workspace server,
which means that workspace server processes are spawned on an as-needed basis. If you
need comprehensive security, set up the high-security configuration of SAS Web Report
Studio. This configuration prevents regular users from circumventing row-level filters by
accessing the target tables directly (without going through the information map that
enforces the filters).

This section explains how to create a second client-side pooling workspace server that
you can use as part of an environment in which row-level permissions are enforced. For
more information about this environment, see Chapter 1, “Overview of BI Row-Level
Permissions,” in SAS Guide to BI Row-Level Permissions.

Defining the Necessary Users and Groups

Overview of Defining the Necessary Users and Groups
The first step in setting up the new client-side pooling workspace server is to define two
accounts for users who must be authenticated by the operating system on the workspace
server host, and several user and group metadata objects.

Create User Accounts
Create user accounts that will enable the operating system on the workspace server host
to authenticate the following users. On Windows systems, these accounts can be domain
accounts or local accounts:

• rpooladm - This account is for the client-side pool administrator, the user who
handles requests for processes in the workspace server client-side pool. The
password for this account should be unique.

72 Chapter 9 • Configuring Client-side Pooling

• rpoolsrv - This is the puddle login account. Each SAS Web Report Studio user who
has access to the client-side pool must belong to a group that has a login that
contains this user ID and the associated password.

On Windows systems, grant both of these users the Log on as a batch job right.
If you created a SAS Server Users group when you first installed the SAS Intelligence
Platform, you can give these users this right by adding them to that group.

Once you have created these user accounts, you should create the metadata objects
described in the next section.

Create User and Group Objects
In SAS Management Console, use the User Manager to create one user and two groups:

• User: Restricted Client-side Pool Administrator

• Group: Restricted Client-side Pool Puddle Login

• Group: Restricted Client-side Pool Puddle Access

Define the Restricted Client-side Pool Administrator
To define the Restricted Client-side Pool Administrator, follow these steps:

1. Right-click User Manager, and select New ð User from the pop-up menu.

2. In the New User Properties dialog box, on the General tab, enter the name
Restricted Client-side Pool Administrator in the Name box.

3. In the same dialog box, select the Accounts tab.

4. Add a login to the user object by selecting New and entering the appropriate
information in the New Login Properties dialog box. In the User ID box, enter the
name rpooladm. If the operating system account for this user is a Windows
account, qualify the name with a domain or machine name and a backslash. Then
select the authentication domain for your workspace server from the Authentication
Domain drop-down list. It is preferable, for security reasons, not to put the password
in the metadata. Click OK at the bottom of the dialog box.

5. Click OK in the New User Properties dialog box.

Define the Restricted Pool Puddle Login Group
To define the Restricted Pool Puddle Login group, follow these steps:

1. Right-click User Manager, and select New ð Group from the pop-up menu. A
New Group Properties dialog box appears.

2. On the General tab, enter the name Restricted Client-side Pool Puddle
Login in the Name box.

3. On the Members tab, select the Restricted Client-side Pool
Administrator, and click the right-arrow button to move the user to the Current
Members list.

4. On the Accounts tab, create a new login that contains the credentials for rpoolsrv
and the authentication domain of the workspace server. (See step 4 in the “Define the
Restricted Client-side Pool Administrator” on page 73 for details about how to create
this login.)

5. Click OK in the New Group Properties dialog box.

Restricted Workspace Server Client-side Pooling for SAS Web Report Studio 73

Create a second group named Restricted Client-side Pool Puddle Access. Add any users
or groups that you want to be able to use the restricted client-side pool as members of
this group. No logins are necessary.

Create a Restricted Workspace Server Client-side Pool
To create the restricted client-side pooling workspace server, follow these steps:

1. In the directory SAS-configuration-directory\SASApp—or SASMain—create a
directory called RestrictedPool. Then, in the RestrictedPool directory,
create a logs directory.

2. In the directory SAS-configuration-directory\SASApp\RestrictedPool, create a
configuration file that will be used when the restricted workspace server is started.
The way in which you perform this step depends on whether the workspace server
will run on a Windows host or a UNIX host.

Windows
In the directory SAS-configuration-directory\SASApp\RestrictedPool,
create a file named sasv9.cfg, and enter the following lines in the file: -
config "SAS-configuration-directory\SASApp\sasv9.cfg"

UNIX
In the directory, SAS-configuration-directory/SASApp/RestrictedPool,
create a file named workspaceServer.cfg, and enter the following lines in
the file: -config !SASROOT/sasv9.cfg -config sasv9.cfg

Later in the procedure, you will test the connection to the workspace server. If the
test fails, you can remove the comments from the lines that relate to logging in order
to enable logging. You can then repeat the test and check the workspace server log
file for error messages.

3. Choose one of the following authentication methods for the workspace servers to use
in connecting to the metadata server. Also, perform any tasks associated with the
method that you choose.

• If you use the TRUSTSASPEER object server parameter in your metadata
server's configuration file (the default), then you can rely on that mechanism for
workspace server authentication. The restricted pool workspace servers connect
to the metadata server under the rpoolsrv identity when launched by SAS Web
Report Studio and connect under the end user's identity when launched by a
desktop application. In this mode, if you are working with an external DBMS,
you must ensure that both the Restricted Client-side Pool Puddle Login group
and any allowed individuals have database credentials.

• You can also use the METAUSER and METAPASS options in the restricted
client-side pool workspace server's configuration file. With this approach, the
TRUSTSASPEER option is not required, and only the Restricted Client-side
Pool Puddle Login group needs database credentials. For this approach, edit the
configuration file that you created in step 2 to add these lines:

-metauser "rpoolsrv"
-metapass "encrypted-rpoolsrv-password"

On Windows systems, be sure to prepend a domain or host-name qualifier to the
user ID. You can encrypt the password using PROC PWENCODE.

Note: The configuration file for the restricted workspace server must be locked
down at the operating system level. The client-side pool administrator
launches workspace servers under an operating system user ID of rpoolsrv.
Workspace servers executed against this pool (such as those that are run by

74 Chapter 9 • Configuring Client-side Pooling

the SAS Information Map Studio Test dialog box) run under the end-user ID.
Remember to change this configuration file if site policy requires periodic
changes on service accounts.

4. In SAS Management Console, define a new SAS Application Server, named
RestrictedPool, that contains a workspace server.

a. Right-click Server Manager, and select New Server from the pop-up menu.
The New Server Wizard starts.

b. On the wizard's first page, select SAS Application Server and click Next.

c. On the wizard's second page, enter the name RestrictedPool in the Name
box and click Next.

d. On the wizard's third page, accept the default values and click Next.

e. On the wizard's fourth page, select Workspace Server and click Next.

f. On the wizard's fifth page, select the Custom radio button and click Next.

g. On the wizard's sixth page, enter the following values in the Command and
Object server parameters boxes. The first command is appropriate for a
workspace server that is running on a Windows host, and the second is
appropriate for a UNIX host. The value that you enter in the Object server
parameters field is not dependent on the operating system.

Command (Windows)
sas -config "SAS-configuration-directory\SASApp\RestrictedPool\sasv9.cfg"

Command (UNIX)
SAS-configuration-directory/SASApp/sas.sh -config
RestrictedPool/workspaceServer.cfg

Then click Next.

h. On the wizard's seventh page, specify the following values.

Authentication domain
Specify the same authentication domain that you used when you defined your
first workspace server. By default, this will be DefaultAuth.

Bridge port
Change the default value, 8591, to the number of an unassigned port, such as
9591.

i. On the wizard's eighth page, click Finish.

5. Update the metadata definition of your object spawner to indicate that the spawner
should start processes for the new workspace server.

a. Right-click the icon that represents the spawner, and select Properties from the
pop-up menu. A Spawner Properties dialog box appears.

b. Select the Servers tab.

c. Move RestrictedPool - Workspace Server from the list of Available servers to
the list of Selected servers.

d. Click OK.

e. Restart your object spawner.

6. Test the connection to your new workspace server.

a. In the left pane of SAS Management Console, select RestrictedPool -
Workspace Server. Information about a connection displays in the right pane.

Restricted Workspace Server Client-side Pooling for SAS Web Report Studio 75

b. Right-click the icon representing the connection, and select Test Connection
from the pop-up menu.

c. If you are logged in to SAS Management Console as an unrestricted user, such as
sasadm@saspw, you will be prompted for the credentials of a user who can start
a workspace server. Enter the credentials for a user such as sasdemo. You should
see a message indicating that the test was successful.

Note: If you happen to enter invalid credentials for a login, clear the credentials
cache and the SAS Management Console will prompt you again to re-enter
the credentials (File ð Clear Credentials Cache.)

If the connection test fails, look at the log files for the object spawner and the new
workspace server. The most likely cause of the problem is that you made a mistake
in editing the configuration file for the new workspace server—the configuration file
in the RestrictedPool directory.

7. Convert the new workspace server to client-side pooling.

a. Right-click RestrictedPool - Logical Workspace Server, and select Convert
To ð Pooling from the pop-up menu.

b. You are asked whether you want to continue. Click Yes. The Pooling Options
dialog box appears.

c. In this dialog box, click New to bring up the New Puddle dialog box.

d. In the New Puddle dialog box, supply the following values:

Table 9.3 Defining a New Puddle

Field Value

Name restrictedPoolPuddle

Minimum available server 0

Minimum number of servers 0

Login rpoolsrv

Grant access to group Restricted Pool Puddle
Access

Then click OK.

e. Click OK in the Pooling Options dialog box.

Assign Libraries to the New Server
You must assign each library that you plan to access from the locked-down instance of
SAS Web Report Studio to the server RestrictedPool. To assign each library, follow
these steps:

1. Right-click the icon for the library, and select Edit Assignments from the pop-up
menu. The Edit Assignments dialog box appears.

76 Chapter 9 • Configuring Client-side Pooling

2. Hold down the CTRL key and click the list entry for RestrictedPool. (This action
selects RestrictedPool and leaves items that are already selected in a selected
state.) Then click OK.

3. Right-click the library again, and select Properties from the pop-up menu. The
Library-name Properties dialog box appears.

4. Select the Options tab.

5. Click the Advanced Options button. The Advanced Options dialog box appears.

6. Select the Library is pre-assigned option, and click OK.

7. Click OK in the properties dialog box.

In the future, when you create information maps that you want to access from the
locked-down instance of SAS Web Report Studio, make sure that you locate relational
data sources by using the RestrictedPool server. Also, save these maps in a separate
folder: /BIP Tree/ReportStudio/RestrictedData/Maps.

Create a Second SAS Web Report Studio Deployment
When you deploy SAS, the SAS Deployment Wizard creates an initial SAS Web Report
Studio deployment using the inputs that you supply. Later, you can re-run the SAS
Deployment Wizard to create additional deployments. For more information, see “Install
and Configure SAS Interactively” in Chapter 5 of SAS Intelligence Platform: Installation
and Configuration Guide.

Follow these guidelines when running the SAS Deployment Wizard to add another SAS
Web Report Studio deployment:

• Use a deployment plan that contains the SAS middle tier.

• Choose the Custom configuration prompting level. You want to be able to access the
configuration dialog box where you can set the SAS Metadata Server and the SAS
Web Report Studio deployment instance name. The Express prompt level does not
allow you to access these configuration settings.

• Define the SAS Metadata Server connection information for the metadata server that
you are currently using.

• Use the correct machine name on which you are adding the SAS Web Report Studio
deployment.

• Name the second SAS Web Report Studio deployment instance,
RestrictedDataReporting.

Secure Sensitive Data Resources
Ensure that sensitive data resources are readable only by rpoolsrv (not sassrv) and the IT
staff.

For target data that is in third-party databases, set up credentials in the metadata to
enable the puddle account to access those servers. You can make credentials for a
database server available to the puddle account by storing those credentials in a login as
part of the Restricted Puddle Access group definition.

For example, to enable the puddle account to access a DB2 server, you would give the
Restricted Puddle Access group a login that includes a DB2 user ID and password and
that is associated with the DB2 server's authentication domain.

Restricted Workspace Server Client-side Pooling for SAS Web Report Studio 77

Note: Some members of your IT staff will also need to be able to authenticate to the
database server.

78 Chapter 9 • Configuring Client-side Pooling

Part 4

Server Administration

Chapter 10
Managing SAS Application Servers . 81

Chapter 11
Managing Workspace Servers and Stored Process Servers 99

Chapter 12
Managing the Object Spawner . 113

Chapter 13
Administering SAS OLAP Servers . 133

Chapter 14
System Options for SAS Application Server Components 147

Chapter 15
IOMOPERATE Procedure . 161

79

80

Chapter 10

Managing SAS Application
Servers

Defining Multiple Application Servers . 81
Overview of Adding an Additional SAS Application Server 81
Scenario 1: Using SAS Data Integration Studio to Access Remote Data 82
Scenario 2: Using Multiple Application Servers with SAS Web Report Studio . . . 83
Create a SAS Application Server for a SAS Solution . 84

Add a New Logical Server in an Existing SAS Application Server 91

Adding a New Server in an Existing Logical Server . 92
Overview of Adding a New Server in an Existing Logical Server 92
Add a New Server in an Existing Logical Server . 93

Modify a Server Definition . 95

Remove Logical Servers . 96

Defining Multiple Application Servers

Overview of Adding an Additional SAS Application Server
When you deploy SAS, the SAS Deployment Wizard creates an initial SAS Application
Server using the inputs that you supply. Later, you can re-run the SAS Deployment
Wizard to create additional application servers on new machines. For more information,
see Appendix 3, “Adding SAS Products,” in SAS Intelligence Platform: Installation and
Configuration Guide.

Follow these guidelines when running the SAS Deployment Wizard to add a new SAS
Application Server:

• The machine on which you want to add the new logical server should have a network
connection to your site's SAS Software Depot. If it does not, then you must find a
way to get the depot to the machine on which you want to create the new SAS
Application Server.

For more information, see “Overview of SAS Software Depots” in Chapter 3 of SAS
Intelligence Platform: Installation and Configuration Guide.

• Use your deployment plan that contains the SAS Application Server.

Note: There are standard deployment plans that contain a SAS Application Server
machine. For more information, see “About Deployment Plans” in Chapter 5 of
SAS Intelligence Platform: Installation and Configuration Guide.

81

• If you are adding logical servers that require an object spawner (one of the
workspace servers and the stored process server), then when you deploy your SAS
Application Server, the wizard also deploys an object spawner to start the servers. If
the machine on which you are adding the SAS Application Server already contains
an object spawner, then the wizard updates the pre-existing spawner definition for
you to include the new servers that you want your spawner to manage.

• Specify a new server context (for example, SASApp2).

• Obtain the SAS Metadata Server connection information for the metadata server that
you are currently using. The wizard prompts you for this information.

• Specify the correct machine name on which you are adding the SAS Application
Server.

• After the server is registered in metadata and running, make sure that Job Execution
Service is configured to use the newly registered server. For more information, see
“Job Execution Services” in Chapter 4 of SAS Intelligence Platform: Middle-Tier
Administration Guide.

There are several reasons why you might want to create a second application server. A
couple of these reasons are discussed in the following sections.

Scenario 1: Using SAS Data Integration Studio to Access Remote
Data

Suppose that you are using SAS Data Integration Studio to process a large amount of
data that resides on a machine different from the workspace server to which the
application submits its code, as shown in the following figure.

Figure 10.1 Application Server and Data on Different Machines

One way to execute such a job efficiently is to define two application servers. One is the
default application server for SAS Data Integration Studio and contains the workspace
server to which the application submits its generated code. The other application server
contains a SAS/CONNECT server (which is collocated with the data), and the library of
data to be processed is assigned to this application server. See the following figure.

82 Chapter 10 • Managing SAS Application Servers

Figure 10.2 Create an Application Server That Is Collocated with the Data

If you choose for the transformations in the job to be executed on the remote host, then
SAS Data Integration Studio generates the code that is necessary for the transformations
to be executed by the SAS/CONNECT server. The overall job is submitted to the
workspace server. However, the workspace server then submits the code for each
transformation to the remote server.

The generation of this type of code is made possible by the definitions of the two
application servers, one of which is the default application server for SAS Data
Integration Studio and the other the application server to which the data library is
assigned.

Note: For more information, see “Setting Up Multi-Tier Environments” in Chapter 5 of
SAS Intelligence Platform: Desktop Application Adminstration Guide.

Scenario 2: Using Multiple Application Servers with SAS Web
Report Studio

Suppose that you want to create an environment in which row-level security can be
strictly enforced for a set of SAS Web Report Studio users. (For a detailed description of
this feature, see Chapter 1, “Overview of BI Row-Level Permissions,” in SAS Guide to
BI Row-Level Permissions.)

Part of the setup is to create a special workspace server for use by the report creators
who need the secure environment. This special workspace server is a component of a
new SAS Application Server. See the following figure.

Defining Multiple Application Servers 83

Figure 10.3 Using a Second Application Server to Enable Row-Level Security

The original workspace server can service users of other applications and users of SAS
Web Report Studio whose access to data does not need to be so closely controlled.

Create a SAS Application Server for a SAS Solution
SAS solutions such as SAS Demand-Driven Forecasting require unique SAS
Application Servers in order to properly function.

If you are deploying your SAS solution on a system without any pre-existing SAS
software, you can proceed normally making sure to name the SAS Application Server
Context for your solution. For more information, see the SAS Intelligence Platform:
Installation and Configuration Guide and any installation documentation for your
particular solution.

If your system already has SAS software and you are adding a SAS solution, this topic
steps you through using the SAS Deployment Wizard to create a SAS Application
Server for a SAS solution. (SAS Demand-Driven Forecasting is the solution used to
illustrate this procedure. However, the process is similar for most SAS solutions.)

To create a SAS Application Server for a SAS Solution, follow these steps:

1. Stop all running SAS servers and applications.

For more information, see Chapter 5, “Operating Your Servers,” in SAS Intelligence
Platform: System Administration Guide.

2. Start the SAS Deployment Wizard from the highest-level directory in your SAS
Software Depot using the command appropriate for your operating system:

Table 10.1 Start-up Commands for the SAS Deployment Wizard

Operating
System Command

Windows setup.exe -record -deploy

84 Chapter 10 • Managing SAS Application Servers

Operating
System Command

UNIX setup.sh -record -deploy

z/OS First invocation of the deployment wizard to install the metadata server
as a 64-bit application:

setup.rexx -z64 -record -deploy

Second invocation of the deployment wizard to install the remainder of
your SAS 9.3 order as a 31-bit application:

setup.rexx -record -deploy

To use a temporary directory other than /tmp, specify
-templocation new-temp-dir.

Note: Using the -record -deploy options causes the wizard to create a response
file that records the inputs that you supplied. This can be helpful when you want
to repeat the deployment on other machines or when troubleshooting a
deployment issue.

By default, the deployment wizard writes the response file in the following location:

• Windows:

C:\Documents and Settings\current-user
\sdwresponse.properties

• UNIX and z/OS:

~/sdwresponse.properties

3. Choose Perform a Planned Deployment, and Install SAS Software only.

4. Next, select the deployment plan provided with the image.

Defining Multiple Application Servers 85

5. Select the machine.

In this example, the server machine is used. Continue through the wizard. When you
reach the Deployment Summary, click Start to begin the installation process. When
the SAS Deployment Wizard finishes, your SAS solution and its dependent
components are installed on the selected Server machine, and are ready to be
configured. Restart all SAS servers and spawners, and then invoke the SAS
Deployment Wizard a second time.

6. Select Perform a Planned Deployment, and specify Configure SAS Software
only.

7. Next, specify the deployment plan provided with the image.

86 Chapter 10 • Managing SAS Application Servers

Select the machine. (In this example, the server machine is used.)

8. When prompted, specify the same configuration directory and level that is currently
in use.

The deployment wizard recognizes that this configuration directory and level
directory already contains files.

9. Click Yes to proceed.

Defining Multiple Application Servers 87

A page listing the products to configure opens.

By default, the SAS Deployment Wizard presents only products that have not been
configured. Any products required by your solution but not yet configured are
automatically selected. However, since the deployment wizard is creating a new SAS
Application Server, the SAS servers required and used by your solution remain to be
configured.

In this example, the deployment wizard automatically specifies a SAS Pooled
Workspace Server, a SAS Workspace Server, and a SAS Stored Process Server, to
provide the required “exclusive” access to a SAS Application Server for your
solution.

10. Select Next to proceed.

You must specify the same values that you used during the initial deployment here.
List the host information for the SAS Metadata Server and valid credentials for the
SAS Administrator, the SAS Trusted User, and SAS Spawned Servers account.

Continue through the wizard pages, specifying the same connection information until
the Create SAS Application Server Context page appears.

11. Select Create a SAS Application Server Context.

88 Chapter 10 • Managing SAS Application Servers

A page prompts you for the name of the SAS Application Server. A unique name is
required, and SAS suggests that a name easily associated with your solution be used.
In this example, SASDDCF is specified.

12. Enter the name of your SAS Application Server context, and click Next.

For each server that you add to the SAS Application Server, you are prompted for
the context to use. The same name that is used in the server context page should be
used with each server.

13. Enter your SAS Application Server context and click Next.

Defining Multiple Application Servers 89

The deployment wizard prompts you for a main port for each server that you add.
The SAS Workspace Server and SAS Pooled Workspace Server being added to your
server context can use whatever port you want, including the same port the previous
configuration might have used for them (provided that no other conflicts exist). The
SAS 9.3 object spawner manages these workspace servers to avoid port conflicts
when it spawns them. However, the SAS Stored Process Server requires unique port
values for its multi-bridge connections.

This example uses a variation on the default values of 8611, 8621, and 8631
combined with calculated defaults for ports not reserved. Any ports that are
appropriate and available can be used. They merely must be unique and not in use.

14. Enter multi-bridge ports for the stored process server and click Next.

90 Chapter 10 • Managing SAS Application Servers

Continue through the wizard, providing input for the various configuration options as
required by the solution being configured.

15. Specify the dependency for your solution server configuration, using the newly
created SAS Application Server.

(In this example, the SAS Application Server is named SASDDCF.)

Continue through the wizard, providing configuration input.

16. When the Deployment Summary appears, click Start to begin the configuration
process.

When the SAS Deployment Wizard finishes, your SAS solutions are installed and
configured on the selected server machine and are ready to use. The wizard displays
Configuration Guidelines and Details at the end of your deployment process.

17. Restart the SAS Object Spawner to detect the new servers that you have just
deployed.

For more information, see “Using Scripts to Operate SAS Servers Individually” in
Chapter 5 of SAS Intelligence Platform: System Administration Guide.

Add a New Logical Server in an Existing SAS
Application Server

A SAS Application Server can contain one of each of the following logical servers:
workspace, stored process, OLAP, grid, CONNECT, batch, or metadata. Each logical
server type must have at least one server defined.

Using the SAS Deployment Wizard, you can add a new logical server to a pre-existing
SAS Application Server. For more information, see Appendix 3, “Adding SAS
Products,” in SAS Intelligence Platform: Installation and Configuration Guide.

Add a New Logical Server in an Existing SAS Application Server 91

Follow these guidelines when running the SAS Deployment Wizard to add a logical
server to an existing SAS Application Server:

• The machine on which you want to add the new logical server should have a network
connection to your site's SAS Software Depot. If it does not, then you must find a
way to get the depot to the machine on which you want to create the new logical
server.

For more information, see “Overview of SAS Software Depots” in Chapter 3 of SAS
Intelligence Platform: Installation and Configuration Guide.

• Use your deployment plan that contains the server component that you are adding.

Note: There are standard deployment plans that contain a SAS Application Server
machine. For more information, see “About Deployment Plans” in Chapter 5 of
SAS Intelligence Platform: Installation and Configuration Guide.

• Choose Configure SAS Software and uncheck Install SAS Software, unless you
know that the server that you are adding was never installed before.

• Specify the server context to match the name of your current SAS Application Server
(for example, SASApp).

• Obtain the SAS Metadata Server connection information for the metadata server that
you are currently using. The wizard prompts you for this information.

• If you are adding logical servers that require an object spawner (one of the
workspace servers and the stored process server), then when you deploy your logical
server, the wizard also deploys an object spawner to start the server. If the machine
on which you are adding the SAS Application Server already contains an object
spawner, then the wizard updates the pre-existing spawner definition for you to
include the new server that you want your spawner to manage.

Adding a New Server in an Existing Logical
Server

Overview of Adding a New Server in an Existing Logical Server
Defining a new server in an existing logical server, consists of:

1. Installing the new server software on the new machine with the SAS Deployment
Wizard.

2. If you are installing a server that requires an object spawner and there is not already
a spawner on the new machine, then when you install the server, you must also
install and configure the object spawner.

3. Copying the necessary configuration directories from the existing logical server
machine to the new machine.

4. Using the SAS Management Console to define the new servers in the metadata
repository.

92 Chapter 10 • Managing SAS Application Servers

Add a New Server in an Existing Logical Server
You might decide that you need add another server in your logical server. The most
common scenario is that you want to establish a server cluster to achieve load balancing.
If you are adding one of the workspace servers or a stored process server, then you must
also add an object spawner to manage it, unless there is already a spawner on the
machine. Follow these steps to add a new server and—if necessary—an object spawner
to an existing logical server:

1. The machine on which you want to add the new server should have a network
connection to your site's SAS Software Depot. If it does not, then you must find a
way to get the depot to the machine on which you want to create the new server.

For more information, see “Overview of SAS Software Depots” in Chapter 3 of SAS
Intelligence Platform: Installation and Configuration Guide.

2. Make sure that you have first installed the new server on the new machine by
referring to Appendix 3, “Adding SAS Products,” in SAS Intelligence Platform:
Installation and Configuration Guide. When installing the new server, follow these
guidelines:

a. If you are installing one of the workspace servers or a stored process server, then
you also need an object spawner to be on the new machine. Do one of the
following:

b. If you:

• Need an object spawner:

then when installing the new server with the SAS Deployment Wizard, make
sure that you choose both Install SAS Software and Configure SAS
Software.

• Do not need an object spawner:

then when installing the new server with the SAS Deployment Wizard, make
sure that you choose Install SAS Software and deselect Configure SAS
Software.

c. When you see the wizard's Specify Configuration Information dialog box, make
sure that the configuration directory that you enter matches the SAS
configuration directory on the machine that contains the pre-existing SAS
Application Server. For example, C:\SAS\Config.

Adding a New Server in an Existing Logical Server 93

d. When you see the wizard's Select Products to Configure dialog box, check SAS
Object Spawner only. Server configuration is described in later steps in this
topic.

3. Create a configuration path on the new machine that matches the configuration path
on the pre-existing machine.

For example, if the configuration path on machine 1 is C:\SAS\Config\Lev1,
then create the same path on machine 2.

4. Copy the configuration directories of the pre-existing SAS Application Server to the
new machine.

94 Chapter 10 • Managing SAS Application Servers

For example, on Windows, copy the following directory from machine 1 to machine
2:

C:\SAS\Config\Lev1\SASApp

5. Copy the configuration directories of any pre-existing logical servers to which you
are adding additional servers, to the new machine.

For example, if you are adding another workspace server, copy the following
directory from machine 1 to machine 2:

C:\SAS\Config\Lev1\SASApp\WorkspaceServer

6. Start SAS Management Console and connect to a metadata repository.

7. In the SAS Management Console navigation tree, select and expand the Server
Manager, and locate the SAS Application Server under which you want to add the
new server.

8. Expand the SAS Application Server and locate the logical server under which you
want to add the new server.

Note: The logical server must be the same type of server as the server that you are
adding. If there is no logical server, go to the following topic, “Add a New
Logical Server in an Existing SAS Application Server” on page 91.

9. With the logical server selected, choose Actions ð Add Server from the menu bar.

The New Server Wizard is displayed.

10. Enter a name (required) and a description (optional) for the new server. The server
name should indicate the machine, server type, and unique port on the new machine
for the server. When you are finished, click Next.

The name that you provide will be the name of the server that is displayed in the
SAS Management Console Server Manager plug-in.

11. Specify whatever configuration information is required for the type of server that
you are adding. The number of wizard pages that you see and the information that
you must supply, varies depending on the server type. Use the wizard online Help if
necessary. For information about object server parameters, see
“OBJECTSERVERPARMS System Option” on page 150.

Note: To avoid a configuration error and failed client connections, you must enter
user credentials when defining a pooled workspace and a stored process server.

12. When you see a wizard page that states that you have successfully completed a new
server definition, review the information supplied and do one of the following:

• click Finish to add the new server and close the New Server Wizard.

• click Back to go to an earlier wizard page to change an input.

Modify a Server Definition
Using the SAS Management Console, you can modify the properties definition for a
logical server or a server component. Examples of server properties are: the command
used to start the server, load-balancing settings, and so on. For information about object
server parameters, see “OBJECTSERVERPARMS System Option” on page 150.

Modify a Server Definition 95

Follow these steps to modify a server definition:

1. Start SAS Management Console and connect to a metadata repository.

2. In the SAS Management Console navigation tree, expand the Server Manager to find
the server object that you want to modify.

3. Select the server object, and then select File ð Properties from the menu bar.

4. Select the appropriate tabs, and enter the necessary changes.

For a description of the server definition fields, see the SAS Management Console
online Help.

5. When you are finished, click OK to return to the SAS Management Console main
window.

6. If you changed any authorization permission on a workspace server, a pooled
workspace server, or a stored process server, restart the object spawner.

For more information, see Chapter 5, “Operating Your Servers,” in SAS Intelligence
Platform: System Administration Guide.

Remove Logical Servers
Using the SAS Deployment Manager, you can remove a logical server from a SAS
Application Server.

Note: Removing logical servers on which libraries are dependent can prevent SAS
applications from accessing data required for jobs, reports, and so on.

Follow these steps to remove a logical server definition:

Note: These steps attempt to summarize how to remove a logical server. For more
detailed information, refer to Appendix 3, “Removing a SAS Configuration,” in SAS
Intelligence Platform: Installation and Configuration Guide.

1. On the host machine for the components whose configurations you are removing,
navigate to SAS-installation-directory\SASDeploymentManager\9.3 and
launch config.exe (on Windows systems) or config.sh (on UNIX and z/OS
systems).

2. In SAS Deployment Manager, on the Select Configuration Task dialog box, choose
Remove Existing Configuration.

3. On the next dialog box, choose the configuration directory and level that you want to
modify.

4. On the Connection Information dialog box, specify a set of valid credentials for an
unrestricted administrative user to connect to the metadata server .

5. On the Select Product Configurations dialog box, choose one or more logical servers
that you want to remove from the SAS Application Server.

6. On the Summary dialog box, a list of the logical servers that you want to remove or
unconfigure is listed. Do one of the following:

• click Start"

This causes the deployment manager to remove the specified logical servers.

96 Chapter 10 • Managing SAS Application Servers

• click Back"

• Go back to an earlier dialog box to change a selection.

7. When the deployment manager has completed removing the logical server, click
Finish.

8. If you removed a logical workspace server, a logical pooled workspace server, or a
logical stored process server, restart the object spawner.

For more information, see Chapter 5, “Operating Your Servers,” in SAS Intelligence
Platform: System Administration Guide.

Remove Logical Servers 97

98 Chapter 10 • Managing SAS Application Servers

Chapter 11

Managing Workspace Servers
and Stored Process Servers

Managing Data and Catalogs for Servers on Multiple Machines 99
Overview of Managing Data and Catalogs for Servers on Multiple Machines 99
Update SAS Libraries . 100
Update References to User-Defined Formats . 100
Access Data in Database Management Systems . 101

Adding or Modifying E-Mail Settings for SAS Application Servers 101
Overview of Adding or Modifying E-Mail Settings for SAS Application Servers 101
Add or Modify E-Mail Settings for SAS Application Servers 101

Moving Workspace Servers and Stored Process Servers . 102
Overview of Moving Workspace Servers and Stored Process Servers 102
Move Workspace Servers and Stored Process Servers . 103
Required Tasks After You Move Workspace Servers and

Stored Process Servers . 105

Encoding and Locale Information . 105

Adding Environment Variables to Server Invocations . 106

Run SAS Code at Server Session Boundaries . 106

Workspace Server Configuration Tasks . 107
Tune Workspace Servers for Best Performance . 107
Configure Workspace Servers for a Locale . 108
Add System Options to the Workspace Server Launch Command 109
Configure Storage for Temporary OLAP Cube Build Files on

SAS Workspace Servers . 110
Clean Up Temporary Files after Abnormal OLAP Server Shutdowns 111

Managing Data and Catalogs for Servers on
Multiple Machines

Overview of Managing Data and Catalogs for Servers on Multiple
Machines

After placing load-balanced servers on multiple machines, you need to ensure that the
new server can access the data, and possibly format catalogs, that the original server was
working with. For example, suppose that your original server was using a library of SAS
data sets and that the metadata object that represents the library contains the path C:

99

\SAS\configuration-directory\SASApp\Data. Your new server will not be able to
access this library at its original location. One possible solution to this problem is to
move a copy of the data to the new server and place it at the location that is stored in the
library metadata object. However, this strategy might introduce data-synchronization
problems. A preferable solution is to make sure that both servers can access a single
copy of the data by providing a network path to the library.

Update SAS Libraries
As mentioned previously, when you scale your system, you need to update any SAS
libraries that are being referenced with a local path. To update the definition of a library
on a Windows machine that currently contains the path C:\SAS\configuration-
directory\SASApp\Data, follow these steps:

1. In SAS Management Console, expand the Data Library Manager and the SAS
Libraries folder so that you see the icon that represents your SAS library.

2. Right-click the library and select Properties from the pop-up menu that appears. A
properties dialog box appears.

3. In the properties dialog box, select the Options tab.

4. Deselect the path that is currently selected by highlighting it in the Selected items
list and clicking the left-arrow button.

5. Create a new path, and select it, by following these steps:

a. Click the New button to bring up the New Path Specification dialog box.

b. In the Name text box, enter the Universal Naming Convention (UNC) path to the
library"for example, \\D1234\SAS\Config\Lev1\SASApp\Data.
(Different machines on the LAN can use this same path to access the library.)

c. Click OK.

6. Click OK in the properties dialog box.

Update References to User-Defined Formats
Like SAS data sets, existing user-defined format catalogs might be available only to
servers that run on your original SAS server host. It is common for a server to look for
such catalogs in the configuration directory on the original server host in the directory
configuration-directory\SASApp\SASEnvironment\SASFormats. It is also possible
to specify the location of the catalog in a configuration file, as explained in Chapter 2,
“Connecting to Common Data Sources,” in SAS Intelligence Platform: Data
Administration Guide. However, the path recorded in such a file is often a local path.

One solution to this problem is to replicate the catalog on all server hosts, but this can be
less than ideal if the catalog is subject to change. A better solution is to specify the
location of the catalog in configuration-directory\SASApp\sasv9.cfg and to make
sure that the path to catalog is a network path. For example, you might change

-set fmtlib1 "C:\SAS\configuration-directory\SASApp\Data\orformat"
-fmtsearch (fmtlib1.orionfmt)

to:

-set fmtlib1 "\\D1234\SAS\configuration-directory\SASApp\Data\orformat"
-fmtsearch (fmtlib1.orionfmt)

100 Chapter 11 • Managing Workspace Servers and Stored Process Servers

Access Data in Database Management Systems
If your new workspace or stored-process server needs to access data in a database
management system (DBMS), then you might need to do some administrative work on
the new server host before such access is possible. For example, you might need to:

• install a SAS/ACCESS product

• install database client software

• install a database driver

• configure a data source name

The simplest way to explain this is that you need to repeat whatever steps you took on
the original SAS server host on the newly added server.

Adding or Modifying E-Mail Settings for SAS
Application Servers

Overview of Adding or Modifying E-Mail Settings for SAS
Application Servers

At installation time, the SAS Deployment Wizard prompts you for an e-mail server. This
server is used by the SAS Metadata Server to send e-mail alerts to an administrator if
journaling issues arise. The SAS Deployment Wizard also uses this e-mail server as the
default for the SAS Application Server to provide e-mail services to various SAS clients.
For example, with Data Integration Studio, you can use a Publish to Email
transformation to alert users about various data changes. In order for SAS BI Dashboard
to send alerts by e-mail to dashboard users and administrators, the port and host name
must be configured for the e-mail server.

Add or Modify E-Mail Settings for SAS Application Servers
To change the application server e-mail server settings, follow these steps:

1. As a user with administrative privileges, log on to the SAS Application Server
machine.

2. Using a text editor, open the application server configuration file.

By default the configuration file resides here:

• Windows:

SAS-configuration-directory\Levn\SASApp\sasv9_usermods.cfg

• UNIX and z/OS:

SAS-configuration-directory/Levn/SASApp/sasv9_usermods.cfg

3. Do one of the following:

• add e-mail settings:

add the following e-mail options: -emailsys, -emailhost, and -
emailport, and save the file.

Adding or Modifying E-Mail Settings for SAS Application Servers 101

For more information, see “EMAILID= System Option” in SAS System Options:
Reference.

• modify e-mail settings:

Locate the e-mail options (-emailsys, -emailhost, and -emailport),
make the necessary changes, and save the file.

For more information, see “EMAILID= System Option” in SAS System Options:
Reference.

The e-mail changes will take effect the next time the SAS application requests an e-
mail service from the application server.

Moving Workspace Servers and Stored Process
Servers

Overview of Moving Workspace Servers and Stored Process
Servers

If you have installed a workspace server, pooled workspace server, or a stored process
server on a machine separate from other SAS servers, you can use the instructions in the
following topics to move the server to a new machine.

Note: If you are moving a server to a different machine, then the Update Host Name
References feature of the SAS Deployment Manager might be useful. For more
information, see Chapter 27, “Using the SAS Deployment Manager to Update Host
Name References,” in SAS Intelligence Platform: System Administration Guide.

In addition to changing the machine name (and port number), if you move a server to a
machine with a different operating system or to a machine with an operating system
other than Windows, you might need to reconfigure the following:

• accounts for authentication. You might need to define accounts on the authentication
provider for the new server machine.

• spawner start-up command. If you change operating systems when you move
machines, you might need to change the spawner start-up command.

• metadata on the SAS Metadata Server. The following metadata definitions might
require reconfiguration or additional configuration:

• server definition. On the server definition, you might need to use the Server
Manager plug-in to SAS Management Console to change the following
parameters:

• SAS start-up command. You might need to change the start-up command for
the new operating system.

• authentication domain. When you move a server, you might need to set up an
additional authentication domain.

• login definitions. For the login definitions that access the server and the login
definitions that are used in the load-balancing configuration (for example, the
SAS Guest user's login, if you performed an Advanced or Personal installation),
you might need to use the User Manager plug-in to SAS Management Console to
do one or more of the following:

102 Chapter 11 • Managing Workspace Servers and Stored Process Servers

• define a new login definition. When you move a server, you might need to
create a new login definition for the new authentication domain.

• define a new login definition for a different authentication process. When you
move a server, you might need to create a new login definition with
credentials to access a server in a different operating system within the
default authentication domain.

• change the format of the user ID in the login definition. When you move a
server, you might need to change the fully qualified user ID for any login
credentials used to access that server.

• stored process definitions. You might need to use SAS Management Console to
specify a new location for your source code repository.

Move Workspace Servers and Stored Process Servers
To move a workspace, pooled workspace, or stored process server to a different
machine, follow these steps:

1. Use SAS Management Console to reconfigure the server definition for the new
machine:

2. In SAS Management Console, expand the Server Manager to locate the server
definition for the specified server.

3. Right-click the icon for the server, and select Properties from the pop-up menu. A
properties dialog box is displayed.

4. Click the New button. The Add New Machine dialog box is displayed.

5. In the Host name field, change the name to the host name of the new machine for
your server, and then click OK. The new host name should be displayed in the list of
available servers.

6. If the server is no longer to be used on a machine, remove it from the Selected list.
(Click the server name, and then click the left-pointing arrow button.)

7. If you need to change the server start-up command or add any object server
parameters, make your changes in the appropriate fields. For more information, see
SAS Management Console online Help and “OBJECTSERVERPARMS System
Option” on page 150.

8. Click OK to save the new configuration to the metadata repository.

9. If you need to change the authentication domain or the port that the new server uses,
continue with the next step. Otherwise, skip to step 2.

10. Click the icon for the server, and in the SAS Management Console's right pane,
select the Connections tab.

11. On the Connections tab, right-click the connection entry for the server, and select
Properties from the pop-up menu. A connections properties dialog box is displayed.

12. Click the Options tab. In the Bridge port field, enter the port that you want the
connection to use.

13. To change the authentication domain, click the New button. The New Authentication
Domain dialog box is displayed.

14. In the Name field, enter the new authentication domain name for the server, and then
click OK. The new authentication domain is displayed in the Authentication
domain field.

Moving Workspace Servers and Stored Process Servers 103

15. Click OK to save the new configuration to the metadata repository.

16. Use SAS Management Console to reconfigure the spawner definition for the new
machine:

a. In the SAS Management Console navigation tree, locate and select the spawner
definition, and then right-click and select Properties from the pop-up menu.

b. If your spawner name contains the machine name, change the Name field to
specify the name of the new machine.

c. Select the Options tab.

d. In the Available list, click the name of the new machine for your server, and then
click the right-pointing arrow. The new machine name should be displayed in the
Selected list.

e. If the server is no longer to be used on a machine, remove it from the Selected
list. (Click the server name, and then click the left-pointing arrow button.)

f. If you have any other servers associated with the spawner, select the Servers tab.
In the Selected servers list box, select the other servers and move them to the
Available servers list box. Click OK. You must then define a new spawner for
these servers.

g. Click OK to save the new configuration to the metadata repository.

h. If you need to change the authentication domain or the spawner operation
connection port that the new server uses, continue with the next step. Otherwise,
skip to step 3.

i. Click the icon for the spawner definition, and in the SAS Management Console's
right pane, select the Connections tab.

j. On the Connections tab, right-click the connection entry for the spawner, and
select Properties from the pop-up menu. A connections properties dialog box is
displayed.

k. Click the Options tab. In the Port field, enter the port that you want the
connection to use.

l. If you changed the server's authentication domain, select the same new
Authentication domain field for your spawner.

m. Click OK to save the new configuration to the metadata repository.

17. Edit the policy files for any applications that need to access the new server machine.
(For details about editing policy files for the portal Web application and its
components, see “Configuring and Deploying Restrictive Policy Files ” in Chapter 3
of SAS Intelligence Platform: Middle-Tier Administration Guide.

18. Install SAS 9.3 and SAS Integration Technologies on the new machine.

19. Copy your metadata configuration file (XML file) and spawner start-up script from
your spawner configuration directory to the same directory on the new machine. If
necessary, change the spawner start-up script for the new machine.

20. Ensure that the SAS Spawned Servers user can authenticate against the host
authentication provider for the machine.

21. Ensure that users who need to access the server are defined for the machine's host
authentication provider.

104 Chapter 11 • Managing Workspace Servers and Stored Process Servers

Required Tasks After You Move Workspace Servers and Stored
Process Servers

When you are finished modifying the server and spawner definitions, follow these steps:

• If you have added a new authentication domain for the machine, do both of the
following:

• Use the User Manager plug-in to SAS Management Console to add a login
definition for access to the server.

• Use the User Manager plug-in to SAS Management Console to modify the login
definition for the multi-user login (for example, the SAS General Server group
login, if you performed an Advanced or Personal installation). Modify the login
definition to specify the new authentication, and, if required, the new user ID
credentials.

• If you have changed operating systems and need to modify user credentials, use the
User Manager plug-in to SAS Management Console to modify user and group login
definition for the new user ID credentials of the new machine.

• If you need to move the stored process source code repositories to a different
directory, use SAS Management Console to modify the stored process definition and
change the Source Code Repository field on the Execution tab of the Stored
Process Properties dialog box.

• If your stored process definitions reference content on the old stored process or
workspace server machine, you must add the content to the directory that you
defined in the stored process definition.

• Restart the object spawner.

For more information, see Chapter 5, “Operating Your Servers,” in SAS Intelligence
Platform: System Administration Guide.

Encoding and Locale Information
For servers that are not Unicode (session encoding other than UTF-8), if your SAS
server metadata contains characters other than those typically found in the English
language, then you must be careful to start your SAS server with an ENCODING= or
LOCALE= system option that accommodates those characters. For example, a SAS
server that is started with the default US English locale cannot read metadata that
contains Japanese characters. SAS will fail to start and will log a message that indicates
a transcoding failure. In general, different SAS jobs or servers can run with different
encodings (such as ASCII/EBCDIC or various Asian DBCS encodings) as long as the
encoding that is used by the particular job or server can represent all of the characters for
the data that is being processed. When first configuring your server, review the
characters that are used in the metadata that describes your server (as indicated by the
SERVER= objectserverparm) in order to ensure that SAS runs under an encoding that
supports those characters.

For more information, see “Specifying a Locale” in Chapter 2 of SAS National
Language Support (NLS): Reference Guide and “Setting the Encoding of a SAS
Session” in Chapter 3 of SAS National Language Support (NLS): Reference Guide. See

Encoding and Locale Information 105

also, “Reference: Configuration Files for SAS Servers” in Chapter 25 of SAS
Intelligence Platform: System Administration Guide.

Adding Environment Variables to Server
Invocations

You can add operating system environment variables and other shell-level functionality
to a stored process server, workspace server, pooled workspace server, and OLAP
server, by modifying the corresponding _usermods.sh (.bat) files provided in the server's
configuration directory.

This can be useful for situations such as when you have to set an environment variable in
order to access a third-party DBMS.

Because the _usermods files are sourced within each of the server wrapper scripts, the
server inherits any logic or environment. SAS preserves _usermods files during software
updates and migrations, unlike the server wrapper scripts, which SAS overwrites. For
this reason, we discourage editing the wrapper scripts.

The USERMODS_OPTIONS= variable is used in the _usermods file to alter the SAS
command line to invoke the server.

For more information, see “ “About Other SAS Server Configuration Files” in Chapter 2
of SAS Intelligence Platform: System Administration Guide.

Run SAS Code at Server Session Boundaries
The stored process server and the workspace servers can be configured to run SAS code
during start-up and shutdown of their server sessions.

Note: In SAS 9.3, the IOM servers also support running SAS code at server start-up
and shutdown (server boundaries). For more information, see “INITSTMT= System
Option” in SAS System Options: Reference and “TERMSTMT= System Option” in
SAS System Options: Reference.

For example, you might start and stop an ARM transaction to accurately trace a user’s
activity on a workspace server. Or, you might initialize certain SAS librefs for a
particular user.

You configure this feature for the server from the Properties dialog box (Properties ð
Options ð Set Server Properties).

106 Chapter 11 • Managing Workspace Servers and Stored Process Servers

Figure 11.1 Specifying SAS Code to Run at Server Start or Stop

In another example, you might want to configure your stored process server to run SAS
code to override or change the value of the default SAS options before the execution of
the requested stored process. This is a server-wide setting that runs before each
execution.

Suppose you want to change the line size and page size. You can write a simple stored
process that sets line size to 150 and page size to 30:

options ls=150 pagesize=30;

and locate the stored process containing your new line and page size options in a
directory where the stored process server can read it.

In the Initialization program text box, enter the path and filename that contains your
SAS options code.

For example:

C:\myOptions\setoptions.sas

Now, the stored process server runs your option override code before each requested
stored process.

Workspace Server Configuration Tasks

Tune Workspace Servers for Best Performance
To obtain the best performance from your SAS Web applications, you should consider
tuning the workspace server that your SAS Web application is using. The changes that
you can make include specifying the following:

Workspace Server Configuration Tasks 107

• an appropriate work folder

• a buffer size for writing files to the work area

• a limit on the total amount of memory that SAS uses at any one time

Note: For memory-intensive workloads on z/OS, you might need to adjust the user's
USS RACF profile. For more information, see “Specify a Larger Region Size” in
Chapter 22 of SAS Companion for z/OS.

The following table lists some of the SAS system options that you can set. “Add System
Options to the Workspace Server Launch Command” on page 109 explains how to add
the system options to the command that starts the workspace server.

Table 11.1 System Options for the Tuning the Workspace Server

System Option Explanation

-RSASUSER Opens the SASUSER library in Read-Only mode. Declaring
this library read only makes the workspace server much faster
for SAS Web Report Studio.

-work work-folder Specifies the pathname for the directory that contains the
Work data library. This directory should reside on a disk that
emphasizes fast write performance.

-ubufsize size-value Specifies a buffer size for writing files to the work area.

-memsize size-value Specifies a limit on the total amount of memory that SAS uses
at any one time.

-realmemsize size-value Indicates the amount of RAM that is available to a process
before it begins to page. Keeping this number low limits the
amount of RAM that is consumed by a SAS server in order to
reduce paging activity.

-sortsize size-value Limits the amount of memory that can be used temporarily for
sorting. Larger sort sizes reduce the use of the work folder,
but increase the possibility of paging.

-cpucount processors-number Specifies the number of processors that thread-enabled
applications should assume will be available for concurrent
processing. This setting maximizes the effectiveness of the
SAS Web Report Studio sorting algorithm.

Note that the arguments to these options will be specific to the site and the job. Take
care in choosing these values, and consult a SAS representative if necessary.

Configure Workspace Servers for a Locale
When SAS Web Report Studio is configured to run under certain locales, you must add
the -nosyntaxcheck option to the start-up command for the workspace server. “Add
System Options to the Workspace Server Launch Command” on page 109 explains how
to add system options to the start-up command.

Note: Alternatively, you can create a new SAS Application Server (parallel to SASApp)
and a new workspace server within the new application server context. You can then
change the command (using the -nosyntaxcheck option) for the new workspace
server, without affecting the workspace server under SASApp. You can then assign

108 Chapter 11 • Managing Workspace Servers and Stored Process Servers

selected libraries to the new application server, including any libraries that you
intend to query for reports. See “Configuring a Client-side Pooling Workspace
Server to Enforce Row-Level Security” on page 72 for information about creating a
new SAS Application Server and workspace server.

Add System Options to the Workspace Server Launch Command
After you have determined the system options that you want to use to start your
workspace server, follow the directions in this section to edit the sas command that
starts the server.

Note: For information about workspace server logging options, see Chapter 9,
“Administering Logging for SAS Servers,” in SAS Intelligence Platform: System
Administration Guide.

Note: At the end of this procedure, you will have optimized your workspace server for
use with SAS Web Report Studio. If you are using other applications and these
applications can benefit from a workspace server that is configured differently, you
must create a new logical workspace server (under SASApp) and add a workspace
server to it.

To add system options to the workspace server launch command, follow these steps:

1. In SAS Management Console, expand the Server Manager node, and then expand
the SASApp - Logical Workspace Server node. You will see a tree node that
represents the physical workspace server.

2. Right-click the icon for the physical workspace server, and select Properties from
the pop-up menu. A Workspace Server Properties dialog box appears.

3. Click the Options tab. You will see the information that is shown in the following
display.

Workspace Server Configuration Tasks 109

4. Edit the text in the Command text box, which by default is set to:

configuration-directory\SASApp\WorkspaceServer\WorkspaceServer.bat

For example, here is a command with options that improve performance for a
workspace server:

configuration-directory\SASApp\WorkspaceServer\WorkspaceServer.bat
-rsasuser -work work-folder -ubufsize 64K -memsize 512M
 -realmemsize 400M -sortsize 256M

5. Click OK in the Workspace Server Properties dialog box.

Configure Storage for Temporary OLAP Cube Build Files on SAS
Workspace Servers

When you build a SAS OLAP cube, the SAS Workspace Server generates temporary
utility files. At the end of the build, the server deletes the temporary files. If the build
process terminates abnormally, remove the temporary files as described in “Clean Up
Temporary Files after Abnormal OLAP Server Shutdowns” on page 111 .

Follow these steps to allocate sufficient storage for temporary cube build files:

1. For a SAS Workspace Server that will be used to build cubes, determine the storage
capacity that will be required for temporary build files. In general, temporary files
can be expected occupy two to three times the disk space that will be used to store
the source data of the largest cube that will be built by that server.

110 Chapter 11 • Managing Workspace Servers and Stored Process Servers

2. Divide in half the estimated storage capacity. Locate two suitable disks on the SAS
Workspace Server. The disks need to retain, over time, an amount of free space that
is equal to half of the estimated storage capacity for temporary build files.

3. In the launch command for the SAS Workspace Server, specify a value for the
WORK= system option that consists of a path to one of the two disks. To allocate the
other half of the storage requirement, specify a path to the second disk in both of the
system options SPDEUTILLOC= and UTILLOC=. To learn how to add system
options to the launch commands of SAS Workspace Servers, see “Add System
Options to the Workspace Server Launch Command” on page 109 .

4. Run test builds to validate and adjust your storage estimate.

5. If your cubes are expected to grow in size over time, periodically reassess and
reassign system options to provide sufficient storage capacity.

6. Either ask your cube builders not to assign the WORKPATH= option in the PROC
OLAP statement, or to assign that option with a value that includes the two paths that
you specified for WORK= and SPDEUTILLOC=/UTILLOC=.

7. Be sure to allocate sufficient storage capacity on all SAS Workspace Servers that
will be used to build SAS OLAP cubes.

For additional information about the memory and storage capacity of SAS Workspace
Server, contact your SAS support representative.

Clean Up Temporary Files after Abnormal OLAP Server Shutdowns
When a SAS Workspace Server completes a cube build, it deletes the temporary files
that it created during the build. If a SAS Workspace Server terminates incorrectly, some
temporary files might remain. To retain the full amount of temporary storage space,
delete the temporary files before your next cube build.

To delete temporary files, obtain the directory paths that are specified in the SAS OLAP
Server configuration file for the system options WORK=, SPDEUTILLOC=, and
UTILLOC=.

Workspace Server Configuration Tasks 111

112 Chapter 11 • Managing Workspace Servers and Stored Process Servers

Chapter 12

Managing the Object Spawner

Object Spawner Configuration Tasks . 113
Overview of Object Spawner Configuration Tasks . 113
Define a New Object Spawner . 114
Add a Connection to the Object Spawner . 114
Modify an Object Spawner Definition . 115
Change Object Spawner-Managed Server Ports . 115
Configure Object Spawner Logging . 116
Configure the Object Spawner to Accept Single Sign-on Connections 117
Refresh the Object Spawner . 118
Update a Windows Object Spawner Service . 119
Using Telnet to Administer the Spawner . 119

Configuring and Starting the Object Spawner on z/OS . 120
Overview of Configuring and Starting the Object Spawner on z/OS 120
Task 1: Configure TCP/IP . 121
Task 2: Create the Object Spawner Started Task . 121
Task 3: Create a SAS Start-up Command . 123

Spawner Invocation Options . 124
Overview of Spawner Invocation Options . 124
General Options . 125
Metadata Connection and Security Options . 128
Service Options . 130

Object Spawner Configuration Tasks

Overview of Object Spawner Configuration Tasks
This section contains the following object spawner configuration topics:

• “Define a New Object Spawner” on page 114

• “Add a Connection to the Object Spawner” on page 114

• “Modify an Object Spawner Definition” on page 115

• “Change Object Spawner-Managed Server Ports” on page 115

• “Configure Object Spawner Logging” on page 116

• “Configure the Object Spawner to Accept Single Sign-on Connections” on page 117

• “Refresh the Object Spawner” on page 118

113

• “Update a Windows Object Spawner Service” on page 119

• “Using Telnet to Administer the Spawner” on page 119

Define a New Object Spawner
Workspace servers, pooled workspace servers, and stored process servers are initialized
by the SAS Object Spawner. An object spawner runs on each machine where you want
to run one of the workspace servers or a stored process server, listens for requests, and
launches the servers as necessary. If your machine already contains an object spawner,
you can modify its definition to include new servers to manage.

If your machine is new to your deployment and you new to add a new object spawner,
see “Add a New Server in an Existing Logical Server” on page 93.

Add a Connection to the Object Spawner
To add additional server connections to an object spawner by using the SAS
Management Console, follow these steps:

1. Start SAS Management Console and connect to a metadata repository.

2. In the SAS Management Console navigation tree, select and expand the Server
Manager, and locate the spawner object that you want to modify.

3. Right-click the icon for the object spawner and select Add Connection from the
pop-up menu.

The New Connection Wizard is displayed.

4. Select one of the following:

• UUID Connection:

specifies that communications between the client and the spawner use the UUID
protocol.

Note: Entering a UUID node is required on UNIX and z/OS hosts.

• PortBank Connection:

defines a connection that the spawner uses to allow clients to connect to and
disconnect from a spawned server-side pooled workspace server.

Note: To connect to a logical pooled workspace server, the spawner must have at
least one PortBank connection defined.

5. Follow the remaining prompts. Click Next to proceed or Back to change any input.

For more information, refer to SAS Management Console online Help.

6. When you see a wizard page that states that the following connection will be created,
review the information that is supplied and do one of the following:

• Click Finish to create the new connection and close the New Server Wizard.

• Click Back to go to an earlier wizard page to change an input.

7. Restart the object spawner.

For more information, see Chapter 5, “Operating Your Servers,” in SAS Intelligence
Platform: System Administration Guide.

114 Chapter 12 • Managing the Object Spawner

Modify an Object Spawner Definition
To modify an object spawner definition by using the SAS Management Console, follow
these steps:

1. Start SAS Management Console and connect to a metadata repository.

2. In the SAS Management Console navigation tree, expand the Server Manager to find
the object spawner that you want to modify.

3. Right-click the icon for the object spawner and select Properties from the pop-up
menu.

4. Select the appropriate tabs, and enter the necessary changes.

For more information, refer to SAS Management Console online Help.

5. When you are finished, click OK to return to the SAS Management Console main
window.

6. Restart the object spawner.

For more information, see Chapter 5, “Operating Your Servers,” in SAS Intelligence
Platform: System Administration Guide.

Change Object Spawner-Managed Server Ports
For most of the SAS Object Spawner managed ports, the SAS Deployment Wizard
designates a unique port number by default. The following table shows these default
values.

Table 12.1 Defaults for Object Spawner-Managed Ports

Port Default

Spawner operator port 8581

Workspace server port 8591

Pooled workspace server port 8701

Stored process server bridge port 8601

With the exception of the operator port, these various spawner processes can all use the
same port. Using the SAS Management Console, you can change these default port
designations and reduce the number of ports that need to be defined in SAS metadata
and opened up through your firewall.

Note: You cannot use same port number for the spawner port bank and the stored
process server MultiBridge ports. Port bank and MultiBridge ports all must use
unique ports.

To change object spawner-managed server ports, follow these steps:

1. In SAS Management Console, expand the Server Manager to locate the server
definition, or the object spawner definition.

Object Spawner Configuration Tasks 115

2. Click the icon for the server or for the spawner, and in the SAS Management
Console's right pane, select the Connections tab.

3. On the Connections tab, right-click the icon for the connection, and select
Properties from the pop-up menu. A connection properties dialog box appears.

4. In the connection properties dialog box, click the Options tab.

5. In the Port field, enter the port that you want the connection to use and then click
OK.

6. Restart the spawner for the port changes to take effect.

For more information, see Chapter 5, “Operating Your Servers,” in SAS Intelligence
Platform: System Administration Guide.

Configure Object Spawner Logging
For users with administer permissions on the spawner, you can view the SAS Object
Spawner log in the SAS Management Console by first opening a connection to the
object spawner and then clicking the Log tab. For more information, see “Using SAS
Management Console to Monitor SAS Servers” in Chapter 8 of SAS Intelligence
Platform: System Administration Guide.

You can also view spawned server activity in real time by using the Spawned Server
Activity tab also in the SAS Management Console. For more information, see “Use the
Spawned Server Activity Tab in the Server Manager” in Chapter 8 of SAS Intelligence
Platform: System Administration Guide.

By default, the object spawner logs activity at the information level. You can
temporarily adjust this logging level for a spawner session through the SAS
Management Console, or more permanently by editing the spawner logging
configuration file.

CAUTION:
Excessive logging can degrade performance. You should not use the TRACE
and DEBUG logging levels unless you are directed to do so by SAS Technical
Support.

• To temporarily adjust logging for the spawner session:

Select the App.ObjectSpawner logger in the Loggers tab, and edit the logger
properties. For more information, see “Use the Loggers Tab in the Server Manager,
and (If Necessary) Change Logging Levels for Individual Loggers” in Chapter 8 of
SAS Intelligence Platform: System Administration Guide.

• To adjust logging for more than one spawner session:

Edit the spawner logging configuration file and add the following information:

<logger name="App">
 <level value="level"/>
</logger>

where level is a value such as trace. For more information, see “Use the Loggers
Tab in the Server Manager, and (If Necessary) Change Logging Levels for
Individual Loggers” in Chapter 8 of SAS Intelligence Platform: System
Administration Guide.

Restart the object spawner.

116 Chapter 12 • Managing the Object Spawner

For more information, see Chapter 5, “Operating Your Servers,” in SAS Intelligence
Platform: System Administration Guide.

By default, the spawner logging configuration file resides here:

• Windows:

configuration-directory\ObjectSpawner\logconfig.xml

• UNIX:

configuration-directory/ObjectSpawner/logconfig.xml

Configure the Object Spawner to Accept Single Sign-on
Connections

On Windows machines on which the SAS Object Spawner runs, you can configure the
spawner to accept Integrated Windows Authentication (IWA) connections from SAS
clients.

To configure the object spawner to accept single sign-on connections, follow these steps:

1. In the SAS Management Console, expand the Server Manager node and then click
on the Object Spawner node.

2. In the right pane of the SAS Management Console, click the Connections tab.

3. Right-click Connection: Spawner, and then select Properties from the pop-up
menu. A spawner properties dialog box is displayed.

4. Select the Options tab. You will see the information that is shown in the following
display.

Object Spawner Configuration Tasks 117

5. In the Authentication type drop-down list, choose Integrated Windows
Authentication, and then click OK.

6. Restart the object spawner.

For more information, see Chapter 5, “Operating Your Servers,” in SAS Intelligence
Platform: System Administration Guide.

Refresh the Object Spawner
When you refresh the object spawner, you reinitialize the spawner and force it to reread
its configuration in the metadata. As part of this refresh, the spawner quiesces any
servers that it has started. The servers shut down when their clients have completed their
work. If changes are made to the server or spawner configurations, the spawner can be
refreshed in order to pick up and apply these new changes.

To refresh an object spawner, follow these steps:

1. For users with administer permissions on the spawner, in the SAS Management
Console, expand the Server Manager node and then right-click on the Object
Spawner node.

2. From the pop-up menu choose Connect.

3. Right-click on the Object Spawner node again, and from the pop-up menu choose
Refresh Spawner.

4. In the confirmation dialog box, click Yes.

118 Chapter 12 • Managing the Object Spawner

Update a Windows Object Spawner Service
To update an existing Windows service for the spawner (for example, to change the path
to your metadata configuration file), you must remove the service and create a new one.

To update a Windows object spawner service, follow these steps:

1. Stop the spawner service by using the Stop SAS Object Spawner shortcut in the
Windows Start menu.

2. Remove the spawner service by invoking ObjectSpawner.bat -remove. This
file is located in the SASApp\ObjectSpawner subdirectory of your SAS
Configuration Directory. For example, C:\SAS\MyDeployment\Lev1\SASApp
\ObjectSpawner.

3. Open the ObjectSpawner.bat file in an editor, and then add your options to the
install and start commands.

4. Save the file.

5. Reinstall the spawner service by using the command ObjectSpawner.bat -
install.

Using Telnet to Administer the Spawner

Overview to Using Telnet to Administer the Spawner
The object spawner can be controlled and monitored using a Telnet client connected to
the operator port or service.

Enable Telnet Access to an Object Spawner
For security reasons, Telnet access to the object spawner is disabled by default.
However, using the SAS Management Console, you can enable Telnet access.

To enable Telnet access to an object spawner, follow these steps:

1. In SAS Management Console, select and expand the Server Manager to locate the
object spawner for which you want to enable Telnet access.

2. Right-click the object spawner for which you want to enable Telnet access, and
choose Properties.

3. In the Properties dialog box, choose the Initialization tab, and then uncheck Disable
telnet access.

4. In the Operator login drop-down list, choose a login to verify users that connect to
the spawner's operator port via the Telnet interface.

Note: For more information about using the interface to choose an operator login,
refer to SAS Management Console online Help.

5. Once you have chosen a login, click OK to save your changes and to close the
Properties dialog box.

6. Restart the object spawner.

For more information, see Chapter 5, “Operating Your Servers,” in SAS Intelligence
Platform: System Administration Guide.

Object Spawner Configuration Tasks 119

Connect to an Object Spawner
To connect to an executing object spawner, Telnet to the operator interface port or
service that is specified in the spawner definition.

The following example, run on UNIX, assumes that 8581 was specified as the port for
the operator:

 myHost> telnet serverhost 8581
 Trying...
 Connected to serverhost.
 Escape character is '^]'.

After the Telnet conversation is active, enter the operator password that is specified. If
the operator password was not specified, use sasobjspawn as the password.

Note: ²«��öy˙•PŽˆûüâS�oã
uà}‚Š�˙J¹@�	aõ©pä³D‡
zxPí3	�8ö�»
@(?¦ë−Šb�X¢„�ASv	¨…²-¥Àöêf§ÄïŸ�b¼˙è'Å�rfiD¨›qà{ËšýÄ�×�JðY{†o6š>

 sasobjspawn
 Operator conversation established

You can now interact with the executing spawner by issuing any of the “Commands for
Spawner Operator Interface” on page 120.

Commands for Spawner Operator Interface
The following is a list of commands that are available via the spawner's operator
interface:

Table 12.2 Commands for Spawner Operator Interface

Command Description

bye Terminates the spawner execution.

Note: You cannot shut down an object spawner while there
are current or pending load-balancing tasks.

help Lists available operator commands.

quit Exits operator conversation.

refresh Reinitializes the spawner. The spawner rereads its
configuration out of the metadata. As part of this refresh, the
spawner shuts down any servers that it currently has started. If
changes are made to the server or spawner configurations, the
spawner can be refreshed in order to pick up and apply these
new changes.

Configuring and Starting the Object Spawner on
z/OS

Overview of Configuring and Starting the Object Spawner on z/OS
On a z/OS server, the object spawner starts a SAS server session in response to a request
from a client. The client uses TCP/IP to communicate first with the spawner, and then

120 Chapter 12 • Managing the Object Spawner

with the object server. The object spawner runs as a started task. Therefore, before the
object spawner can handle client requests, you must start the spawner by using a started
task procedure.

If you used the SAS Deployment Wizard to deploy the Intelligence Platform, then you
already have an initial z/OS spawner configuration.

If you did not use the SAS Deployment Wizard, then the following setup tasks are
required:

1. Configure TCP/IP.

2. Create the object spawner started task.

3. Create a SAS start-up command.

Note: This topic is intended to serve as an outline of the process, rather than a step-
by-step guide, for setting up a spawner on a z/OS platform.

Task 1: Configure TCP/IP
The overall configuration of TCP/IP is outside the scope of this discussion. Assuming
that a functioning TCP/IP link is in place between the client and the z/OS server, verify
that the TCP/IP SERVICES configuration is available to both the object spawner and its
object servers. For more information, see the Configuration Guide for SAS 9.3
Foundation for z/OS.

If your TCP/IP site requirements include customization of /etc/services (or
equivalent) for applications that listen on well-known ports, it will be necessary to add
object spawner definitions to the /etc/services file. To define these in the TCP/IP
services file, add the following two lines:

sasobjoper 8582/tcp
sasobjspawn 8581/tcp

Task 2: Create the Object Spawner Started Task

Overview of Create the Object Spawner Started Task
The object spawner runs as a started task (STC). Its purpose is to listen for requests from
clients and pass them to the start-up command that is associated with the service and port
in which there is activity. The start-up command will start a server session. You must
create a procedure in a system PROCLIB library (SYS1.PROCLIB, for example).

Create the Procedure
Because z/OS Job Control Language has a parameter line length restriction of 100
characters, you can use DDNames to identify filenames in object spawner parameters.
When a file pathname is eight characters or less, the file pathname is first checked to see
whether it matches a DDName. If so, the DDName is used. If DDNames are not used for
the configuration file and a log file, you need to specify a configuration file and a log file
in the UNIX file system.

If you need to specify more than 100 characters for command-line parameters, put the
additional parameters in a z/OS data set or UNIX file. Reference the data set or file by
using the =<//DDN:PARMS parameter.

Configuring and Starting the Object Spawner on z/OS 121

The following procedure explicitly specifies the pathname for the configuration file and
uses a DDName to reference the log file in the command line parameters for the object
spawner.

//OBJSPAWN PROC PROG=OBJSPAWN,
// OPTIONS='-XMLCONFIGFILE /usr/lpp/SAS/objspawn.xml',
// OPT2='-LOGCONFIGLOC /usr/lpp/SAS/logconfig.xml'
//OBJSPAWN EXEC PGM=&PROG,REGION=512M,
// PARM='&OPTIONS &OPT2 =<//DDN:PARMS'
//STEPLIB DD DISP=SHR,DSN=SYS2.SAS.LIBRARY
//PARMS DD DISP=SHR,DSN=SYS2.OBJSPAWN.PARMS
//TKMVSENV DD DISP=SHR,DSN=SYS2.OBJSPAWN.TKMVSENV
//TKMVSJNL DD PATH='/tmp/objspawn/JNL.&LYYMMDD..&LHHMMSS..txt',
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIROTH),
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC)

The -XMLCONFIGFILE parameter identifies the SAS Metadata Server system
configuration file that the spawner is to use.

The -LOGCONFIGLOC parameter identifies the file for configuring the logging of
useful information for diagnosing connection problems. It is a good idea to include
logging until you are satisfied that everything is working correctly.

Define the Object Spawner System Security Configuration
The z/OS system considers the object spawner a daemon process. Therefore, if the
BPX.DAEMON profile of the RACF Facility class is active and RACF program control
is enabled, then the SAS load library that is specified in the STC procedure must be
program controlled. However, the user ID under which the object spawner runs does not
require RACF READ access to the BPX.DAEMON profile.

If the following messages appear in the z/OS system log when a client attempts to
connect, then a necessary library is not program controlled.

ICH420I PROGRAM program-name [FROM LIBRARY dsname] CAUSED THE
 ENVIRONMENT TO BECOME UNCONTROLLED.
BPXP014I ENVIRONMENT MUST BE CONTROLLED FOR DAEMON (BPX.DAEMON) PROCESSING

Verify the Metadata Configuration File and SAS Management
Console Definitions
You must also define your server and spawner by using SAS Management Console.
When you define the server, enter the following command in the Command field of the
Advanced > Options > Launch Commands tab:

/usr/lpp/SAS/SAS_9.3/startsas.sh

Start the Object Spawner
After you have created the STC procedure, you can start the object spawner by issuing
the following command:

START OBJSPAWN

For a list of all available spawner invocation options, see “Spawner Invocation Options”
on page 124. If there are no configuration errors, the object spawner will assume a
listening state by entering a detected wait state (DW).

122 Chapter 12 • Managing the Object Spawner

Task 3: Create a SAS Start-up Command

Overview of Create a SAS Start-up Command
The start-up command is meant to build a parameter string that is capable of launching
SAS. Here is a sample shell script (startsas.sh):

#!/bin/sh
#
Initialize SAS startup command...
#
cmd="/bin/tso -t %SASTREXX \
-sasrxsysconfig '&prefix.SASRXCFG(ENW0NO)'"

#
Quote arguments with embedded blanks
#
Quoteme() {
 if [$# -gt 1]; then
 quoteme="\"$*\""
 else
 quoteme=$1
 fi
}
for arg in "$@" ; do
 Quoteme $arg
 tmp="$quoteme"
 cmd="$cmd $tmp"
done

#
pass the metadata authentication strings to SAS
#
if [-n "$METAUSER"] ; then
 cmd="$cmd -metauser \"$METAUSER\""
fi
if [-n "$METAPASS"] ; then
 cmd="$cmd -metapass \"$METAPASS\""
fi

#
Set additional environment variables...
SYSPROC specifies the data set containing the SAS REXX
#
export SYSPROC=&prefix.SASRX
export STEPLIB=
export TSOOUT=

#
Start SAS
#
exec $cmd

The sample invokes the /bin/tso UNIX command to execute the REXX exec
SASTREXX. Replace the REXX exec data set name &prefix.SASRX in the SYSPROC

Configuring and Starting the Object Spawner on z/OS 123

environment variable with the data set name that is appropriate for your site. The
SASTREXX exec should be invoked with the following parameter, which you can
specify in metadata on the command line to launch the server:

NOSASUSER

NOSASUSER allows more than one concurrent SAS session per user. NOSASUSER
suppresses allocation of a SASUSER data set.

Specify Account Data
The IOM spawner on z/OS uses the UNIX System Services spawn function to initiate a
process to run an IOM server. This process runs in a USS initiator (BPXAS). By default,
the process runs with the default Work Load Manager (WLM) service class that was
assigned to OMVS work during installation. The default service class might have been
defined with a goal of providing USS shell commands with good response times. This
default service class assumes that the requests are relatively short. Because work
associated with IOM requests might require more time, it might be desirable to assign
IOM servers to a different service class.

You can use MVS accounting data to assign the work to a specific Work Load Manager
service class. To set the accounting data, use the _BPX_ACCT_DATA environment
variable in the startsas.sh script that starts that SAS IOM server session. The server
session then runs with the accounting data. For example:

export _BPX_ACCT_DATA=MYNAME1

To assign a Work Load Manager service class based on the accounting data, use the
WLM AI classification rule. For example (in the WLM ISPF dialog box):

 Qualifier Class
 Type Name Start Service Report
 DEFAULTS: OMVSSHRT ________
 1 AI MYNAME1 OMVSLONG ________

For more information about using accounting information with USS processes, defining
WLM service classes with appropriate characteristics, and specifying classification rules
to use these classes, see your IBM documentation.

Because you might define different IOM servers, in order to separate different work
loads, you can also specify that these servers run in different service classes. To specify
different service classes, create a separate server definition for each class of work in the
SAS Management Console configuration, and assign client requests to the listen port that
is associated with each server.

Spawner Invocation Options

Overview of Spawner Invocation Options
The object spawner controls the execution of the workspace server and the stored
process server through an IOM bridge connection. Spawner invocation options consist of
options that are specific to the spawner and several SAS system options that you can use
to run and configure the object spawner from the command line. On Windows and
UNIX, when you install and configure SAS servers with the SAS Deployment Wizard, a
spawner batch or script file is created by default in the object spawner configuration
directory (ObjectSpawner.bat or objectspawner.sh).

124 Chapter 12 • Managing the Object Spawner

For more information about the various object spawner configuration files and their
purpose, see “Configuration Files for SAS Object Spawners and SAS/CONNECT
Spawners” in Chapter 25 of SAS Intelligence Platform: System Administration Guide.

On z/OS, the spawner is run as a started task. If you want to create a SAS start-up
command, see the section, “Configuring and Starting the Object Spawner on z/OS” on
page 120 .

Note: On z/OS and UNIX, to set the object spawner temp directory, update the
TKOPT_ENV_UTILLOC environment variable with the new path. For more
information, “TKMVSENV File” in Chapter 1 of SAS Companion for z/OS or your
UNIX documentation.

The object spawner executable resides by default in:

• Windows:

install-dir\SASFoundation\9.3\objspawn.exe

• UNIX:

install-dir/SASFoundation/9.3/utilities/bin/objspawn

The spawner must be refreshed through the SAS Management Console in order to reflect
configuration updates. The SAS Management Console provides an interface to refresh
the spawner with configuration changes. For more information, see “Using SAS
Management Console to Operate SAS Servers” in Chapter 5 of SAS Intelligence
Platform: System Administration Guide. If your spawner is configured as a Windows
service, then you must redefine the service to change the invocation options. For more
information, see “Update a Windows Object Spawner Service” on page 119.

Spawner invocation options can be logically grouped into these categories:

• general options

• metadata connection options

• service options

General Options

Overview of General Options
Use the following general options for identifying which object spawner to invoke and for
setting spawner options such as security and logging:

• -dnsmatch on page 126

• -dnsname on page 126

• -hostknownby on page 126

• -sasspawnercn on page 126

• -lbaddtocluster on page 126

• -allowxcmd on page 127

• -authproviderdomain on page 127

• -encryptfips on page 127

• -conversationport on page 127

• -logconfigloc on page 127

Spawner Invocation Options 125

• -generic on page 128

• -sspi on page 128

• -secpackage on page 128

• -secpackagelist on page 128

Syntax Description
-dnsmatch DNSalias

specifies a DNS alias that will be accepted by the object spawner as a match for the
local machine name.

In addition, the spawner replaces the dnsMatch value with the local machine name in
its list of servers. This option is necessary if your network configuration resolves a
single DNS alias to multiple machines that run SAS object spawners. For example,
you configure SAS servers and spawners on two different machines: n1.my.org and
n2.my.org. The DNS alias srv.my.org resolves to both of these machines, so clients
can send a request to the alias and one of the two spawners will receive it. To support
this configuration, specify -dnsMatch srv.my.org in the spawner start-up command
on each machine.

-dnsname | -dns name
specifies which IP stack is used for communication between the spawner and the
servers that the spawner launches. This option can be abbreviated as -dns.

-hostknownby DNSalias
specifies a DNS alias that will be accepted by the object spawner as a match for the
local machine name.

-sasspawnercn | -ssc name
specifies the name (used in the SAS Management Console configuration) of the
spawner object to use for this spawner invocation configuration. If you do not
specify -sasspawnercn, the object spawner uses the first spawner definition (on
the metadata server) with the same machine name as the current host.

Note: If none of the spawner definitions contain a host name of the current host, you
must specify the -sasspawnercn option to designate which spawner definition to
use. If you specify a spawner name that contains embedded blank spaces, then
you must enclose the name in quotation marks (" "). This option can be
abbreviated as -ssc.

-lbaddtocluster | -lbadd logicalLoadbalancedServerName </serverName>
specifies a logical, load-balanced server to which the object spawner should add
itself. -lbaddtocluster enables you to add a new host to an existing load balancing
peer object without requiring a peer refresh. This feature is required for cloud
computing and software as a service models.

serverName is optional and is the name of the server to add the load-balanced server
information to. When you omit serverName, the Object Spawner updates the first
server definition associated with the logical load-balanced server.

-lbaddtocluster must be used in conjunction with the -sasSpawnercn (-ssc) option.

For example:

C:\Program Files\SASHome\SASFoundation\9.3\objspawn.exe
-ssc "SASApp - Spawner"
-lbadd "SASApp - Logical Workspace Server" /compute.server.01.example.com

When using -lbaddtocluster, note the following:

126 Chapter 12 • Managing the Object Spawner

• The Object Spawner definition must already be associated with at least one
server definition in the logical server that you specify.

• The Object Spawner can add only itself to one cluster at a time. If you need to
update multiple clusters, use the SAS Management Console.

• Any error encountered during an -lbaddtocluster spawned update of metadata
causes the Object Spawner to shut down.

• Any error encountered after an -lbaddtocluster spawned update of metadata does
not cause SAS to rollback or reset the metadata. The metadata changes made
persist.

-allowxcmd
enables host commands and PIPE commands for all servers that are started by the
spawner. You can use the SAS Management Console to enable host and PIPE
commands on a server-by-server basis (Server Properties ð Options ð Advanced
Options ð Launch Properties). By default, the spawner starts all servers with the -
NOXCMD SAS system option. When you specify -allowxcmd, the spawner no
longer specifies -NOXCMD when launching server sessions.

CAUTION:
When you specify -allowxcmd, clients can use host commands to perform
potentially harmful operations such as file deletion.

-authproviderdomain | -authpd hostuser:domain
associates a domain with the host authentication provider, because the spawner starts
either a SAS Workspace Server or SAS Stored Process Server. Workspace and
stored process servers authenticate only against the host. For example: -authp
hostuser:mydomain

-encryptfips
causes the spawner to run in Federal Information Processing Standards (FIPS)
compliance mode that is provided by SAS/SECURE software in its implementation
of the FIPS 140–2 specification. The object spawner checks each server and the
object spawner's operator port to ensure that AES is used as the encryption
algorithm. If the object spawner's operator connection is not using AES, the object
spawner terminates. SAS marks any servers that are not using AES as invalid. If the
spawner finds no valid servers, it terminates.

If the object spawner's operator port is not compliant, the following error message is
written to the log:

The object spawner is running in FIPS compliance mode,
therefore the only encryption algorithm that is supported for the
Operator connection for <Spawner Name=""> (<Spawner ID="">) is AES.

If a server is not compliant, the warning message output is:

The object spawner is running in FIPS compliance mode,
therefore the only encryption algorithm that is supported for %s (%s)
is AES. This server definition will not be included.

For more information, see “FIPS 140-2 Standards Compliance” in Chapter 1 of
Encryption in SAS.

-conversationport | -cp port
specifies which port is used for communication between the spawner and the servers
that the spawner launches. This option can be abbreviated as -cp.

-logconfigloc filename
sets the log options for the spawner in a log configuration file. For example: -
logconfigloc "C:\SAS\Config\Lev1\ObjectSpawner

Spawner Invocation Options 127

\logconfig.xml"The file is an XML file that uses specific options. For more
information, see “Using the SAS Logging Facility in the SAS Intelligence Platform”
in Chapter 1 of SAS Logging: Configuration and Programming Reference.

Unless a path is specified, the spawner looks for the log config file in the current
directory.

-generic
causes the spawner to use generic placeholders in data that it writes to its log. For
example, user names are output as <user identity>, host names as <IP
address>, connection and process IDs as –1 or <child process>,
configuration paths as <configuration file path>, and so on.

-sspi
identifies support for the Security Support Provider Interface for single sign-on
connections to the object spawner.

For more information, see “SSPI System Option” on page 159.

-secpackage "package-name" | "negotiate"
specifies the security package that the spawner should use to authenticate incoming
client connections. (Use with -sspi.)

The "package-name" value specifies the security package that the spawner should
use to authenticate incoming client connections. Enclose the security package name
within double quotation marks (").

The default value is "negotiate". This value enables the spawner to present a set
of valid security packages (through SECPACKAGELIST), which the server uses to
find a match with an incoming client connection. If the client specifies a security
package in the list, then the server attempts to authenticate the client the matched
security package. Enclose negotiate within double quotation marks (").

For more information, see “SECPACKAGE System Option” on page 156.

-secpackagelist "package-name-1,[package-name-2,][...,]"
identifies the security package that is used by the server to authenticate incoming
client connections. (Use with -sspi.) The package-name value defaults to
"Kerberos,NTLM".

Enclose the security package name within double quotation marks ("). Delimit an
additional package name with a comma (,).

For more information, see “SECPACKAGELIST System Option” on page 158.

Example
This example illustrates a typical spawner invocation:

C:\Program Files\SASHome\SASFoundation\9.3\objspawn.exe
-dnsMatch d18374.na.sas.com -ssc "SAS [Config-Lev1] Object Spawner"
-xmlconfigfile xmlconfig.xml -sspi -logconfigloc logconfig.xml

Metadata Connection and Security Options

Overview of Metadata Connection and Security Options
Use the following metadata connection options for the object spawner to connect to the
metadata server in order to find workspace server and stored process server definitions:

• -xmlconfigfile

128 Chapter 12 • Managing the Object Spawner

• -metaserver

• -metaport

• -metauser

• -metapass

• -metaprofile

• -metaconnect

• -metarepository

• -metaspn

• -metaencryptalg

• -metaencryptlevel

For metadata server connection options, you can either specify individual metadata
options or point to a file that contains connection options by using -xmlconfigfile. For
more information about the metadata configuration options, see Chapter 6, “System
Options for Metadata,” in SAS Language Interfaces to Metadata.

Syntax Description
-xmlconfigfile | -xcf filename

specifies a fully qualified path to a metadata configuration file that contains a SAS
Metadata Server definition to connect to for the complete configuration. On
Windows, enclose paths with embedded blank spaces in double quotation marks. On
z/OS, specify filenames similar to UNIX file paths due to the requirement for z/OS
UNIX System Services.

This option can be abbreviated as -xcf.

-metaserver host name
identifies the metadata server where configuration information is saved and can be
queried.

-metaport port
designates the metadata server port.

-metauseruser ID
identifies metadata server user ID.

-metapass userPassword
identifies metadata server password.

-metaprofile filename
specifies the location of the file that contains metadata profiles.

-metaconnect name
identifies the named connection from the -metaprofile file to use as the default
metadata server connection.

-metarepository repositoryName
identifies the name of the metadata repository to query.

-metaspn servicePrincipalName
identifies the metadata server service principal name to use when communicating
with a metadata server.

-metaencryptalg none | rc2 | rc4 | des |aes | tripledes | sas
specifies the type of encryption to use when communicating with a metadata server.
(sas is the short form for sasproprietary.)

Spawner Invocation Options 129

-metaencryptlevel credentials | everything
specifies the encryption level to use when communicating with a metadata server.

Examples
EXAMPLE 1: In this example, the object spawner connects to a metadata server by
using command line options:

C:\Program Files\SASHome\SASFoundation\9.3\objspawn.exe
-metaserver "metaserver.unx.alphacorp.com"
 -metaport 8561 -metauser "sastrust@saspw" -metapass "sasuser1"

EXAMPLE 2: In this example, the object spawner points to a connection file
(metadataConfig.xml) that contains metadata server connection information:

C:\Program Files\SASHome\SASFoundation\9.3\objspawn.exe -xcf metadataConfig.xml

Service Options

Overview of Service Options
Use the following service options to create, modify, and delete object spawner service
definitions on Windows only:

• -install

• -name

• -servdir

• -servuser

• -servpass

• -installdependencies

• -deinstall

For more information, see “Update a Windows Object Spawner Service” on page 119 .

Syntax Description
-install | -i <-name name> <-servdir directory> <-servuser user ID> <-servpass
password>

instructs the spawner to install as a Windows service. This option can be abbreviated
as -i. When asked to install as a service, the spawner records all options that are
specified at installation time in the registry under the following key: "SYSTEM
\CurrentControlSet\Services\service-name\Parameters"You can
also specify options in the start-up parameters when you manually start the spawner
service from the Microsoft Windows Services snap-in (services.msc).

-name name
specifies a Windows service name to use when installing the spawner as a service.
Use with -install. The default value is SAS Object Spawner Daemon III.

If you specify a service name that contains embedded blank spaces, then you must
enclose the name in quotation marks (" ").

Note: If you install more than one spawner as a service on the same machine, then
you must use the -name option to give each spawner service a unique name.

130 Chapter 12 • Managing the Object Spawner

-servdir directory
specifies the directory in which to run the Windows service. Use with -install. By
default, the directory is: install-dir\Config\Lev1\ObjectSpawner.

-servuser | -su user ID
specifies a user name that the Windows service will run under, when you also
specify the -install option. Use with -install. This option can be abbreviated as -su.

-servpass | -sp password
specifies a password for the user name that is specified in the -servUser option. Use
with -install. This option can be abbreviated as -sp.

-installdependencies | -idep service-1<;service-2><;...>
specifies the Windows services that must be started before the spawner service starts.
The service value is the name of the dependent service that is displayed in the
Microsoft Windows Services snap-in (services.msc).

This option can be abbreviated as -idep.

-deinstall | -di –name name
instructs the spawner to uninstall as a Windows service. This option can be
abbreviated as -di.

Note: The name value is the spawner service name that is displayed in the Microsoft
Windows Services snap-in (services.msc).

Examples
EXAMPLE 1: In this example, the spawner is installed as a Windows service with “SAS
[Config-Lev1] Object Spawner” displaying in the Microsoft Windows Services snap-in
(services.msc).

C:\Program Files\SASHome\SASFoundation\9.3\objspawn.exe
-i -name "SAS [Config-Lev1] Object Spawner"

The spawner is installed under the Windows system user and runs in the default
directory (install-dir\ObjectSpawner).

EXAMPLE 2: In this example, the spawner service is dependent on the metadata server
starting first:

C:\Program Files\SASHome\SASFoundation\9.3\objspawn.exe
-idep "SAS [Config-Lev1] Metadata Server"

EXAMPLE 3: In this example, the spawner service is uninstalled:

C:\Program Files\SASHome\SASFoundation\9.3\objspawn.exe
-di -name "SAS [Config-Lev1] Metadata Server"

Spawner Invocation Options 131

132 Chapter 12 • Managing the Object Spawner

Chapter 13

Administering SAS OLAP Servers

Administrative Overview for SAS OLAP Servers . 134

Migrating OLAP Cubes . 135

Installing and Configuring SAS OLAP Servers . 135
Considerations for SAS OLAP Servers . 135
Initial Deployment . 135
Add a SAS OLAP Server . 136
Add a Load-Balancing Cluster of SAS OLAP Servers . 136

Connecting to SAS OLAP Servers . 136

Starting SAS OLAP Servers . 136

Stopping, Pausing, and Resuming SAS OLAP Servers . 137

Disabling and Enabling Cubes . 137

Building Cubes: Overview for Administrators . 137

Updating Cubes: Overview for Administrators . 138
Overview of Updating Cubes: Overview for Administrators 138
Update a Cube in Place . 138
Update a Cube Incrementally . 139

Coalescing Cubes . 139

Deleting Cubes . 140

Authorizing Access to SAS OLAP Servers . 140

Authorizing Access to OLAP Cubes and Cube Data . 141
Overview of Authorizing Access to OLAP Cubes and Cube Data 141
Change Permissions and Disable Cubes Using SAS OLAP Cube Studio 141

Monitoring SAS OLAP Servers . 141

Managing OLAP Sessions and Queries . 142

Logging SAS OLAP Servers . 142

Tuning SAS OLAP Servers with Advanced Server Options 142
Overview of Tuning SAS OLAP Servers with Advanced Server Options 142
Tune the Cube Cache . 143
Tune the Subquery Caches . 143
Tune the Query Thread Pool . 144
Set Values for Flattened Row in the Server Tab of the

Advanced Options Window . 144
Set Values in the Performance Tab of the Advanced Options Window 145

133

Refreshing Cube Metadata for Calculated Members and Named Sets 146

Administering OLAP Schemas . 146

Administrative Overview for SAS OLAP Servers
The SAS OLAP implementation consists of the following components:

SAS OLAP Server
references cube data to generate result data sets that are delivered to OLAP clients in
response to queries from cube viewers. One server supports one or more concurrent
client connections. SAS OLAP Servers can be grouped into load-balancing clusters
to provide scalable support for one or more cubes.

SAS OLAP Cube Studio
generates cube metadata and creates SAS code that is executed to build cubes. .
Other tools define aggregations, generate calculated members, export and import
cubes between metadata repositories, and generate new OLAP schemas.

SAS Language Elements
PROC OLAP creates and updates cubes. PROC OLAPOPERATE provides
programmatic administration of SAS OLAP Servers, as described in the SAS OLAP
Server: User's Guide

OLAP Schema
groups cubes that are exclusively accessed by one or more SAS OLAP Servers. Each
cube is listed in one and only one OLAP schema. Each SAS OLAP Server is
required to use one OLAP schema. Multiple servers can use the same schema.

SAS Workspace Server
executes SAS code to build or update cubes. For information about the
administration of SAS Workspace Servers, see “Managing Workspace Servers and
Stored Process Servers” on page 99.

SAS Metadata Server
stores metadata that defines cubes, cube data, cube data access permissions, and
load-balancing data.

Cube Viewer
generates queries in the MDX language and displays result data sets as they are
received from SAS OLAP Servers. The primary cube viewers are SAS Web OLAP
Viewer, SAS Web Report Studio, and SAS Enterprise Guide. Because queries are
submitted in the OLE DB for OLAP application programming interface, you can also
view cubes with third-party viewers such as Microsoft Excel.

For more information about the MDX query language, see the SAS OLAP Server:
MDX Guide.

SAS Management Console
displays SAS OLAP Servers and OLAP schemas and contains the OLAP server
administrative plug-ins Server Manager and SAS OLAP Server Monitor.

Server Manager
displays OLAP servers and logical OLAP servers, provides server controls, and
manages advanced server options. This application is provided in the Environment
Management folder in the Plug-ins tree in SAS Management Console.

134 Chapter 13 • Administering SAS OLAP Servers

SAS OLAP Server Monitor
displays all OLAP servers and schemas, provides session controls, and manages
advanced server options. This application is provided in the Monitoring folder in the
Plug-ins tree in SAS Management Console.

Administrators support SAS OLAP Servers by configuring hosts, installing and
configuring SAS OLAP Servers and SAS Workspace Servers, starting, stopping, and
restarting servers, monitoring servers, managing server logs, tuning servers, and
configuring libraries and permissions for users. These tasks are accomplished using the
SAS Deployment Wizard and SAS Management Console.

User tasks for SAS OLAP Server include building cubes, viewing cubes, and tuning
cubes. These tasks are accomplished with SAS OLAP Cube Studio. User tasks are
documented in the SAS OLAP Server User's Guide and in the Help for SAS OLAP
Cube Studio.

Migrating OLAP Cubes
OLAP cubes that were built in SAS 9.2 can be used in SAS 9.3 without changes or
migration. Before rebuilding your cubes in SAS 9.3, review your cubes to ensure that all
paths are correct.

Note: Cubes that you build in SAS 9.3 are not supported on SAS 9.2 OLAP Servers.

For cubes that you built in SAS 9.1.3 or earlier, follow the migration steps in “Server
Tier Post-migration Tasks” in Chapter 5 of SAS Intelligence Platform: Migration Guide.
The migration process has not changed since the SAS 9.2 release.

Installing and Configuring SAS OLAP Servers

Considerations for SAS OLAP Servers
Consider the following with regard to the installation and configuration of SAS OLAP
Servers:

• Cubes are built and updated on SAS Workspace Servers. Cubes are queried on SAS
OLAP Servers.

• Install one SAS OLAP Server per host.

• Workspace servers and OLAP servers need to access the same physical locations.

• Workspace servers and OLAP servers do not need to be installed on the same host.

• Workspace servers require sufficient storage capacity for temporary files that are
generated during cube builds, as described in “Configure Storage for Temporary
OLAP Cube Build Files on SAS Workspace Servers” on page 110.

Initial Deployment
You initially install SAS OLAP Servers with the rest of the SAS Intelligence Platform
using your SAS software depot, your deployment plan, and the SAS Deployment
Wizard, as described in the SAS Intelligence Platform: Installation and Configuration
Guide.

Installing and Configuring SAS OLAP Servers 135

After your initial installation, you:

• Configure source data libraries, as described in SAS Intelligence Platform: Data
Administration Guide

• Configure access control, as described in SAS Intelligence Platform: Security
Administration Guide. You have the capability of limiting access within cubes by
preventing the display of specified dimensions, hierarchies, levels, and members.

• Configure cube viewers, as described in SAS Intelligence Platform: Desktop
Application Adminstration Guide

Add a SAS OLAP Server
After your initial deployment, demand for additional cubes might require you to add
another SAS OLAP Server. Contact a SAS support representative to receive assistance
with your hardware configuration plan.

To install a new SAS OLAP Server, you install a new SAS Application Server on a new
host using the SAS Deployment Wizard. Use the wizard in Configuration mode to install
metadata, software, and configuration files in a single pass. After installation, you either
add cubes to the new OLAP schema file or you assign the new server to the cubes that
are listed in an existing OLAP schema. To work with OLAP schemas in SAS
Management Console, select the Folders tab, open the Shared Data folder, right-click
the OLAP schema file, and select Properties.

Add a Load-Balancing Cluster of SAS OLAP Servers
Load-balancing clusters of OLAP servers improve query response times by dividing
concurrent client sessions across multiple hosts. You can add or remove servers from the
cluster in response to changes in the average number of concurrent sessions. To add a
load-balancing OLAP cluster, see “Understanding Server Load Balancing” on page 34.

Connecting to SAS OLAP Servers
In SAS Management Console, you can connect to OLAP servers and validate
connections. Connecting to a server indicates that the server is responsive. Validating a
server confirms that the connection is valid and the server has made contact with its
OLAP schema and with the cubes that are listed in that schema.

To connect to a SAS OLAP Server or to validate a connection, right-click the server in
the Server Manager, or right-click the logical OLAP server in the SAS OLAP Server
Monitor, and select Connect or Validate.

Starting SAS OLAP Servers
SAS OLAP Servers are background processes that remain active until you need to stop
or pause them. You stop or pause and resume SAS OLAP Servers to change OLAP
schemas or change server properties. To maximize availability, OLAP servers are
generally configured to start when their hosts are initialized. After you change server
properties, you restart the server.

136 Chapter 13 • Administering SAS OLAP Servers

Stopping, Pausing, and Resuming SAS OLAP
Servers

In SAS Management Console, you can stop or quiesce OLAP servers to rebuild cubes,
change OLAP schemas, or change server properties. When you stop an OLAP server,
any active queries are immediately terminated. When you quiesce an OLAP server, the
server accepts no new queries and terminates after the completion of the last active
query.

Note: Stopping or pausing a SAS OLAP Server does not necessarily prevent access to a
particular cube, because other servers might share the same OLAP schema. To
update a cube without taking it off-line, you should disable the cube rather than
stopping or pausing the server.

To stop, quiesce, pause, or resume a SAS OLAP server, right-click the server instance in
the Server Manager and select the server from the pop-up menu, or right-click the logical
OLAP server in the SAS OLAP Server Monitor.

Disabling and Enabling Cubes
Disable cubes when you want to prevent all access to the cube, without stopping any
OLAP servers. You disable cubes as part of the cube update process, before clients can
access a new version of a cube. When a cube is disabled, no new sessions can be started
on that cube, on any OLAP server. Disabling a cube does not close existing sessions.
Existing sessions either terminate on their own, or are closed using the SAS OLAP
Server Monitor.

Note that you do not need to disable a cube to update a cube in-place. When you update
a cube in-place, you add data without closing sessions. Although this method of update
does not interrupt client access, the process does not enable testing beforehand, and it
does not provide a previous version of the cube that you can put back into service.

To disable or enable a cube, follow these steps:

1. Start SAS Management Console.

2. Expand the Monitoring folder and expand the SAS OLAP Server Monitor.

3. Expand the OLAP Schema folder.

4. Right-click the cube and select Disable or Enable.

Building Cubes: Overview for Administrators
Users build cubes with SAS OLAP Cube Studio or PROC OLAP. This section describes
the cube build process from an administrative perspective. For more information about
cube builds, refer to the SAS OLAP Server: User's Guide.

Building Cubes: Overview for Administrators 137

When you build a cube that you specify the cube data and cube structure, and the SAS
OLAP Server software creates the cube. The cube is assigned to an OLAP schema, and
one or more SAS OLAP Servers that use that schema support client queries on the cube.

Due to the pre-summarization of data, and based on the amount and structure of the data,
cube builds can be time-consuming and resource-intensive. For this reason, it is
advantageous to build cubes using a non-production OLAP schema. When rebuilding
existing cubes, follow these steps to minimize the time that the cube is out of service:

1. Change the OLAP schema of the existing cube from the production schema to a non-
production schema.

2. Rebuild the cube using the non-production schema.

3. After the rebuild, change the OLAP schema of the new cube to the production
schema.

Updating Cubes: Overview for Administrators

Overview of Updating Cubes: Overview for Administrators
Users update cubes with SAS OLAP Cube Studio or PROC OLAP. This section
describes the update process from an administrative perspective. For more information
about cube updates, refer to the SAS OLAP Server: User's Guide.

Starting in SAS 9.2, users can perform an in-place cube update to add data to cubes
without rebuilding the entire cube, and without restarting the SAS OLAP Server. Users
can also perform an incremental cube update.

Cube updates add new aggregation tables that combine with existing aggregation tables
in previous versions of the cube. The updated version of the cube looks through to the
previous versions to obtain all cube data.

As you accumulate cube updates and aggregation tables, it is possible that OLAP server
performance might decline. To improve performance, users can coalesce the cube. The
coalesce process combines all of the separate aggregation tables from previous updates
into a single, more efficient set of aggregations.

Update a Cube in Place
When you update a cube in place, you add data and new members directly to an active
cube, without disabling, stopping, or rebuilding the cube.

During and after the completion of the in-place update, existing sessions will continue to
run on the old cube. When the last session ends on the old cube, the old cube is closed.
After the old cube is closed, new sessions apply to the new cube. Although existing
sessions are connected to the old cube, new sessions are also applied to the old cube. If
you do not want to wait for all open sessions to close, you can enforce a switch to the
new cube. To switch to the new cube, disable the cube, close all open sessions that query
that cube, and enable the cube.

The in-place cube update runs like an incremental cube update. At the end of the in-
place update, the cube metadata is updated to point to the new generation folder and the
old generation folder is deleted. If the old generation cannot be deleted, because an
existing session has locked the files, then the next cube update attempts to delete the old
generation folder.

138 Chapter 13 • Administering SAS OLAP Servers

Update a Cube Incrementally
When you run an incremental cube update, you use PROC OLAP to add data and new
members to a new version of the cube. After the update, the new cube is immediately
available for queries under its new cube name. The previous version of the cube remains
active until you disable the old cube and enable the new version.

Incremental updates are beneficial because they:

• enable testing outside of the production environment

• can be archived to maintain a history changes

• provide for rollback or review

Each version of the cube remains completely viable. You can enable any version and
receive a fully functional cube that contains all of the data that was previously available
in that version.

Each version of the cube is represented by a generation folder. The folder contains an
aggregation table. The aggregation table contains the new members and new data that
was added to the cube in that version.

The totality of data in the new version of the cube is represented by all of the generation
folders and the original aggregation table from which the generations were built.

When you generate a new version of a cube, the new version is immediately available
for queries under its new name. To replace the old version with the new version, using
the same cube name, follow these steps:

1. Disable the cube with PROC OLAPOPERATE, SAS OLAP Cube Studio, or the
SAS OLAP Server Monitor.

2. Close all sessions on the old version of the cube.

3. Rename the old version of the cube.

4. Rename the new version of the cube to name of the old cube.

5. Enable the cube.

As versions accumulate, you can coalesce cubes to combine all versions into a single,
more efficient aggregation table, as described in the next section.

After you create a new version of a cube, you can assign the old cube, under its new
name, to a different OLAP schema for archival purposes.

You can delete old versions as you would with any other cube. Deleting a version
removes its metadata. Physical data that is used by later versions is not deleted. To delete
all generation folders back to the last coalesced cube, coalesce the new version of the
cube.

Coalescing Cubes
Coalescing a cube combines all of the generation folders from previous versions of the
cube into a single generation folder in the latest version of the cube. The old generation
folders are deleted. The generation folders that are combined and deleted are those that
were produced after the last time you coalesced the cube.

To coalesce a cube, follow these steps:

Coalescing Cubes 139

1. Disable the cube with SAS OLAP Cube Studio or with PROC OLAPOPERATE, or
follow these steps:

a. Open SAS Management Console.

b. Expand the SAS OLAP Server Monitor.

c. Expand the OLAP schema that contains the cube.

d. Right-click the cube and select Disable.

For more information about OLAPOPERATE and SAS OLAP Cube Studio, see the
SAS OLAP Server: User's Guide.

2. Close all open sessions on the cube by running PROC OLAPOPERATE programs
for each SAS OLAP Server that supports queries on that cube, or by displaying and
closing sessions in SAS OLAP Server Monitor.

3. Coalesce the cube using the COALESCE option in PROC OLAP.

4. When the coalesce operation is complete, enable the cube.

Deleting Cubes
Cube deletion takes place in PROC OLAP and SAS OLAP Cube Studio. If you delete
cubes, that have not been updated, then the deletion operation removes cube metadata
and physical files. For cubes that have undergone either in place or incremental update,
the deletion of old versions and generation folders occurs programmatically. Manual file
deletion is not required.

For cubes that have undergone in-place updates, the next in-place update removes all old
generation folders.

For cubes that have received incremental updates, deletion of metadata and physical files
takes place as part of the coalesce process.

Authorizing Access to SAS OLAP Servers
To operate SAS OLAP Servers, you need Administer permission. Unrestricted access is
not required, and no specific role or capability is required.

For access to all aspects of SAS Management Console other than server operation,
OLAP administrators need to be members of the role Management Console: Advanced.
This role is required to display the SAS OLAP Server Monitor under the Monitoring
node in the Plug-ins tab.

Users of SAS OLAP Cube Studio need readMetadata and writeMetadata permissions.

Users of cube viewers need Read and readMetadata permissions, but writeMetadata
might not be necessary.

Default roles are available for association with users of SAS cube viewers. If you, as the
OLAP administrator, are a member of the role SAS Metadata Server: User
Administration, you can, as needed, add cube viewer users to the roles Add-In for
Microsoft Office: OLAP and Enterprise Guide: OLAP.

To read and update the authorizations for SAS OLAP Servers, follow these steps:

140 Chapter 13 • Administering SAS OLAP Servers

1. Open SAS Management Console.

2. Expand the Server Manager.

3. Right-click the application server, logical server, or server instance and select
Properties.

4. In the Properties window, select the Authorization tab.

For more information about security concepts and tasks, see the SAS Intelligence
Platform: Security Administration Guide. Of particular interest is the material that deals
with the protection of server definitions in metadata.

Authorizing Access to OLAP Cubes and Cube
Data

Overview of Authorizing Access to OLAP Cubes and Cube Data
In SAS Management Console, the Authorization tabs of cubes and OLAP schemas
display the permissions that apply to those objects. With appropriate permission, you
(the OLAP administrator) can grant or deny Read or Write permission to users, roles,
and groups.

You can also control access to cube data, so that a single cube provides different data for
different users. You can prevent access to specified dimensions, hierarchies, and levels,
and you can define permission conditions to filter cube data within dimensions. To set
permission conditions on a cube, use the MDX Expression Builder in SAS Management
console, or open the cube's Authorization tab in SAS OLAP Cube Studio. For details
and procedures, see the “OLAP Member-Level Permissions” chapter in the SAS
Intelligence Platform: Security Administration Guide.

Change Permissions and Disable Cubes Using SAS OLAP Cube
Studio

In SAS OLAP Cube Studio, you need Administer permission on both the cube and the
client's SAS OLAP Server in order to change cube permissions and enable and disable
cubes.

In SAS OLAP Cube Studio, to find the SAS OLAP Server to which the client is
connected, select Tools ð Options and refer to the Server field.

To view and change user permissions on the SAS OLAP Server, display the Properties
window in SAS Management Console and select the Authorization tab.

Monitoring SAS OLAP Servers
In SAS Management Console, information about the status of SAS OLAP Servers is
provided in the Server Manager and in the SAS OLAP Server Monitor. In either case,
you select the server instance (not the logical server) to display status information in the
right pane.

Monitoring SAS OLAP Servers 141

When you select an OLAP server in the Server Manager, it displays information about
connections, clients, sessions, options and values, available loggers, and the text of the
currently enabled log.

The SAS OLAP Server Monitor initially displays session information. You can select
sessions to display query information. You can also manage sessions and queries.

Managing OLAP Sessions and Queries
Use the SAS OLAP Server Monitor in SAS Management Console to display information
or close active client (cube viewer) sessions and the queries that are being processed in
those sessions.

To display sessions, connect to the OLAP server. Current sessions appear in the right
pane. For definitions of the displayed fields, select Help ð Help on SAS OLAP Server
Monitor. In the Help contents, select About Sessions.

To display queries, first display a session, and then double-click the session to see lists
of data queries and metadata queries. Data queries return to the client a result set that
consists of requested cube data. Metadata queries return to the client-requested metadata,
such as a cube description, rather that cube data.

To close sessions or queries, right-click and select Close.

Logging SAS OLAP Servers
By default, SAS OLAP Servers create a new rolling log file on a daily basis. The rolling
log is also displayed in the Log tab of the OLAP Server, in the Server Manager of SAS
Management Console.

An ARM log file is created at server start or restart. The ARM log is normally disabled.
Enable the ARM log only when testing or tuning cubes, when both the cube and the
OLAP server are outside of the production environment, as described in “Enabling ARM
Logs in SAS OLAP Servers,” in the SAS Intelligence Platform: System Administration
Guide.

Tuning SAS OLAP Servers with Advanced Server
Options

Overview of Tuning SAS OLAP Servers with Advanced Server
Options

To display the advanced server options for a SAS OLAP Server, follow these steps:

1. Within SAS Management Console, expand the nodes under the Server Manager
until you can see your SAS OLAP Server. The server components represent the
actual machines that the SAS OLAP Servers are running on.

2. Right-click the server and select Properties.

3. In the Properties window, select the Options tab.

142 Chapter 13 • Administering SAS OLAP Servers

4. On the Options tab, select Advanced Options.

In the Advanced Options window, tune your servers on the Performance, Cache, and
Query Thread Pool tabs. Use the other tabs (Debug Query, Debug Server, and
Journals) only under the direction of SAS technical support, outside of the production
environment, to generate detailed log information. The logging process severely limits
server performance.

Tune the Cube Cache
The cube cache stores an in-memory copy of the cube's metadata. The metadata
describes the calculated members and named sets that are used to parse the MDX query
syntax. The metadata does not include any disk-resident aggregations.

As the server processes a query, the server first checks the cube cache to determine
whether the cube metadata is in memory. If the cube metadata is in memory, the server
uses the cached metadata. If the cube metadata is not in memory, the server loads the
metadata from the SAS Metadata Server.

Cubes are added to the cache as they are queried. Cubes remain in the cache until the
OLAP server stops, or until the cache reaches its maximum number of cubes. After the
limit is reached, new queries on new cubes cause the new cube's metadata to replace the
metadata of the oldest cube in cache (first in, first out).

The cube cache is implemented as least recently used. As the cache becomes full, cubes
are removed based on usage.

The default limit on the number of cubes in the cache is 20. To change this value, use the
field Maximum number of cubes in cache in the Cache tab of the Advanced Options
window. Restart your OLAP server to activate the new value.

Tune the Subquery Caches
The Cache tab in the Advanced Options window enables you to set the maximum size of
the subquery caches. You can also enable and disable the caching of empty intermediate
result sets. By default, the maximum size of each subquery cache is 5 megabytes, and
the caching of empty intermediate result sets is disabled.

SAS OLAP Servers maintain a unique subquery cache for each query for the duration of
the processing of that query. When a server is processing concurrent queries, server
memory contains multiple subquery caches.

During query processing, the subquery caches grow in size. If the subquery caches reach
a specified maximum size, the contents of the caches are paged (swapped) into
temporary disk storage.

Memory is not pre-allocated for subquery caches. Paging might therefore occur before
the subquery caches reach their maximum size.

Paging for the subquery caches is indicated by disk writes by the SAS OLAP Server.
This is the only case where the server writes to disk, except for the logging and
debugging operations that take place outside of the production environment. If you see
disk input and output from the server, you can do one of the following:

• change the subquery cache settings

• change the value of the MEMSIZE= system option for the server

• add physical memory to the host.

Tuning SAS OLAP Servers with Advanced Server Options 143

Smaller maximum sizes of the subquery caches might limit performance improvements
due to memory-intensive paging to and from temporary disk storage, particularly if the
caches include empty intermediate result sets.

Larger maximum sizes of the subquery caches, when combined with a large number of
concurrent queries, might occupy an inefficient percentage of available server memory.

In many cases, the default maximum cache size (5 megabytes) is a good choice. It is
recommended that the maximum subquery cache size not exceed 50 megabytes.

To set the maximum size of the subquery caches, use the field Memory size for
subquery cache.

To cache empty subquery result sets, select the check box to show a check mark in the
field Cache the empty subquery result sets. Generally, most of the set processing in
OLAP queries involves very sparse matrices. For this reason, empty subquery result sets
are not cached by default. If you have plenty of available memory, or if your cube or
your queries are relatively dense, then caching empty subquery result sets might improve
performance.

Tune the Query Thread Pool
The query thread pool is used to efficiently assign threads to query requests that are
received by a SAS OLAP Server. As threads are assigned to queries, additional threads
are allocated, up to the specified maximum number of threads. If the number of query
requests and active queries exceeds the maximum number of threads, requests are
queued and assigned to threads as threads are reclaimed.

You can set the following parameters of the query thread pool on the Query Thread
Pool tab of the Advanced Options window:

• minimum number of threads in the pool. The recommended value is 1.

• maximum number of threads in the pool. The recommended value is twice the
number of available CPUs on the host or lower.

• threshold number of query requests that are required before the requests are assigned
to threads.

• time-out for thread reclamation.

• thread stack size.

As with other server option changes, you need to restart your OLAP server to activate
your new values.

Set Values for Flattened Row in the Server Tab of the Advanced
Options Window

The Server tab of the Advanced Options window for SAS OLAP Servers contains two
options for flattened results sets: Maximum number of flattened row and Maximum
memory size for flattened rowset. Increase the size of these options if queries fail with
a “flattened rowset size limit reached” error.

Most applications get their query results as multidimensional result sets. However, there
are two exceptions, drillthrough queries and SQL passthru queries:

Drillthrough queries
Drillthrough queries are not really multidimensional queries; they are two-
dimensional queries against a relational table. As such, they can be requested as
flattened result sets only.

144 Chapter 13 • Administering SAS OLAP Servers

SQL passthru queries
When using SQL to query a cube, the server always returns the data as flattened
result set. This is because SQL understands rows and columns only.

Set Values in the Performance Tab of the Advanced Options
Window

The Performance tab has four options that enable you to configure access to MOLAP
aggregations in multidimensional databases. Three other options set limits on queries.

Memory available for group by operations
sets a memory allocation for MOLAP group-by operations, which are used to pre-
summarize data on-demand, during queries. If a cube is pre-summarizing during
queries, increasing this memory allocation might improve performance.

If a group-by operation exceeds its memory allocation, the SAS OLAP Server pages
memory to the disk path that is specified in the option Path to temporary working
files.

Note that the group-by memory is not pre-allocated, so the actual memory allocation
might be limited by existing allocations.

Number of threads to spawn
specifies the number of threads that can be created to access MOLAP aggregations
during queries. The default value 0 is preferable on multiprocessor hosts. When the
value is 0, the number of threads is programmatically set to a value from 1 to 8,
based the number of processors (CPUs) on the host. Note that this value does not
limit the number of threads that are used to process queries. Query threads are set on
the Query Thread Pool tab.

Path to temporary working files
specifies the disk directory that received memory swaps during MOLAP group-by
operations.

Maximum segment ratio
controls the subsetting of indexes when processing MOLAP WHERE expressions.
The ratio compares the number of segments that apply to the expression to the
number of segments that do not apply to the expression. When the ratio exceeds the
specified maximum, a subset index is not created before the expression is applied to
the segments.

Maximum number of tuples in a set
sets the maximum size of the result sets that are sent to clients in response to queries.
The default value is 1 million tuples.

MDX query timeout
automatically closes stale queries. No default value is provided.

Optimize queries that use the NONEMPTY and CROSSJOIN function
compares performance with or without optimization. Deselect this option to compare
performance without optimization.

Tuning SAS OLAP Servers with Advanced Server Options 145

Refreshing Cube Metadata for Calculated
Members and Named Sets

You can synchronize the calculated members and named sets in metadata with the data
that is stored in the cube cache of a SAS OLAP Server by selecting Actions ð Refresh
Cubes in SAS Management Console. Another method is to select cubes in the SAS
OLAP Server Monitor, right-click, and select Refresh Cubes. You can also select
Refresh Cube in SAS OLAP Cube Studio.

To refresh cubes, you must be connected to the SAS OLAP Servers and have the
Administer permission.

Refresh Cubes does not add or delete aggregations, change display names, or change
the value of the SECURITY_SUBSET option (which enables and disables member-level
permissions). To make these changes, you do not need to rebuild the cube, but you do
need to close all active sessions. Use Stop, Pause, or Quiesce before you use SAS
OLAP Cube Studio or PROC OLAP to make these changes.

For information about updating all of the data in a cube, without rebuilding the cube, see
the SAS OLAP Server: User's Guide.

Note that selecting Refresh in the Server Manager or SAS OLAP Server Monitor
refreshes server connections and the Folders tab in SAS Management Console. Refresh
does not synchronize calculated members or named sets.

Administering OLAP Schemas
OLAP schemas logically connect OLAP cubes to SAS OLAP Servers. Each cube
appears in one schema. Each SAS OLAP Server is assigned to an OLAP schema. More
than one server can be assigned to each schema.

To display schemas in SAS Management Console, select the Plug-ins tab, expand
Monitoring, and expand the SAS OLAP Server Monitor. The schemas are displayed
beneath the OLAP servers that are assigned to the schemas. Expand the schema folder to
display the cubes that comprise the schema.

Schemas are also available in the Inventory tab, in the Shared Data folder.

To create OLAP schemas or assign servers to schemas, use the OLAP Schema tab in
the Properties window of the SAS Application Server, as described in “Create or Assign
an OLAP Schema” in the SAS Intelligence Platform: Data Administration Guide.

You can use SAS OLAP Cube Studio to create, assign, and delete schemas. You can
also move a cube from one schema to another, as described in the SAS OLAP Server:
User's Guide.

146 Chapter 13 • Administering SAS OLAP Servers

Chapter 14

System Options for SAS
Application Server Components

Overview of System Options for SAS Application Server Components 147

Dictionary . 147
OBJECTSERVER System Option . 147
OBJECTSERVERPARMS System Option . 150
SECPACKAGE System Option . 156
SECPACKAGELIST System Option . 158
SSPI System Option . 159

Overview of System Options for SAS Application
Server Components

There are several SAS system options available for you to use with application server
components. The topics that follow discuss each available option in detail:

• “OBJECTSERVER System Option” on page 147

• “OBJECTSERVERPARMS System Option” on page 150

• “SECPACKAGE System Option” on page 156

• “SECPACKAGELIST System Option” on page 158

• “SSPI System Option” on page 159

Dictionary

OBJECTSERVER System Option
Specifies whether SAS is to run as an Integrated Object Model (IOM) server.

Valid in: configuration file, SAS invocation

Category: Environment control: Initialization and operation

PROC OPTIONS
GROUP=

EXECMODES

147

Default: NOOBJECTSERVER

See: OBJECTSERVERPARMS System Option

Syntax
-objectserver

Syntax Description
-objectserver

when specified, SAS runs as an IOM server.

Details

An IOM server is a noninteractive SAS session that is run with the OBJECTSERVER
system option. The spawner sets OBJECTSERVER for the SAS IOM servers that it
invokes. In order to make it easy to specify the command, the server can be started by
using a simple command with an option to connect back to the metadata server to obtain
additional IOM-specific options.

You can specify the server start-up command in several locations:

• system command line

• script

• metadata (server definition in SAS Management Console)

The general form of the server start-up command is:

SAS-exec -objectserver other-system-options -objectserverparms "object-server-parameters"

• SAS-exec

is the absolute path to the SAS executable. For example:

• Windows:

C:\Program Files\SASHome\SASFoundation\9.3\sas

• UNIX:

/usr/local/bin/SAS/SASFoundation/9.3/sas

• -objectserver

launches this SAS session as an IOM server.

Note: In configuration files on z/OS, do not precede system options with a hyphen.
Also, an equal sign must precede the first parameter that follows the
OBJECTSERVERPARMS keyword. For example:

objectserver objectserverparms="cel=credentials protocol=bridge port=8561"

• other-system-options

are optional, additional system options. System options that are typically used for
servers include options such as: LOGCONFIGLOC, NOTERMINAL, and
NOLOGO. For complete information about system options, see SAS System Options:
Reference.

• -objectserverparms "object-server-parameters"

148 Chapter 14 • System Options for SAS Application Server Components

are IOM-server-specific options that are passed to the server by the
OBJECTSERVERPARMS system option. For more information, see
“OBJECTSERVERPARMS System Option” on page 150.

Note: For SAS Workspace Servers that run on UNIX, it is sometimes necessary to call
the SAS start-up command by using a wrapper script. For more information, see
“Managing Workspace Servers and Stored Process Servers” on page 99.

The server start-up command is obtained as follows:

• When the server is started by a spawner, the start-up command is stored in SAS
metadata.

In the SAS metadata, there is one metadata field for the SAS start-up command and
system options, and another field for the object server parameters. The object
spawner combines these two fields, along with connection information and some
spawner internal object server parameters, to create the complete SAS command.
The object spawner then passes this command to the operating environment.

• When the server is started by a script or as a service or daemon, the command that is
passed to the operating environment is not determined by SAS metadata.

However, SAS Workspace Servers, and any OLAP server can connect back to the
SAS Metadata Server in order to obtain additional object server parameters and
connection information (such as protocol engine and port number). (Some object
server parameters cannot be obtained from the metadata. For more information, see
“OBJECTSERVERPARMS System Option” on page 150.

When object server parameters are specified in the metadata, if there are any object
server parameters that are also specified in the command, then the object server
parameters in the command take precedence over those that are stored in the
metadata.

Regardless of how the server is started, workspace servers, stored process servers, and
OLAP servers, by default, also connect back to the metadata server in order to obtain
configuration information, such as pre-assigned libraries, that is associated with the SAS
Application Server.

The following table summarizes the ways that the SAS command, system options, and
object server parameters can be specified for each type of IOM server. (1 = Object server
parameters that are stored in metadata supplement the command-line object server
parameters if the SERVER parameter is used.)

Table 14.1 Various Ways to Launch IOM Servers

Server
Spawner
launched?

Use of
SERVER
parameter Obtainable from metadata?

Command

Object
server
parameters Librefs

Workspace
server

Required Spawner
supplied

Yes

(Spawner
retrieves)

Yes

(Spawner
retrieves)

Yes

Stored
process
server

Required

(Load-
balanced)

Spawner
supplied

Yes

(Spawner
retrieves)

Yes

(Spawner
retrieves)

Yes

OBJECTSERVER System Option 149

Server
Spawner
launched?

Use of
SERVER
parameter Obtainable from metadata?

Command

Object
server
parameters Librefs

OLAP
server

Not allowed Required No Yes Yes

(If SERVER
is used)

Metadata
server

Not allowed Not allowed No No No

Note: When you start the server with a script, some object server parameters, such as
DNSMATCH, cannot be obtained from the metadata. Do not enter these object
server parameters in your metadata. For details, see “OBJECTSERVERPARMS
System Option” on page 150.

Example
This example shows how OBJECTSERVER can be used in a configuration file used to
start the metadata server:

-objectserver
-objectserverparms "cel=credentials protocol=bridge port=8561 classfactory=
0217E202-B560-11DB-AD91-001083FF6836 trustsaspeer=C:\SAS\
FoundationServers\Lev1\SASMeta\MetadataServer\trustedPeers.xml"

Note: In configuration files on z/OS, do not precede system options with a hyphen.
Also, an equal sign must precede the first parameter that follows the
OBJECTSERVERPARMS keyword. For example:

objectserver objectserverparms="cel=credentials protocol=bridge port=8561"

See Also

System Options:

• “OBJECTSERVERPARMS System Option” on page 150

OBJECTSERVERPARMS System Option
Specifies start-up parameters for SAS Integrated Object Model (IOM) servers.

Valid in: configuration file, SAS invocation, metadata

Category: Environment control: Initialization and operation

PROC OPTIONS
GROUP=

EXECMODES (internal)

Applies to: workspace, stored process, OLAP, metadata

150 Chapter 14 • System Options for SAS Application Server Components

See: OBJECTSERVER System Option

Syntax
-objectserverparms "parameter-1, ... , parameter-n"

Syntax Description
parameter

The following table summarizes the valid parameters and where they can be used.
(1=Do not store this parameter in metadata for workspace servers and stored process
servers. The object spawner automatically adds this parameter when it starts these
servers.2=Use TIMEOUTSECONDS with OLAP servers, or stored process servers
only. TIMEOUTSECONDS does not apply to workspace servers or to metadata
servers.):

Table 14.2 OBJECTSERVERPARMS and Their Usage

Parameter Valid In

CLASSFACTORY Metadata, Command Line

CLIENTENCRYPTIONLEVEL Command Line (only)

DNSMATCH Command Line (only)

NOMETAAUTOINIT Metadata, Command Line

PORT Metadata, Command Line

PROTOCOL Metadata, Command Line

SERVER Command Line (only)

SERVICE Metadata, Command Line

TIMEOUTSECONDS Metadata, Command Line

TRUSTSASPEER Metadata, Command Line

Parameter Description
You can use the following parameters with OBJECTSERVERPARMS:

"classfactory | clsid = class-identifier"
If you want to specify an alternate class to expose as the top-level class, use
CLASSFACTORY to identify the class to IOM.

When using the SERVER object server parameter, the classfactory does not need to
be specified because it is obtained from the logical server definition in the SAS
Metadata Repository. This option is primarily used to start the SAS Metadata Server.

class-identifier
specifies the 36-character class ID number that specifies the type of server to
instantiate. (For example, 0217E202-B560-11DB-AD91-001083FF6836
specifies a SAS Metadata Server). An IOM server exposes one top-level class
through its class identifier.

OBJECTSERVERPARMS System Option 151

Valid in: Metadata, Command Line
Alias: clsid=
Default: workspace class
Restriction: Do not specify this option with spawned servers; it will be supplied

automatically by the spawner.

"clientencryptionlevel | cel = none | credentials | everything"
The CLIENTENCRYPTIONLEVEL parameter specifies the degree of encryption
for the IOM server to use when making outbound calls.

NONE
use no encryption.

CREDENTIALS
(default) encrypt only a user's credentials when establishing a client session.

EVERYTHING
encrypt all data (including a user's credentials) sent during a client session.

Valid in: Command Line (only)
Alias: cel=
Default: CREDENTIALS
Restriction: Do not specify this option with spawned servers; it will be supplied

automatically by the spawner.
Interaction: This option is used only by the bridge protocol engine.
See: “"protocol = bridge | com | (com, bridge)"” on page 153

"dnsmatch | dns"
The object spawner replaces all instances of the DNSMATCH value with the local
machine name in its list of servers. This option is necessary if your network
configuration resolves a single DNS alias to multiple machines that run SAS servers.

For example, you configure SAS OLAP servers on two different machines:
n1.my.org and n2.my.org. The DNS alias srv.my.org resolves to both of these
machines, so clients can send a request to the alias and a server on one of the two
machines will receive it. To support this configuration, specify
DNSMATCH=srv.my.org in the server start-up command on each machine.
Valid in: Command Line (only)
Alias: dns
Default:
Restriction: Do not specify this option with spawned servers; it will be supplied

automatically by the spawner, when you specify the -dnsMatch object spawner
option.

"nometaautoinit | metaautoinit"
The NOMETAAUTOINIT parameter specifies that the IOM server should not
connect back to the SAS Metadata Server during start-up in order to obtain
additional configuration information such as object server parameters and pre-
assigned libraries. In SAS 9.2 and later, IOM servers connect to the metadata server
by default (METAAUTOINIT is on).
Valid in: Metadata, Command Line
Alias: (no alias)
Default: METAAUTOINIT
Restriction: The NOMETAAUTOINIT parameter is applicable only if you have

specified your logical server with the SERVER object server parameter.

152 Chapter 14 • System Options for SAS Application Server Components

See: “Add System Options to the Workspace Server Launch Command” on page
109

"port = port-number"
The PORT parameter specifies the TCP/IP port on which the IOM bridge protocol
engine listens for client connections.

port-number
is a valid TCP/IP port number.

Valid in: Metadata, Command Line
Alias: (no alias)
Default:
Restriction: Do not specify this option with spawned servers; it will be supplied

automatically by the spawner.

"protocol = bridge | com | (com, bridge)"
The PROTOCOL parameter specifies the protocol engines to launch in server mode.
Server mode indicates that the protocol engines will listen for client connections.

BRIDGE
is a protocol engine that you can launch in server mode.

COM
is a protocol engine that you can launch in server mode.

Valid in: Metadata, Command Line
Alias: (no alias)
Default:
Restriction: Do not specify this option with spawned servers; it will be supplied

automatically by the spawner.
Tip: If you specify (com, bridge), then a multi-user server can simultaneously

support clients that use different protocols. COM is not supported on all servers.

"server = 'logical-server-name' | 'omsobj:LogicalServer/object-ID'"
The SERVER parameter can be used to retrieve many of the
OBJECTSERVERPARMS options (including PORT, PROTOCOL, and
CLASSFACTORY) from a SAS Metadata Repository.

'logical-server-name'
the logical server name for the IOM run-time and server application to use to
locate configuration information in a SAS Metadata Repository. Enclose in
single quotation marks, as shown in this example: SERVER='sasapp -
Logical OLAP'.

'omsobj:LogicalServer/object-ID'
the object definition ID that is generated for the logical server for the IOM run-
time and server application to use to locate configuration information in a SAS
Metadata Repository. Enclose in single quotation marks.

To determine the generated object ID, in SAS Management Console, select the
logical server definition, and then select File ð ð Properties from the menu bar.
Use the Uniform Resource Identifier (URI) formatted value that is shown in the
ID field as the argument for the object ID, as shown in this example:
SERVER='omsobj:LogicalServer/01234567.01234567'

Valid in: Command Line (only)
Alias: (no alias)
Default:

OBJECTSERVERPARMS System Option 153

Restriction: Do not specify this option with spawned servers; it will be supplied
automatically by the spawner.

"service = service-name"
The SERVICE parameter specifies the TCP service name for the port that the IOM
Bridge protocol engine will use to listen for connections from clients.

service-name
a valid TCP service name (for example, from /etc/services on a UNIX system).

Valid in: Metadata, Command Line
Alias: (no alias)
Default:
Restriction: Do not specify this option with spawned servers; it will be supplied

automatically by the spawner.
Interaction: Use with the IOM Bridge protocol engine.
See: “"protocol = bridge | com | (com, bridge)"” on page 153

"timeoutseconds = seconds"
The TIMEOUTSECONDS parameter specifies the time interval that an OLAP server
or a stored process server waits before it stops a client process and cleans up the
server run-time environment context.

seconds
the interval in seconds that an OLAP server or a stored process server waits
before stopping a client process. seconds is a number that is equal to or greater
than five.

Valid in: Metadata, Command Line
Alias: (no alias)
Default:
Restriction: Does not apply to the workspace servers or to the SAS metadata server.

"trustaspeer | tsaspeer = pathname"
The TRUSTSASPEER parameter enables SAS peer sessions from IOM servers to
connect as trusted peer sessions.

This parameter is valid only for the command that starts the SAS Metadata Server.
For more information, see Trusted Peer Connections in the SAS Intelligence
Platform: Security Administration Guide.

pathname
is a pathname to a file containing XML that describes the allowable trusted peer
connections, the users who can connect, and the machines from where the
connections can be established.

Enclose the pathname in single quotation marks if there is a space in the path.
For example: 'C:\SAS 9.3\FoundationServers\Lev1\SASMeta
\MetadataServer\trustedPeers.xml'.

Valid in: Metadata, Command Line
Alias: (no alias)
Default:
Restriction: This parameter is valid only for the command that starts the SAS

Metadata Server.
Interaction: If you specify a blank or empty file, then you disable trusted peer

support.

154 Chapter 14 • System Options for SAS Application Server Components

Details
All object server parameters are applicable on the command line that starts the server:

• In configuration files on z/OS, do not precede system options with a hyphen. Also,
an equal sign must precede the first parameter that follows the
OBJECTSERVERPARMS keyword. For example:

objectserver objectserverparms="cel=credentials protocol=bridge port=8561"

• For servers that are started by the object spawner, the object server parameters come
from your server definition in the SAS Metadata Repository. (The server definition is
located under the Server Manager plug-in of SAS Management Console. In the
server definition, select the Options tab to locate the Object Server Parameters
field).

• For servers that are not spawned (such as those that are run from command scripts or
those that are run as services or daemons) you use the sas -objectserver -
objectserverparms "parameters" invocation to specify the object server
parameters on the command line.

To simplify the command that is needed to invoke an IOM server, the server start-up
sequence by default connects back to the metadata server in order to fetch additional
information, including object server parameters. You can fetch object server parameters
from metadata as follows:

• When you start the server with a script, some object server parameters cannot be
obtained from the metadata. (In the preceding table, only those parameters that are
designated as “Metadata” in the “Valid In” column can be stored in the metadata.)

• When you start the server with a spawner, all object server parameters can be
obtained from the metadata.

• Certain object server parameters are automatically added by the object spawner when
it starts workspace and stored process servers. Therefore, the following parameters
should not be stored in metadata for workspace and stored process servers:
CLASSFACTORY, CLIENTENCRYPTIONLEVEL, PORT, PROTOCOL,
SERVER, and SERVICE.

Note: Object server parameters that are specified on the command line always
override object server parameters obtained from a SAS metadata repository.

Example
This example shows how the OBJECTSERVERPARMS system option can be used in a
configuration file that is used to start the metadata server:

-objectserver
-objectserverparms "cel=credentials protocol=bridge port=8561 classfactory=
0217E202-B560-11DB-AD91-001083FF6836 trustsaspeer=C:\SAS\
FoundationServers\Lev1\SASMeta\MetadataServer\trustedPeers.xml"

Note: In configuration files on z/OS, do not precede system options with a hyphen.
Also, an equal sign must precede the first parameter that follows the
OBJECTSERVERPARMS keyword. For example:

objectserver objectserverparms="cel=credentials protocol=bridge port=8561"

OBJECTSERVERPARMS System Option 155

See Also

System Options:

• “OBJECTSERVER System Option” on page 147

SECPACKAGE System Option
Identifies the security package that the IOM server uses to authenticate incoming client connections.

Valid in: configuration file, SAS invocation, metadata

Categories: Environment control: Initialization and operation
System Administration: Security

PROC OPTIONS
GROUP=

EXECMODES
SECURITY

Default: negotiate

Restriction: Windows operating environment only

See: SECPACKAGELIST System Option
SSPI System Option

Syntax
-secpackage "package-name" | " negotiate"

Syntax Description
"package-name"

specifies the security package that the IOM server should use to authenticate
incoming client connections.

Enclose the security package name within double quotation marks (").

"negotiate"
(default) enables the server to present a set of valid security packages (through the
SECPACKAGELIST system option) that the server uses to find a match with an
incoming client connection. If the client specifies a security package in the list, then
the server attempts to authenticate the client using the matched security package.

Enclose negotiate within double quotation marks (").

Details
The SECPACKAGE system option identifies the security package that the IOM server
uses to authenticate incoming client connections.

Security packages are provided by vendors. Therefore, the package names are not
validated against a list of names. Names need to be entered (casing and exact spelling)
per instructions from the vendor.

When you specify -SECPACKAGE "negotiate", the IOM server uses the
SECPACKAGELIST option to determine which package to use. SECPACKAGELIST
specifies the names of the security packages that can be used by the server to
authenticate incoming client connections. SECPACKAGE and SECPACKAGELIST are

156 Chapter 14 • System Options for SAS Application Server Components

required to support single sign-on (SSO) to IOM servers. The client should initialize
with a matching package name. Specifying an unknown package name (such as
"disable") will effectively disable SSO.

In order to use SECPACKAGE, you must also specify SSPI.

Examples

Example 1
In the following example, the IOM server specifies either Kerberos or NTLM security
for authenticating incoming client requests:

-sspi
-secpackage "negotiate"
-secpackagelist "Kerberos,NTLM"

Example 2
In the following example, the IOM server specifies Kerberos security only for
authenticating incoming client requests:

-sspi
-secpackagelist "kerberos"

In the preceding example, SECPACKAGE does not have to be specified because it
defaults to negotiate. The only protocol in the list to negotiate is Kerberos. Therefore,
all clients that connect to the server must use Kerberos or fail the connection. It is
important that the protocols of both the client and server match. The client is also forced
to use Kerberos if the server displays only Kerberos in the package list.

Example 3
In the following example, the IOM server specifies NTLM security only for
authenticating incoming client requests:

-sspi
-secpackagelist "ntlm"

In the preceding example, SECPACKAGE does not have to be specified because it
defaults to negotiate. The only protocol in the list to negotiate is NTLM. Therefore,
all clients that connect to the server must use NTLM or fail the connection. It is
important that the protocols of both the client and server match. The client is also forced
to use NTLM if the server displays only NTLM in the package list.

See Also

System Options:

• “SECPACKAGELIST System Option” on page 158

• “SSPI System Option” on page 159

Other SAS Documents:

• SAS Companion for UNIX Environments

• SAS Companion for Windows

• Configuration Guide for SAS Foundation for UNIX Environments

SECPACKAGE System Option 157

SECPACKAGELIST System Option
Specifies the security authentication packages used by the server.

Valid in: configuration file, SAS invocation, metadata

Categories: System Administration: Security
Environment control: Initialization and operation

PROC OPTIONS
GROUP=

EXECMODES
SECURITY

Default: "Kerberos,NTLM"

Restriction: Windows operating environment only

See: SECPACKAGE System Option
SSPI System Option

Syntax
-secpackagelist "package-name-1,[package-name-2,][...,]"

Syntax Description
"package-name"

Identifies the security package that is used by the server in order to authenticate
incoming client connections. The default is "Kerberos,NTLM".

Enclose the security package name within double quotation marks ("). Delimit an
additional package name with a comma (,).

Details
The SECPACKAGELIST system option, in conjunction with SECPACKAGE, identifies
to the IOM server one or more security packages that can be used to authenticate
incoming client connections. The default value of SECPACKAGELIST is Kerberos and
NTLM.

To use the SECPACKAGELIST system option, SECPACKAGE must be set to
negotiate. The IOM server requires these two security package options to support
single sign-on (SSO) to IOM servers. The connecting client should initialize with a
security package name that matches what you have specified on the server. The
negotiate value allows the client and server to negotiate a site-specific package to
use.

Examples

Example 1
In the following example, the IOM server specifies either Kerberos or NTLM security
for authenticating incoming client requests:

-sspi
-secpackage "negotiate"
-secpackagelist "Kerberos,NTLM"

158 Chapter 14 • System Options for SAS Application Server Components

Example 2
In the following example, the IOM server specifies Kerberos security only for
authenticating incoming client requests:

-sspi
-secpackagelist "kerberos"

In the preceding example, SECPACKAGE does not have to be specified because it
defaults to negotiate. The only protocol in the list to negotiate is Kerberos. Therefore,
all clients that connect to the server must use Kerberos or fail the connection. It is
important that the protocols of both the client and server match. The client is also forced
to use Kerberos if the server displays only Kerberos in the package list.

Example 3
In the following example, the IOM server specifies NTLM security only for
authenticating incoming Windows client requests:

-sspi
-secpackagelist "ntlm"

In the preceding example, SECPACKAGE does not have to be specified because it
defaults to negotiate. The only protocol in the list to negotiate is NTLM. Therefore,
all clients that connect to the server must use NTLM or fail the connection. It is
important that the protocols of both the client and server match. The client is also forced
to use NTLM if the server displays only NTLM in the package list.

See Also

System Options:

• “SECPACKAGE System Option” on page 156

• “SSPI System Option” on page 159

Other SAS Documents:

• SAS Companion for UNIX Environments

• SAS Companion for Windows

• Configuration Guide for SAS Foundation for UNIX Environments

SSPI System Option
Identifies support for the Security Support Provider Interface for SSO connections to IOM servers.

Valid in: configuration file, SAS invocation, metadata

Category: System Administration: Security

PROC OPTIONS
GROUP=

SECURITY

Default: NOSSPI

Restriction: Windows and UNIX operating environments only

See: SECPACKAGE System Option
SECPACKAGELIST System Option

SSPI System Option 159

Syntax
-sspi | -nosspi

Syntax Description
-SSPI

Support the Security Support Provider Interface (SSPI).

-NOSSPI
(Default) Do not support SSPI.

Details
Use this option to identify support for the Security Support Provider Interface for single
sign-on (SSO) connections to IOM servers.

Example
In the following example, the IOM server specifies Security Support Provider Interface
for SSO connections. By default, the IOM server uses either Kerberos or NTLM
(Windows only) security for authenticating incoming client requests:

-sspi

See Also

System Options:

• “SECPACKAGE System Option” on page 156

• “SECPACKAGELIST System Option” on page 158

Other SAS Documents:

• SAS Companion for UNIX Environments

• SAS Companion for Windows

• Configuration Guide for SAS Foundation for UNIX Environments

160 Chapter 14 • System Options for SAS Application Server Components

Chapter 15

IOMOPERATE Procedure

Overview: IOMOPERATE Procedure . 162

Concepts: IOMOPERATE Procedure . 162

Syntax: IOMOPERATE Procedure . 162
PROC IOMOPERATE Statement . 163
CONNECT Statement . 165
CONTINUE Statement . 173
DISCONNECT Statement . 173
FLUSH AUTHORIZATION CACHE Statement . 173
LIST Statement . 174
PAUSE Statement . 179
QUIESCE Statement . 179
QUIT Statement . 180
REFRESH CONFIGURATION Statement . 180
RESET PERFORMANCE Statement . 180
SET Statement . 181
STOP Statement . 182

Using: IOMOPERATE Procedure . 183
About the IOMOPERATE Procedure . 183
Connecting to an IOM Server . 183
Disconnecting from an IOM Server . 183

Examples: IOMOPERATE Procedure . 183
Example 1: Basic CONNECT Example . 183
Example 2: CONNECT Example Using Credentials . 184
Example 3: CONNECT Example Using a URI and a Class Identifier 184
Example 4: CONNECT Example Using a Logical Server Name 184
Example 5: CONNECT Example with a Server Name . 185
Example 6: CONNECT Example with a URI and Explicit Server Name 185
Example 7: CONNECT and LIST Examples Using a Spawner 185
Example 8: CONNECT Example Using Kerberos . 186
Example 9: Pausing an Object Spawner . 186
Example 10: Continuing an Object Spawner . 187
Example 11: Quiescing an Object Spawner . 187
Example 12: LIST TYPES Example . 187
Example 13: Stopping a Metadata Server . 188
Example 14: DISCONNECT Example . 189
Example 15: FLUSH AUTHORIZATION CACHE Example 189
Example 16: REFRESH CONFIGURATION Example . 189
Example 17: RESET PERFORMANCE Example . 189
Example 18: SET Example . 190

161

Overview: IOMOPERATE Procedure
The IOMOPERATE procedure administers SAS servers that support the SAS IOM
infrastructure.

Concepts: IOMOPERATE Procedure
With the exception of the workspace server, all the SAS IOM servers support the same
IOM administrative interfaces. Various procedures, such as PROC METAOPERATE
and PROC TSOPERATE, are used to administer the servers. However, these procedures
are limited to a single server type. The IOMOPERATE procedure can be used to
administer all IOM servers.

Three distinct types of commands can be issued via PROC IOMOPERATE:

• Those that perform some action on the server, such as: stopping, continuing, and
setting server attribute values.

• Those that print information about the server, such as: listing sessions, listing clients,
and listing UUIDs.

• Those that pertain only to spawners, such as: listing spawned servers and stopping
spawned servers.

These commands do not pertain to all SAS IOM servers. The commands that a particular
SAS IOM server supports depends on the underlying interfaces that the server supports.
After you connect to a server, invoke LIST COMMANDS to determine which
commands you can run on the server.

Syntax: IOMOPERATE Procedure
See: METAOPERATE, TSOPERATE

PROC IOMOPERATE;
CONNECT connect-options;
<CONTINUE (SERVER | CLUSTER); >
<DISCONNECT; >
<FLUSH AUTHORIZATION CACHE ;>
<LIST list-options; >
<PAUSE (SERVER | CLUSTER);>
<QUIESCE (SERVER | CLUSTER);>
QUIT;
<REFRESH CONFIGURATION; >
<RESET PERFORMANCE; >
<SET set-options; >
<STOP stop-options; >

162 Chapter 15 • IOMOPERATE Procedure

Statement Task Example

PROC
IOMOPERATE

Administers SAS servers that support the SAS IOM
infrastructure.

Ex. 1

CONNECT Connects to a SAS IOM server. Ex. 1

CONTINUE Continues a paused server or cluster. Ex. 10

DISCONNECT Disconnects from the current server. Ex. 14

FLUSH
AUTHORIZATI
ON CACHE

Clears the authorization cache on the connected server. Ex. 15

LIST Lists to the console various attributes of the connected
server.

Ex. 7, Ex. 12

PAUSE Suspends the connected server or cluster. Ex. 9

QUIESCE Stops the connected server or cluster when all of the
current work is finished.

Ex. 11

QUIT Terminates the IOMOPERATE procedure. Ex. 1

REFRESH
CONFIGURATI
ON

Causes the object spawner to reread its configuration from
the metadata server.

Ex. 16

RESET
PERFORMANC
E

Resets the performance metrics being tracked by the
connected server.

Ex. 17

SET Modifies various attributes of the connected server. Ex. 18

STOP Shuts down the connected server or cluster. Ex. 13

PROC IOMOPERATE Statement
Administers SAS servers that support the SAS IOM infrastructure.

Examples: “Example 1: Basic CONNECT Example” on page 183
“Example 7: CONNECT and LIST Examples Using a Spawner” on page 185
“Example 4: CONNECT Example Using a Logical Server Name” on page 184
“Example 9: Pausing an Object Spawner” on page 186
“Example 11: Quiescing an Object Spawner” on page 187
“Example 12: LIST TYPES Example” on page 187
“Example 13: Stopping a Metadata Server” on page 188

PROC IOMOPERATE Statement 163

Syntax
PROC IOMOPERATE;

CONNECT <connect-options>;
<optional-argument(s)>;

QUIT;

Required Arguments
CONNECT <connect-options>;

For more information, see “CONNECT Statement” on page 165.

QUIT;
For more information, see “QUIT Statement” on page 180.

Optional Arguments
<CONTINUE (SERVER | CLUSTER)>;

For more information, see “CONTINUE Statement” on page 173.

<DISCONNECT>;
For more information, see “DISCONNECT Statement” on page 173.

<FLUSH AUTHORIZATION CACHE>;
For more information, see “FLUSH AUTHORIZATION CACHE Statement” on
page 173.

<LIST <list-options>>;
For more information, see “LIST Statement” on page 174.

<PAUSE (SERVER | CLUSTER)>;
For more information, see “PAUSE Statement” on page 179.

<QUIESCE (SERVER | CLUSTER)>;
For more information, see “QUIESCE Statement” on page 179.

<REFRESH CONFIGURATION>;
For more information, see “REFRESH CONFIGURATION Statement” on page
180.

<RESET PERFORMANCE; >;
For more information, see “RESET PERFORMANCE Statement” on page 180.

<SET <set-options>>;
For more information, see “SET Statement” on page 181.

<STOP <stop-options>>;
For more information, see “STOP Statement” on page 182.

Details

Using PROC IOMOPERATE
The keywords PROC IOMOPERATE precede all statements.

A semicolon (;) ends each statement.

The keyword, QUIT terminates the IOMOPERATE procedure.

For a usage example, see “Example 1: Basic CONNECT Example” on page 183.

164 Chapter 15 • IOMOPERATE Procedure

CONNECT Statement
Provides the required information to establish a session with a SAS IOM server.

See: “SECPACKAGE System Option” on page 156, “SECPACKAGELIST System Option”
on page 158

Examples: “Example 1: Basic CONNECT Example” on page 183
“Example 2: CONNECT Example Using Credentials” on page 184
“Example 3: CONNECT Example Using a URI and a Class Identifier ” on page 184
“Example 4: CONNECT Example Using a Logical Server Name” on page 184
“Example 5: CONNECT Example with a Server Name” on page 185
“Example 6: CONNECT Example with a URI and Explicit Server Name” on page
185
“Example 7: CONNECT and LIST Examples Using a Spawner” on page 185
“Example 8: CONNECT Example Using Kerberos” on page 186

Syntax
CONNECT

<LOGICALSERVERNAME="logical-server-name">
<URI="uniform-resource-identifier">
<HOSTNAME="host-name">
<PORT=port>
<PROTOCOL=BRIDGE | COM>
<USERNAME="user-ID">
<PASSWORD="password">
<IOMOPTIONS="IOM-option, …">
<CLSID=class-UUID>
<SERVERTYPE=type-name>
<SPAWNED="server-UUID">
<CLUSTER NAME= "cluster-name">
<CLUSTERSERVER ID="cluster-server-UUID">
;

Optional Arguments
LOGICALSERVERNAME=

specifies the logical server to connect to. SAS returns the first successful connection.

When you specify LOGICALSERVERNAME=, SAS ignores all other CONNECT
options except for USERNAME= and PASSWORD=.

"logical-server-name"
is an alphanumeric string that is the logical name for the server that you want to
connect to.

Alias: LOGICAL=
Default: The default metadata connection for the logical server.

CONNECT Statement 165

Note: Enclose logical-server-name in quotes.
See: “Example 4: CONNECT Example Using a Logical Server Name” on page

184
Example:

logical="App Server - Logical Workspace Server"

URI=
specifies the server Uniform Resource Identifier (URI) that SAS uses to connect to
the server.

When you specify URI=, SAS ignores HOST=, PORT=, PROTOCOL=, and
IOMOPTIONS=. All connection options can be specified in the URI, but it can be
useful to separate PASSWORD= (so that it will be blotted in the log) and CLSID=
and SERVERTYPE= (so that the symbolic names can be used instead of the actual
GUIDs).

"uniform-resource-identifier"
is an alphanumeric string that is the URI for the server that you want to connect
to. A valid URI takes the form,

"iom://hostname:port"

Notes:
When URI= is specified, PORT= is not required.
Enclose uniform-resource-identifier in quotes.
The name-value pairs listed under “IOMOPTIONS=” on page 167 can be
specified as part of URI.

See: “Example 6: CONNECT Example with a URI and Explicit Server Name” on
page 185

Example:
uri="iom://myappserver1234:8581"

HOSTNAME=
specifies the machine or host to connect to. The value localhost can be used if the
SAS session is connecting to a server on the same computer.

"host-name"
specifies the host name, fully qualified host name, or IP address of the machine
hosting the server.

Alias: HOST=
Note: Enclose host-name in quotes.
See: “Example 5: CONNECT Example with a Server Name” on page 185
Example:

host="myhost.example.com"

.

PORT=
specifies the TCP port to which the specified server listens for connections (for
example, PORT=2171). This option is not required if the COM protocol is specified.
This port uses a default based on the specified CLSID= or SERVERTYPE=.

port
is a valid TCP port on the specified server.

Default: When a port is required but not specified, IOMOPERATE defaults to a
value based on the CLSID= or SERVERTYPE= .

Note: Not required when you specify PROTOCOL=COM or URI=.

166 Chapter 15 • IOMOPERATE Procedure

See: “Example 5: CONNECT Example with a Server Name” on page 185
Example:

port=2171

PROTOCOL=
specifies the network protocol for communicating with the SAS Server.

BRIDGE
specifies that the connection uses IOM Bridge protocol.

COM
specifies that the connection uses the COM protocol.

Default: BRIDGE
Note: When COM is specified, PORT= is not required.
See: “Example 3: CONNECT Example Using a URI and a Class Identifier ” on

page 184
Example:

protocol=com

USERNAME=
specifies a user ID that CONNECT uses to access the specified server. If
PROMPT is specified without quotes, then SAS prompts for a user ID.

"user-ID"
is a valid user ID that has the required privileges to access the specified server.

Alias: USERID=, USER=, UID=
Note: Enclose user-ID in quotes.
See: “Example 2: CONNECT Example Using Credentials” on page 184
Example:

uid="sasdemo"

PASSWORD=
specifies the password associated with the user ID. If _PROMPT_ is specified
without quotes, then SAS prompts for a password.

"password"
is the password associated with the specified user ID.

Alias: PASSWD=, PASS= , PWD=, PW=
Note: Enclose password in quotes.
See: “Example 2: CONNECT Example Using Credentials” on page 184
Example:

pw="mypass"

IOMOPTIONS=
specifies a string of name-value pairs to use when connecting to the server.

"IOM-option"
is a valid name-value pairs consist of the following:

CLASSFACTORY=class-UUID
specifies the type of server being connected to.

This is an optional parameter and is required only when connecting to a SAS
9.2 or earlier server. When connecting to SAS 9.3 and later servers, this
parameter can be omitted.

CONNECT Statement 167

The LIST TYPES command on page 179 displays the full name, short name,
and UUID of the known server types. Any of the UUIDs can be used with
CLASSFACTORY.

class-UUID
is a 36-character alphanumeric string that represents a valid class unique
universal identifier (UUID) for the server.

Alias: CLSID
Note: Enclose the option in quotes. Separate multiple options with a comma.
See: “Example 3: CONNECT Example Using a URI and a Class

Identifier ” on page 184
Example:

opts="clsid=0E3B1810-6646-11D5-8863-00C04F48BC53,
user=myacct,pass=mypwd"

DOMAIN=name
specifies the authentication domain in which to select credentials from the
metadata to present at connect time.

name
is an alphanumeric string that equates to a valid domain name.

Note: The value of the DOMAIN never reaches the target IOM server.
Example:

opts='servername=myserver,domain=mydomain'

ENCR=algorithm
specifies the encryption algorithm to request when connecting to the peer
identified in this IOM URI.

algorithm
is a valid encryption algorithm. Valid algorithms are:
SASPROPRIETARY, SAS/SECURE, RC2, RC4, DES, TripleDES, and
AES.

Note: Enclose the option in quotes. Separate multiple options with a comma.
Example:

opts='encr=aes,encrlvl=1,user=myusername,
pass=mypswd'

ENCRLVL=encryption-level
specifies the level of encryption requested by the client when connecting to
the peer identified in this IOM URI.

encryption-level
is a valid encryption level. Valid encryption levels are: none, credentials,
and everything.

• none: the client requests no encryption.

• credentials: the client requests to encrypt only credentials.

• everything: the client requests to encrypt every packet.

Note: Enclose the option in quotes. Separate multiple options with a comma.
Example:

opts='encr=aes,encrlvl=1,user=myusername,
pass=mypswd'

168 Chapter 15 • IOMOPERATE Procedure

INTERFACEIID=UUID

UUID
is a 36-character alphanumeric string that represents a valid UUID of the
desired interface within the object acquired.

Alias: IID
Note: Enclose the option in quotes. Separate multiple options with a comma.
Example:

opts='iid=0E3B1810-6646-11D5-8863-00C04F48BC53,
user=myusername,pass=mypswd'

LOCALE=locale-name
The value for the LOCALE option specifies the locale of the connecting peer.

locale-name
is a valid locale.

Note: Enclose the option in quotes. Separate multiple options with a comma.
Example:

opts='locale=french,
servername=SASApp - Stored Process Server'

MAJOR=major-version-number
specifies the major portion of the bridge protocol version to use.

major-version-number
is a number that represents the major (tenths) portion of the bridge
protocol version.

Note: Enclose the option in quotes. Separate multiple options with a comma.
Example: For SAS 9.3 this would be MAJOR=3 MINOR=0.

MINOR=minor-version-number
specifies the minor portion of the bridge protocol version to use.

minor-version-number
is a number that represents the minor (hundredths) portion of the bridge
protocol version. When a minor version number does not exist, use the
number zero.

Note: Enclose the option in quotes. Separate multiple options with a comma.
Example: For SAS 9.3 this would be MAJOR=3 MINOR=0.

NOREDIRECT
disables any load-balancing redirection that would be performed by the
server. Use this option with caution. It should be used only when attempting
to get an administrative connection to a load-balanced server.
Example:

opts='noredirect,
servername=SASApp - Stored Process Server'

USER=user-ID
specifies the identity to use when connecting to the peer identified in this
IOM URI.

user-ID
is a valid metadata identity with permission to access the peer.

Note: Enclose the option in quotes. Separate multiple options with a comma.
Example:

CONNECT Statement 169

opts='user=myusername,pass=mypswd,
servername=SASApp - Stored Process Server'

PASS=password
specifies the password for the identity to use when connecting to the peer
identified in this IOM URI.

password
is a valid password for the metadata identity used to access the peer.

Note: Enclose the option in quotes. Separate multiple options with a comma.
Example:

opts='user=myusername,pass=mypswd,
servername=SASApp - Stored Process Server'

SECURITYPACKAGE=package-name | NEGOTIATE
identifies the security package that the IOM server uses to authenticate
incoming client connections.

package-name
specifies the security package that the IOM server should use to
authenticate incoming client connections. Valid values are Kerberos and
NTLM.

NEGOTIATE
enables the server to present a set of valid security packages (through the
SECPACKAGELIST system option) that the server uses to find a match
with an incoming client connection. If the client specifies a security
package in the list, then the server attempts to authenticate the client
using the matched security package.

Default: NEGOTIATE
Note: Enclose the option in quotes. Separate multiple options with a comma.
See: “SECPACKAGE System Option” on page 156
Example:

opts='sspi,securitypackage=negotiate,securitypackagelist=Kerberos,NTLM'

SECURITYPACKAGELIST=package-name, …
specifies the security authentication packages used by the server.
Note: Enclose the option in quotes. Separate multiple options with a comma.

To use the SECPACKAGELIST system option, SECPACKAGE must be
set to negotiate.

See: “SECPACKAGELIST System Option” on page 158
Example:

opts='sspi,securitypackage=negotiate,securitypackagelist=Kerberos,NTLM'

SERVERNAME=server-name
specifies the name of the server to which you want to connect.

server-name
is a valid server name or a unique URI that is stored in metadata.

Note: Enclose the option in quotes. Separate multiple options with a comma.
Example:

opts='servername=SASApp - Stored Process Server,timeout=3600'

SPN=name
specifies the service principal name that the client wishes to use with this
IOM Server instance.

170 Chapter 15 • IOMOPERATE Procedure

name
is a valid service principal name.

Note: Enclose the option in quotes. Separate multiple options with a comma.
Example:

opts='spn=SAS [Config-Lev1] SASMeta - Metadata Server,timeout=3600'

SSPI
identifies support for the Security Support Provider Interface for single sign-
on (SSO) connections to IOM servers.
Note: Use SSPI in conjunction with SECURITYPACKAGE and

SECURITYPACKAGELIST.
See: “SECURITYPACKAGE=package-name | NEGOTIATE” on page

170 , “SECURITYPACKAGELIST=package-name, ” on page 170
Example:

opts='sspi,securitypackage=negotiate,securitypackagelist=Kerberos,NTLM'

TIMEOUT=milliseconds
specifies the time-out, in milliseconds, of all outcall activity.

milliseconds
a number that represents the number of milliseconds to wait before
abandoning the server connection.

Note: Enclose the option in quotes. Separate multiple options with a comma.
The value of the TIMEOUT never reaches the target IOM server.

Example:
opts='timeout=3600,servername=SASApp - Stored Process Server'

TRUSTEDSAS
indicates that the owner of the current IOM Server is to be used as the
identity when connecting to the peer identified in this IOM URI.

Alias: IOMOPTS=, OPTS=
Note: Enclose IOM-option in quotes. Separate multiple options with a comma.
See: “Example 8: CONNECT Example Using Kerberos” on page 186
Example:

opts='servername=SASApp - Stored Process Server,timeout=3600'

CLSID=
specifies the type of server being connected to.

This is an optional parameter and is required only when connecting to a SAS 9.2 or
earlier server. When connecting to SAS 9.3 and later servers, this parameter can be
omitted.

The LIST TYPES command on page 179 displays the full name, short name, and
UUID of the known server types. Any of the UUIDs can be used with CLSID.

class-UUID
is a 36-character alphanumeric string that represents a valid class UUID for the
server.

Note: When used as a connection parameter, enclose class-UUID in quotes.
See: “Example 3: CONNECT Example Using a URI and a Class Identifier ” on

page 184
Example:

clsid="0E3B1810-6646-11D5-8863-00C04F48BC53"

CONNECT Statement 171

SERVERTYPE=
specifies the type of server being connected to.

This is an optional parameter and is required only when connecting to a SAS 9.2 or
earlier server. When connecting to SAS 9.3 and later servers, this parameter can be
omitted.

The LIST TYPES command on page 179 displays the full name, short name, and
UUID of the known server types. Any of the types can be used with SERVERTYPE.

"type-name"
an alphanumeric string that represents a valid type for the server.

Alias: TYPE=
See: “Example 5: CONNECT Example with a Server Name” on page 185
Example:

type=storedprocess

SPAWNED=
specifies the UUID of a spawned server.

This parameter is valid only when connecting to an object spawner. It has the effect
of connecting through the spawner to the spawned server.

"UUID"
is a 36-character alphanumeric string that represents a valid UUID (unique
universal identifier) for the spawner.

Alias: LAUNCHED=
Note: Enclose UUID in quotes. Because you are connecting to the object spawner,

any other connection options that follow (like PORT=, TYPE=, and so on) refer
to the spawner.

See: “Example 7: CONNECT and LIST Examples Using a Spawner” on page 185
Example:

spawned="E3D5D132-5DC0-46CB-A4FD-713098B1EE95"

CLUSTER NAME=
specifies the name of a cluster to connect to on the given server. This is useful when
connecting to a load balanced server.

"cluster-name"
is the name of the cluster.

Alias: CLUSTER=
Note: Enclose cluster-name in quotes.
Example:

cluster="SASApp - Logical Stored Process Server"

.

CLUSTERSERVER ID=
specifies the UUID of the server in the given cluster to connect to.

"cluster-server-UUID"
a 36-character alphanumeric string that represents a valid UUID for a server in
the cluster.

Alias: CLUSTERSERVER=
Requirement: You must also use the CLUSTER NAME= argument.
Note: Enclose cluster-server-UUID in quotes.
Example:

172 Chapter 15 • IOMOPERATE Procedure

clusterserver="15931e31-667f-11d5-8804-00c04f35ac8c"

CONTINUE Statement
Continues a paused server or cluster.

Requirement: You must be the owner of the server or cluster process or have the administer
permission in SAS metadata for the server or cluster.

Example: “Example 10: Continuing an Object Spawner” on page 187

Syntax
CONTINUE

SERVER | CLUSTER;

Required Arguments
SERVER

continues a paused server.

CLUSTER
continues a paused cluster.

DISCONNECT Statement
Terminates the session with the currently connected server.

See: “QUIT Statement” on page 180

Example: “Example 14: DISCONNECT Example” on page 189

Syntax
DISCONNECT;

Without Arguments
terminates the session with the currently connected server.

FLUSH AUTHORIZATION CACHE Statement
Clears the authorization cache on the connected server.

Requirement: You must be the owner of the server or cluster process or have the administer
permission in SAS metadata for the server.

Example: “Example 15: FLUSH AUTHORIZATION CACHE Example” on page 189

Syntax
FLUSH AUTHORIZATION CACHE;

FLUSH AUTHORIZATION CACHE Statement 173

Without Arguments
clears the authorization cache on the connected server.

Alias: FLUSH AUTH

LIST Statement
Lists to the console various attributes of the connected server.

Examples: “Example 7: CONNECT and LIST Examples Using a Spawner” on page 185
“Example 12: LIST TYPES Example” on page 187

Syntax
LIST

<ABANDONED SERVERS <FILTER=string><OUT=data-set-name>>;
<ATTRIBUTES <CATEGORY=category><NAME=name><FILTER=string><VERBOSE>>;
<CATEGORIES <OUT=data-set-name>>;
<CLASSIDS <OUT=data-set-name>>;
<CLIENTS <OUT=data-set-name>>;
<CLUSTERS <OUT=data-set-name>>;
<COMMANDS <OUT=data-set-name>>;
<CONTROL INFORMATION <OUT=data-set-name>>;
<DEFINED SERVERS <VERBOSE><FILTER=string><OUT=data-set-name>>;
<DNSNAME <OUT=data-set-name >>;
<INFORMATION <OUT=data-set-name>>;
<LOG <FILTER="filter">< OUT=data-set-name>>;
<LOG CONFIGURATION <OUT=data-set-name>>;
<NAME <OUT=data-set-name>>;
<PERFORMANCE <OUT=data-set-name>>;
<SERVERTIME <OUT=data-set-name>>;
<SESSIONS <OUT=data-set-name>>;
<SPAWNED SERVERS <FILTER= string>< OUT=data-set-name>>;
<STATE <OUT=data-set-name>>;
<TYPES <OUT=data-set-name>>;
<UNIQUEID <OUT=data-set-name>>;

Optional Arguments
ABANDONED SERVERS

lists servers that were abandoned by the object spawner. You can use
ABANDONED SERVERS only when you are connected to an object spawner.

ABANDONED SERVERS returns the logical name, server component name, server
class UUID, process owner user ID, and the unique ID of the server as known by the
spawner.

FILTER=
specifies a substring that is matched against logical name and server component
name.

174 Chapter 15 • IOMOPERATE Procedure

The LIST statement returns only those servers with logical or component names
matched by the filter.

string
is an alphanumeric string that attempts to match server logical or component
names.
Note: The filter does not support wildcard characters. The search is case-

insensitive.

OUT=
writes LIST statement output to a SAS data set.

data-set-name
is the name of a valid SAS data set or the form libname.data-set-name.
data-set-name can be a regular data set name or take the form:
libname.datasetname.

SAS creates the data set if it does not exist and overwrites it if it does exist.
There is no requirement on location. If you can successfully reference the
data set in a SAS DATA STEP statement, then you can use the data set here.
Requirement: You must have the proper permissions to write the data set.
Note: There is no requirement about where the data set is located.

Alias: ABANDONED

ATTRIBUTES
lists the attributes of the connected server.

CATEGORY=
specifies an attribute category used to match a list of server attributes

category
is an alphanumeric, case-sensitive string that represents a valid attribute
category.

Alias: CAT=
Default: Appenders, Counters, Information, Loggers, and Properties.
Note: You must also specify a category when using NAME=.
Example:

list attrs cat = "Counters";

NAME=
specifies a name used to match a specific attribute name.

name
is an alphanumeric, case-sensitive string that represents a valid attribute
name.

Note: You must also specify a category when using NAME=.
Example:

list attrs cat = "Information" name = "Server.ProcessIdentifier";

FILTER=
specifies a string used to match a specific attribute name.

string
is an alphanumeric, case-sensitive string that attempts to match server
attribute categories.
Notes:

LIST Statement 175

For all categories, the filter only returns a match if the specified string
ends with a period. For example, the filter string App will return a match
for App.Program.
FILTER attempts to match attributes across all categories, unless you also
specify CATEGORY= to narrow the match to one category.

Example:
list attrs filter = "Server.";

VERBOSE
indicates that type, description, and the writability of the attribute should be
returned in addition to attribute name and value.

Alias: ATTRS
Requirement: You must be the owner of the server or cluster process or have the

administer permission in SAS metadata for the server to see all attributes.

CATEGORIES
lists the attribute categories that are supported by the connected server.

CLASSIDS
lists the class UUIDs supported by the connected server.
Alias: CLSIDS

CLIENTS
lists the clients that are currently connected to the server.

CLUSTERS
lists the load-balanced clusters defined in the connected server.

COMMANDS
lists all of the commands that are available based on the IOM interfaces supported by
the connected server.

CONTROL INFORMATION
lists some of the operations supported by the connected server.
Alias: CONTROL INFO

DEFINED
lists the servers defined in the connected server. If connected to an object spawner,
this argument lists the servers that the spawner can launch.

FILTER=
specifies a substring that is matched against logical name and server component
name.

string
is an alphanumeric string that attempts to match server logical or component
names.
Note: The filter does not support wildcard characters. The search is case-

insensitive.

Alias: SERVERS, DEFINED SERVERS

DNSNAME
lists the domain name service (DNS) facility of the connected server.

INFORMATION
lists some information about the connected server.
Alias: INFO

LOG
attempts to list the current log from the connected server.

176 Chapter 15 • IOMOPERATE Procedure

FILTER=
specifies the filter with which a match is attempted.

If no filter is specified, then "columns=message" is used as the default.

"filter"
is a series of name-value pairs that are delimited by spaces. Valid name-value
pairs are as follows:

name=logger-name
specifies a logger.
Default: When name= is not specified, all loggers are listed.
Example:

list log filter=’name=App.Server.Logger’

start=ddmmmyyyy:hh:mm:ss
specifies the starting date and time of log entries to be listed.
Example:

list log filter="start=01aug2011:08:00:00 name=App.Server.Logger"

end=ddmmmyyyy:hh:mm:ss
specifies the ending date and time of log entries to be listed.
Default: When end= is not specified, the current date and time is used.
Example:

list log filter='end=31aug2011:17:00:00 name=App.Server.Logger'

level=<TRACE>, <DEBUG>, <INFO>, <WARN>, <ERROR>, <FATAL>
specifies the log level of log entries to list.
Default: When level= is not specified, all levels are listed.
Example:

LIST LOG filter="level=warn,error name=App.Server.Logger"

threshold=<TRACE> | <DEBUG> | <INFO> | <WARN> | <ERROR> |
<FATAL>

specifies the minimum level of log entries to list.
Note: The value level= takes precedence over threshold=. When

threshold= is not used, all levels are listed.
Example:

list log filter="threshold=error name=App.Server.Logger"

"columns=(<name>, <level>, <message>, <datetime>)"
specifies one or more logger columns to list.
Default: When no column name is specified, message is the default.
Example:

list log filter='columns=(name,datetime) name=App.Server.Logger'

LOG CONFIGURATION
lists the baseline configuration being used by the logging system in the connected
server.

LOG CONFIGURATION does not list modifications that might have been made by
code or by submitting a partial configuration file.
Alias: LOG CONFIG, LOG CFG
Note: The configuration is transcoded into the current session locale and, if it is

printing to the log, the output is in XML format.

NAME
lists the name of the connected server.

LIST Statement 177

PERFORMANCE
lists the following performance metrics for the connected server:

TotalRealExecutionTime total time spent on calls.

TotalSystemCPUTime total system CPU time spent on calls.

TotalUserCPUTime total user CPU time spent on calls.

TotalCalls total calls to the server.

ElapsedObjectTime elapsed time since the server object was launched.

ElapsedServerTime elapsed time since the server object was last started.

Status current state of server. The potential states are:

NotStarted 0 Server is still being configured by an administrator.

StartPendi
ng

1 Server has received start command but has not finished processing it.

Running 2 Server has been started and is accepting all requests.

PausePendi
ng

3 Server has received pause command but has not finished processing
it.

Paused 4 Server has been paused and is not accepting new work.

ContiuePen
ding

5 Server has received continue command but has not finished
processing it.

DeferredSt
op

6 Server is not accepting new sessions and will stop when all client
work is complete.

StopPendin
g

7 Server is not accepting new work and is in the process of shutting
down.

Stopped 8 Server is down.

Alias: PERF

SERVERTIME
lists the current time as it is known by the connected server.
Alias: STIME

SESSIONS
lists the active sessions in the connected server.

SPAWNED SERVERS
lists the servers that have been spawned by this spawner. This option is supported
only when the specified server is connected to an object spawner.

FILTER=
specifies a substring that is matched against logical name and server component
name. The LIST statement returns only those servers with logical or component
names matched by the filter.

string
is an alphanumeric string that attempts to match server logical or component
names.

178 Chapter 15 • IOMOPERATE Procedure

Note: The filter does not support wildcard characters. The search is case-
insensitive.

Alias: SPAWNED, LAUNCHED

STATE
lists the state of the connected server.

TYPES
lists the server types known to IOMOPERATE.

LIST TYPES prints the server name, short name, and class UUID for each server
known by IOMOPERATE. Any of these can be passed as the TYPE= on page 172
parameter when connecting to a server.
Note: LIST TYPES does not require a connection. It is a client-side operation and

only lists the server types that PROC IOMOPERATE knows about.

UNIQUEID
lists the UUID for the server.

PAUSE Statement
Suspends the connected server or cluster.

Requirement: You must be the owner of the server or cluster process or have the administer
permission in SAS metadata for the server or cluster.

Example: “Example 9: Pausing an Object Spawner” on page 186

Syntax
PAUSE

SERVER | CLUSTER;

Required Arguments
SERVER

suspends the connected server.

CLUSTER
suspends the connected cluster.

QUIESCE Statement
Stops the connected server or cluster once all of the current work is finished.

Requirement: You must be the owner of the server or cluster process or have the administer
permission in SAS metadata for the server or cluster.

Note: When QUIESE is executed, the server or cluster does not interrupt work currently
being done, but no new client requests are accepted.

Example: “Example 11: Quiescing an Object Spawner” on page 187

QUIESCE Statement 179

Syntax
QUIESCE

SERVER | CLUSTER;

Required Arguments
SERVER

stops the connected server when all of the current work is finished.

CLUSTER
stops the connected cluster when all of the current work is finished.

QUIT Statement
Terminates the IOMOPERATE procedure.

See: “DISCONNECT Statement” on page 173

Example: “Example 1: Basic CONNECT Example” on page 183

Syntax
QUIT;

Without Arguments
causes SAS to execute an automatic server disconnect.

Note: It is not necessary to explicitly disconnect from the server before terminating the
procedure.

REFRESH CONFIGURATION Statement
Causes the object spawner to reread its configuration from the metadata server.

Example: “Example 16: REFRESH CONFIGURATION Example” on page 189

Syntax
REFRESH CONFIGURATION;

Without Arguments
causes the spawner to reread its configuration from the metadata server.

Alias: REFRESH CONFIG
Note: Available only when connected to an object spawner.

RESET PERFORMANCE Statement
Resets the performance metrics being tracked by the connected server.

180 Chapter 15 • IOMOPERATE Procedure

Example: “Example 17: RESET PERFORMANCE Example” on page 189

Syntax
RESET PERFORMANCE;

Without Arguments
resets the performance metrics being tracked by the connected server.

Alias: RESET PERF

SET Statement
Modifies various attributes of the connected server.

Example: “Example 18: SET Example” on page 190

Syntax
SET

<ATTRIBUTE CATEGORY=category NAME=name VALUE=value>;
<LOG CONFIGURATION=file-reference | "path">;

Optional Arguments
ATTRIBUTE CATEGORY=

sets the value of an attribute of the connected server.

category
is an alphanumeric string that represents a valid category to which the attribute
belongs.

Alias: ATTR CAT=

NAME=
sets the value of the name attribute for the connected server.

name
is an alphanumeric string that represents the valid name for the attribute being
set.

VALUE=
This command sets the value of an attribute of the connected server.

value
is an alphanumeric string that represents the value to which the attribute is being
set.

Alias: VAL=

LOG CONFIGURATION=
is used to set a SAS logging facility configuration file on the connected server. This
file can be a partial configuration or a complete replacement configuration. For more
information, see SAS Logging: Configuration and Programming Reference.

file-reference
is a valid logging appender reference.

SET Statement 181

"path"
is a valid path.

Alias: LOG CONFIG=, LOG CFG=

STOP Statement
Shuts down the connected server or cluster.

Requirement: You must be the owner of the server or cluster process or have the administer
permission in SAS metadata for the server or cluster.

Example: “Example 13: Stopping a Metadata Server” on page 188

Syntax
STOP

<(SERVER | CLUSTER);>
<SESSION ID=session-ID <CLUSTERSERVER=cluster-server-ID>>;
<SPAWNED SERVER ID=server-ID>;

Optional Arguments
SERVER

stops the currently connected server.

CLUSTER
stops the currently connected cluster.

SESSION ID=
stops a session in the currently connected server.

session-ID
is a UUID that is a valid session identifier.

CLUSTERSERVER ID=
stops a session in the currently connected cluster.

cluster-server-UUID
is a valid UUID (unique universal identifier) for the cluster.

Alias: CLUSTERSERVER=

SPAWNED SERVER ID=
stops a spawned server.

server-UUID
is a valid UUID (unique universal identifier) for the server.

Alias: SPAWNED ID=, LAUNCHED ID=
Note: This option is supported only when connected to an object spawner.

182 Chapter 15 • IOMOPERATE Procedure

Using: IOMOPERATE Procedure

About the IOMOPERATE Procedure
The IOM infrastructure provides basic administration interfaces that can be used by
server implementations. These interfaces are common across many (if not all) of the
SAS IOM servers.

Connecting to an IOM Server
You establish a connection to a running SAS IOM Server by providing connection
information about the PROC IOMOPERATE statement or by running the CONNECT
command. All other IOMOPERATE commands require a connection to an IOM Server.
Once connected, all subsequent commands apply to that server until a DISCONNECT or
STOP SERVER command is executed.

Disconnecting from an IOM Server
After you have disconnected from the server, the only other command that you can
execute is the CONNECT command to connect to another (or the same) server. When
the IOMOPERATE procedure is terminated with the QUIT command, an automatic
server disconnect is executed. It is not necessary to explicitly disconnect from the server
before terminating the procedure.

Examples: IOMOPERATE Procedure

Example 1: Basic CONNECT Example

Basic CONNECT Example

This is one example of how you might connect to a SAS object spawner:

PROC IOMOPERATE;
 CONNECT uri='iom://itsvista16234:8571;Bridge;
 USER=sasiom1,
 PASS=mypassword'
 servertype=OBJECTSPAWNER;
 LIST COMMANDS;
QUIT;

Example 1: Basic CONNECT Example 183

Example 2: CONNECT Example Using Credentials

CONNECT Example Using Credentials

The following example demonstrates how to include a user ID and its password to
connect to a SAS object spawner:

PROC IOMOPERATE;
 CONNECT host='itsvista16234'
 port=8571
 user='sasiom1'
 pass='mypassword'
 servertype=OBJECTSPAWNER;
 LIST COMMANDS;
QUIT;

Example 3: CONNECT Example Using a URI and a Class Identifier

CONNECT Example Using a URI and a Class Identifier

In the following example, a URI and class identifier is specified to identify the server to
connect to:

PROC IOMOPERATE
 uri='iom://itsvista16234:8571;Bridge;
 CLSID="0E3B1810-6646-11D5-8863-00C04F48BC53",
 USER=sasiom1,
 PASS=mypassword'
 LIST COMMANDS;
QUIT;

Example 4: CONNECT Example Using a Logical Server Name

CONNECT Example Using a Logical Server Name

The following example shows how you can use a logical server name to identify a server
to connect to:

options metaserver="visat64"
 metaport=8561
 metauser="sasadm@saspw"
 metapass="********";
proc iomoperate logical="9.3 WIN App Server - Logical Workspace Server";
 list info;
quit;

184 Chapter 15 • IOMOPERATE Procedure

Example 5: CONNECT Example with a Server Name

CONNECT Example with a Server Name

The following example shows how you can use a server name to identify the server to
connect to. An explicit server name is required when there are multiple servers listening
on the same spawner port:

PROC IOMOPERATE;
 CONNECT host='itsvista16234'
 port=8591
 user='sasiom1'
 pass='mypassword'
 servertype=STOREDPROCESS
 iomoptions='SERVERNAME=SASApp - Stored Process Server';
 LIST COMMANDS;
QUIT;

Example 6: CONNECT Example with a URI and Explicit Server Name

CONNECT Example with a URI and Explicit Server Name

The following example uses a URI and a server name to identify the server to connect
to:

PROC IOMOPERATE
 uri="iom://itsvista16234:8591;Bridge;
 USER=sasiom1,
 SERVERNAME=SASApp - Stored Process Server"
 pass='mypassword'
 servertype=STOREDPROCESS;
 LIST COMMANDS;
QUIT;

Example 7: CONNECT and LIST Examples Using a Spawner

CONNECT and LIST Examples Using a Spawner

The following example demonstrates how you might use a combination of the LIST and
CONNECT statements to connect to a SAS object spawner.

You can use LIST to obtain a list of the SAS servers that have been spawned on the local
host:

PROC IOMOPERATE uri="iom://localhost:8581;Bridge;
 USER=mydomain\admin,PASS=********" type=OBJECTSPAWNER;
 LIST SPAWNED SERVERS;
QUIT;

Example 7: CONNECT and LIST Examples Using a Spawner 185

SAS returns output similar to the following:

Server 0
 Logical name : SASApp - Logical Stored Process Server
 Server component : SASApp - Stored Process Server
 Server class : 15931E31-667F-11D5-8804-00C04F35AC8C
 Process owner : admin@MYDOMAIN
 Server id : E3D5D132-5DC0-46CB-A4FD-713098B1EE95

From the output, you can use the server ID to identify the server, and the TYPE=
argument to specify that you want to connect to the object spawner:

PROC IOMOPERATE
 uri="iom://localhost:8581;Bridge;
 USER=mydomain\admin,PASS=********"
 type=OBJECTSPAWNER
 spawned="E3D5D132-5DC0-46CB-A4FD-713098B1EE95";
LIST LOG;
LIST INFORMATION;
/* Other administration actions here */
QUIT;

Example 8: CONNECT Example Using Kerberos

CONNECT Example Using Kerberos

The following example demonstrates how you can use Kerberos to make a secure
connection.

PROC IOMOPERATE;
 CONNECT host='myhost.example.com'
 port=4001;
QUIT;
Note: host - metadata host name, port - workspace port
/* Using security package and securitypackagelist for kerberos */
PROC IOMOPERATE;
 CONNECT host='myhost.example.com'
 port=4001
 IOMOPTS='SECURITYPACKAGE=Negotiate,SECURITYPACKAGELIST=Kerberos';
QUIT;

Example 9: Pausing an Object Spawner

Pausing an Object Spawner

The following command pauses the object spawner located on machine, myserver03.

PROC IOMOPERATE;
 CONNECT host='myserver03'
 port=8581

186 Chapter 15 • IOMOPERATE Procedure

 user='sasadmin'
 pass='xxxxxxx'
 servertype=OBJECTSPAWNER;
 PAUSE SERVER;
QUIT;

Example 10: Continuing an Object Spawner

Continuing an Object Spawner

The following command continues the paused object spawner located on machine,
myserver03.

PROC IOMOPERATE;
 CONNECT host='myserver03'
 port=8581
 user='sasadmin'
 pass='xxxxxxx'
 servertype=OBJECTSPAWNER;
 CONTINUE SERVER;
QUIT;

Example 11: Quiescing an Object Spawner

Quiescing an Object Spawner

The following command quiesces the object spawner located on machine, myserver03.

PROC IOMOPERATE;
 CONNECT host='myserver03'
 port=8581
 user='sasadmin'
 pass='xxxxxxx'
 servertype=OBJECTSPAWNER;
 QUIESCE SERVER;

Example 12: LIST TYPES Example

LIST TYPES Example

The following command:

PROC IOMOPERATE;
 LIST TYPES;
QUIT;

Returns output similar to the following:

Example 12: LIST TYPES Example 187

1 PROC
1 ! IOMOPERATE;
2 LIST TYPES;

DataFlux Authentication Server
 Short type name : DataFluxAuth
 Class identifier : 2d1bcdbf-f900-4ca9-85f6-95ecdbaf2122

SAS Metadata Server
 Short type name : Metadata
 Class identifier : 0217e202-b560-11db-ad91-001083ff6836

SAS Object Spawner
 Short type name : ObjectSpawner
 Class identifier : 0e3b1810-6646-11d5-8863-00c04f48bc53

SAS OLAP Server
 Short type name : OLAP
 Class identifier : f3f46472-1e31-11d5-87c2-00c04f38f9f6

SAS Pooled Workspace Server
 Short type name : PooledWorkspace
 Class identifier : 620963ee-32bf-4128-bf5f-4b0df8ff90eb

SAS Stored Process Server
 Short type name : StoredProcess
 Class identifier : 15931e31-667f-11d5-8804-00c04f35ac8c

SAS Workspace Server
 Short type name : Workspace
 Class identifier : 440196d4-90f0-11d0-9f41-00a024bb830c
NOTE: The LIST TYPES command completed.
3 QUIT;

Example 13: Stopping a Metadata Server

Stopping a Metadata Server

The following command shuts down the metadata server named metadata01.

PROC IOMOPERATE;
 CONNECT host='metadata01'
 port=8561
 user='sasadmin'
 pass='xxxxxxx'
 STOP SERVER;
QUIT;

188 Chapter 15 • IOMOPERATE Procedure

Example 14: DISCONNECT Example

DISCONNECT Example

The follow example shows how using DISCONNECT enables you to embed several
commands to multiple servers in one PROC IOMOPERATE statement:

proc iomoperate;

 connect uri=”iom://myserver01.example.com:5555;Bridge”;
 list defined servers;

 disconnect;

 connect uri=”iom://myserver02.example.com:1111;Bridge”;
 list attrs;

quit;

Example 15: FLUSH AUTHORIZATION CACHE Example

FLUSH AUTHORIZATION CACHE Example

The following example shows how to flush a server’s authorization cache:

proc iomoperate uri="iom://myserver01.example.com:5555;Bridge;
USER=myuserid,PASS=mypassword";
flush authorization cache;
quit;

Example 16: REFRESH CONFIGURATION Example

REFRESH CONFIGURATION Example

The following example shows how to refresh a server’s configuration:

proc iomoperate uri="iom://myserver01.example.com:8581;Bridge;
USER=myuserid,PASS=mypassword";
refresh configuration;
quit;

Example 17: RESET PERFORMANCE Example

RESET PERFORMANCE Example

The following example shows how to reset a server’s performance metrics:

Example 17: RESET PERFORMANCE Example 189

proc iomoperate uri="iom://myserver01.example.com:8581;Bridge;
USER=myuserid,PASS=mypassword";
reset performance;
quit;

Example 18: SET Example

SET Example

The following example shows how to set the Audit.Authentication logger level to
DEBUG.

proc iomoperate uri="iom://myserver01.example.com:8581;Bridge;
USER=myuserid,PASS=mypassword";
set attribute category="Loggers" name="Audit.Authentication" value="DEBUG";
quit;

190 Chapter 15 • IOMOPERATE Procedure

Part 5

Appendixes

Appendix 1
Object Spawner and SAS OLAP Server Messages 193

191

192

Appendix 1

Object Spawner and SAS OLAP
Server Messages

Object Spawner Messages . 193

Load Balancing Error Messages . 207

Object Spawner Messages
Here are messages that might be reported by the object spawner and explanations to
correct their cause. You will find some of these messages only in the object spawner log.
Some are error messages, and some are informational messages. For more information
about changing the spawner logging level, see “Configure Object Spawner Logging” on
page 116. If you are unable to resolve any errors, contact SAS Technical Support.

• The object spawner is currently running in session <sessionID>.

Explanation:
The object spawner was started from a command line and is not able to launch
processes because of Windows security constraints.

Resolution:
Run the spawner as a service.

• The launch of the server process failed with an unknown status code.

Explanation:
The process returned an unknown error code.

Resolution:
Contact SAS Technical Support.

• The launch of the server process failed due to an invalid or unaccessible SYSIN file.

Explanation:
The server was started with the SYSIN option, and the spawner either could not
access or locate the SYSIN file.

Resolution:
Check the path to make sure that it is correct, or remove the SYSIN option.

• The launch of the server process failed due to an invalid or unaccessible
AUTOEXEC file.

Explanation:
The autoexec file specified for the process is invalid or cannot be accessed.

193

Resolution:
Check that the autoexec file exists. Check the permissions on the file, and make
sure that the server identity has access to the file.

• The launch of the server process failed due to an invalid or unaccessible LOG file.

Explanation:
The server was started with a -log option that contained a path or a file that could
not be accessed by the server.

Resolution:
Check the path and make sure that it is correct and that the server identity has
access to it.

• The launch of the server process failed due to a problem with the processing of the
SAS logging facility configuration file (LOGCONFIGLOC).

Explanation:
The file specified for the -logconfigloc option cannot be processed. Either it is
invalid, or it cannot be accessed.

Resolution:
Make sure that the server identity has access to this file, and that the filename is
correct.

• The launch of the server process failed because the process ran out of memory.

Explanation:
The server has run out of memory during initialization.

Resolution:
If the server has been started with the -memsize option, either remove it, or
choose a higher value.

• The launch of the server process failed because the SAS kernel could not be loaded.

Explanation:
For some reason, the SAS kernel cannot be loaded.

Resolution:
Contact SAS Technical Support.

• The launch of the server process failed due to an invalid or unaccessible PRINT file.

Explanation:
The server was started with a PRINT file that cannot be accessed.

Resolution:
Check the option to make sure that the file specified is accessible to the server
identity.

• The launch of the server process failed because of a SAS kernel initialization failure.

Explanation:
For some reason, the SAS kernel cannot initialize.

Resolution:
Check the command line of the server to make sure that there are no invalid
command line options. Also check any configuration files that are used to make
sure that they are correct.

• The launch of the server process failed because of an invalid or unaccessible
SASHELP library.

Explanation:
The SASHELP library cannot be accessed as configured.

194 Appendix 1 • Object Spawner and SAS OLAP Server Messages

Resolution:
Check the command line or configuration files where this library is specified and
make sure that the library is accessible to the server identity.

• The launch of the server process failed because of an invalid or unaccessible
SASUSER library.

Explanation:
The SASUSER library cannot be accessed as configured.

Resolution:
Check the command line or configuration files where this library is specified and
make sure that the library is accessible to the server identity.

• The launch of the server process failed because of an invalid or unaccessible WORK
library.

Explanation:
The WORK library cannot be accessed as configured.

Resolution:
Check the command line or config files where this library is specified and make
sure that the library is accessible to the server identity.

• The launch of the server process failed because either SASUSER, SASHELP, or
WORK was not defined.

Explanation:
The SASUSER, SASHELP, or WORK library was not defined.

Resolution:
Check the command line or configuration files and ensure that these libraries are
defined.

• The launch of the server process failed because of the failure to load required
formats.

Explanation:
SAS cannot load formats.

Resolution:
Check the configuration containing the format specification, or contact SAS
Technical Support.

• The launch of the server process failed due to a site validation problem.

Explanation:
There is a problem with the server SETINIT.

Resolution:
Contact SAS Technical Support.

• The launch of the server process failed due to an invalid command line option.

Explanation:
There is an invalid command line option on the server.

Resolution:
Check the command and correct the option.

• The launch of the server process failed due to an I/O initialization failure.

Explanation:
A subsystem failed to initialize, preventing the process from handling input and
output functions.

Object Spawner Messages 195

Resolution:
Contact SAS Technical Support.

• The launch of the server process failed due to the YZL subsystem failing to initialize.

Explanation:
The YZL subsystem failed to initialize.

Resolution:
Contact SAS Technical Support.

• The launch of the server process failed due to the YX subsystem failing to initialize.

Explanation:
The YX subsystem failed to initialize.

Resolution:
Contact SAS Technical Support.

• The launch of the server process failed because of an invalid or unaccessible
CONFIG file.

Explanation:
The configuration file specified for the server is not accessible.

Resolution:
Make sure that the file exists and that it is accessible by the server identity.

• Spawned servers must allow for at least two threads. The specified value of 1 will be
ignored, and a value of 2 will be used for THREADSMAX.

Explanation:
Servers that are spawned by the object spawner, including workspace, stored
process, and pooled workspace servers must have at least two threads in order to
function correctly. If the server starts with a threadsmax option of less than 2, the
value will be forced to be 2.

Resolution:
Either remove the threadsmax option, or to set it to a value higher than2 .

• The version of server ServerName (MajorVersion.MinorVersion) as specified in
metadata does not match the current running version (MajorVersion.MinorVersion).
Some features might not be available.

Explanation:
There is a mismatch between the compiled version of the software and the major
and minor values stored in the ServerName component.

Resolution:
This message does not indicate a problem, but is meant to inform you of this
version mismatch. To resolve this message, update your SAS software with the
latest version.

• The server ServerName (ServerOMR-ID) cannot be started with the -encryptfips
option, because this version (MajorVersion.MinorVersion) does not support this
option.

Explanation:
The specified server is an earlier version of SAS and does not support the -
encryptfips option. The server will start, but -encryptfips is ignored.
The object spawner still requires that the server use AES.

Resolution:
Update your SAS software with the latest version.

196 Appendix 1 • Object Spawner and SAS OLAP Server Messages

• The configuration source value conflicts with the previously specified configuration
source value.

Explanation:
Multiple configuration files have been specified for the object spawner.

Resolution:
Check your configuration and ensure that only a single configuration option is
used for your object spawner.

• Unable to retrieve the name definition or definitions.

Explanation:
The object or objects specified could not be found.

Resolution:
Check your configuration and command line and try again.

• The server named name is not unique to the listen port. Therefore, only the first
occurrence of this server will be used.

Explanation:
Two or more servers have been defined to use the same listen port. The object
spawner is unable to distinguish between these two servers that are defined on
the same port. Therefore, only the first server defined on this port will be used by
the object spawner.

Resolution:
Check your configuration and change the port for the server listed in this
message.

• Objspawn was unable to initiate the listen on port.

Explanation:
The object spawner could not listen on the specified port. In most cases this
means that the port is already in use.

Resolution:
Check to see that no other application is currently using the specified port.
Alternatively, update the port that the object spawner is trying to use to a port
that is not currently being used.

• Port is reserved for objspawn administration and cannot be used as a server listen
port.

Explanation:
The object spawner cannot use the same port for administration, also known as
the operator port, and as a server listen port.

Resolution:
Check you configuration and ensure that the operator port for the object spawner
and the ports for all servers are different.

• Port is reserved for objspawn to launched server communication. Therefore, this
server definition will not be included.

Explanation:
The specified port is being used by the object spawner for internal
communication and cannot be used as a server listen port.

Resolution:
Change the specified port for this server to a different port.

Object Spawner Messages 197

• Port is reserved for UUID Generator requests. Therefore, this server definition will
not be included.

Explanation:
The specified port is being used by the object spawner to fulfill UUID generator
requests. It cannot be used as a server listen port.

Resolution:
Update the port for the server or the UUID generator so that these services are
defined on different ports.

• No configuration was specified.

Explanation:
No configuration information can be found for the object spawner.

Resolution:
Check the command line and make sure that some configuration option was
specified for the object spawner.

• The SAS Metadata Server configuration file failed to process.

Explanation:
There is a problem in the object spawner's configuration file

Resolution:
Check the configuration file to make sure it is correct. Contact Tech Support for
assistance.

• The metadata returned from the SAS Metadata Server was empty and failed to
process. This could be due to there being no spawner definition in the metadata for
this machine. Or, if the spawner name was specified, the name specified did not
match any spawner definitions in the metadata. A spawner definition for this
machine did not exist in the processed configuration. Objspawn cannot continue
without a spawner definition. The name spawner definition did not exist in the
processed configuration. Objspawn cannot continue without a spawner definition.

Explanation:
No object spawner definition can be found in the metadata.

Resolution:
Ensure that an object spawner definition exists in the metadata. If command -
sasspawnercn or -sscoption is used on the command line, ensure that an
object spawner definition of that name exists in the metadata.

• An unknown option name was specified

Explanation:
The specified option is unknown to the object spawner.

Resolution:
Check your command line or configuration for this option and remove it. Contact
Tech Support for assistance.

• The attribute name was specified more than once. The previously specified value
will be used.

Explanation:
The attribute or option was found multiple times in the configuration source. The
first instance will be used.

198 Appendix 1 • Object Spawner and SAS OLAP Server Messages

Resolution:
Check your configuration for this attribute and only specify it once.

• The value (value) specified for the attribute name is invalid. The value must be
corrected for Objspawn to initialize properly.

Explanation:
The attribute has an invalid value.

Resolution:
Correct the attribute's value and restart the object spawner.

• Objspawn encountered errors during results processing.

Explanation:
Errors occurred during the object spawner's initialization.

Resolution:
Check the object spawner's log for information about what caused the problem.
Correct the problem and restart the object spawner.

• Objspawn cannot proceed with the specified Telnet administrator password. The
password must be corrected for Objspawn to initialize properly. Objspawn does not
allow the administrator password to be all asterisks. The password must be corrected
for Objspawn to initialize properly. Objspawn does not allow the administrator
password to be all asterisks. If the password is not recorded as all asterisks in the
SAS Metadata Server, then the identity Objspawn used to connect to the SAS
Metadata Server does not have permission to view the password value.

Explanation:
The object spawner found an operator or administrator password in its
configuration that it cannot use.

Resolution:
Check the password that has been specified for the object spawner Telnet access.
If this object spawner is defined in metadata, this password belongs to the user
that is specified on the Initialization tab of the object spawner definition.
Contact Tech Support for assistance.

• The credentials specified for the name (ID) server definition failed to authenticate.
Therefore, this server definition will not be included. A failure occurred during the
retrieval of the authenticated credentials for the name (ID) server definition.

Explanation:
The specified credentials for the specified server cannot be authenticated. In
order to avoid further errors and a possible account lockout, the object spawner
will not use this definition.

Resolution:
Check the credentials that are specified for this server, and make sure that they
are correct. Ensure that the user name is a valid user name for the system that you
are using and that the password is valid for that user. After correcting the
problem, restart your object spawner.

• The name (ID) server definition is not defined for this machine and will be ignored.

Explanation:
The server definition specified is not defined for the machine that the object
spawner is currently running on. This server will not be used by the object
spawner.

Object Spawner Messages 199

Resolution:
If the specified server is needed on the machine that this object spawner is
running on, make sure that the server definition has this machine's name as part
of its definition.

• Objspawn was unable to locate a server definition. Objspawn is exiting.

Explanation:
No valid server definition can be found by the object spawner. This might mean
that some servers have configuration issues, or that the object spawner does not
have any servers configured to be used.

Resolution:
Check the object spawner log and look for errors or warnings pertaining to
servers that might be defined. Correct these issues and restart your object
spawner. If no errors or warnings are found, make sure that your object spawner
has servers associated with it.

• The cluster name (ID) is configured to use server side pooling. However, no port
bank exists in this spawner to use with server side pooling.

Explanation:
The specified cluster contains a Pooled Workspace Server. For a Pooled
Workspace Server to work correctly, the object spawners that are associated with
the Pooled Workspace Server must contain a set of ports known as a port bank.

Resolution:
Check you object spawner definition and go to the Operator connection. From
the Options tab, you will be able to add ports to the object spawner's port bank.
Save your changes and restart your object spawner.

• Objspawn is unable to contact the metadata server.

Explanation:
The object spawner cannot connect to the specified metadata server in the
configuration file or on the command line.

Resolution:
Make sure that the configuration file or the command line points to the correct
metadata server. Also verify that the metadata server is running.

• The cluster definition name (ID) is invalid. Therefore, this cluster definition will not
be included.

Explanation:
Errors were found during the processing of the specified cluster.

Resolution:
Check the object spawner log for other errors related to the specified cluster.
Correct these errors and restart your object spawner.

• The configuration for this spawner is invalid. Please check the configuration and try
again.

Explanation:
Errors were found during the processing of the object spawner's configuration.

Resolution:
Check the object spawner log for other errors related to the spawner's
configuration processing. Correct these errors and restart your object spawner.

200 Appendix 1 • Object Spawner and SAS OLAP Server Messages

• The machine name cannot be found. This machine will be ignored.

Explanation:
The specified machine name cannot be found. The machine might not exist, or
the machine name might not be entered correctly.

Resolution:
Check the name of the machine to ensure that it is correct.

• Objspawn does not allow Telnet administrator access when the administrator
password is the ASCII character specified. The Telnet administrator access will be
disabled. Objspawn does not allow Telnet administrator access when the
administrator password begins with the ASCII string “SASI”. The Telnet
administrator access will be disabled.

Explanation:
The specified password for Telnet administrative access cannot be used. The
Telnet administrative interface will be disabled.

Resolution:
Change the administrative password of the object spawner, and restart the object
spawner to enable Telnet access.

• The name (ID) server definition did not specify a command to use. Therefore, this
server definition will not be included.

Explanation:
No command was specified for the object spawner to use for this server. The
server will not be used by the object spawner.

Resolution:
Specify a command for the object spawner.

• The name (ID) server definition did not contain a port or TCP/IP service name. The
default port for this server class identifier will be used.

Explanation:
The specified server does not have a port or service defined. The default port for
this type of server will be used.

Resolution:
Each type of server has its own default port. If a specific port is needed for this
server, then specify one in the configuration.

• The name TCP/IP service name specified in the name server definition resolves to a
port that differs from port specified in the name server attribute definition. Therefore,
this server definition will not be included.

Explanation:
There is a conflict between the port that is defined for the server and the service
that is defined for the server.

Resolution:
Correct the conflict by either specifying only port or service, or by ensuring that
the service resolves to the same port as defined by the port attribute.

• The name TCP/IP service name specified in the name server definition is invalid.
Therefore, this server definition will not be included.

Explanation:
The specified service name cannot be resolved.

Object Spawner Messages 201

Resolution:
Correct or remove the service name specification and restart your object
spawner.

• The launched server definition was not found for the server with activity. The server
might have completed its processing and exited. The requested server was not found.
The server might have completed its processing and exited.

Explanation:
The object spawner has attempted to access a server that has already shut down.

Resolution:
None. This error might occur during the object spawner's server management. It
is handled internally by the object spawner.

• Objspawn was unable to perform the requested action due to an active configuration
refresh.

Explanation:
A request was made to the object spawner while it was attempting to refresh its
configuration. Once the refresh is complete, requests will be allowed to be
performed.

Resolution:
Once the refresh has completed, resubmit the request that received this error.

• Objspawn was unable to remove its existing configuration. The status received was
status. Objspawn is terminating.

Explanation:
The object spawner was attempting to refresh itself when an error occurred. The
object spawner will shut down.

Resolution:
Check the object spawner log to determine the error that caused the object
spawner to shut down. It is very likely that any error that prevented the refresh
from succeeding will also prevent the object spawner from restarting.

• Objspawn has lost connectivity with the server (child ID) launched on behalf of user
ID.

Explanation:
A server that the object spawner has started has shut down unexpectedly.

Resolution:
This might happen sometimes due to administrative requests that are made
against the servers that the object spawner has started. If these errors persist, then
contact Tech Support for assistance.

• The launch of server name for user ID failed. The server failed to start. Failed to start
the server.

Explanation:
The specified server failed to start. Other messages in the log might point to the
cause of this failure. The typical reason for these failures is a permissions issue
that is related to the server command line.

Resolution:
Depending on what operating system you are using, you might be able to find
extended error information. On Windows systems, consult the Windows Event
log. On z/OS systems, check the system log. On UNIX or Linux systems,

202 Appendix 1 • Object Spawner and SAS OLAP Server Messages

messages might be written to the console, or they might exist in the
objspawn_console.log. Correct the errors that are reported, and restart your
object spawner if necessary.

• The peer for launched server child ID is no longer defined. The launched server will
exit.

Explanation:
The peer (client) that requested the server is no longer present, and might have
disconnected unexpectedly. The server that was started for this client will exit.

Resolution:
No resolution. If the message persists, there might be a problem with the client
application. Contact Tech Support for assistance.

• The server definition associated with the launched server no longer exists. This
might be due to an objspawn configuration refresh.

Explanation:
The object spawner is in the process of refreshing itself when it receives a
request or activity for a server that it is in the process of refreshing.

Resolution:
Once the refresh has completed, the message should no longer be seen.

• The operator password specified by name is invalid.

Explanation:
An invalid password was specified to the Telnet administrative interface.

Resolution:
Use the password as defined in metadata.

• Objspawn was unable to verify that the password due to an active configuration
refresh.

Explanation:
The object spawner was in the process of refreshing its configuration when a
client attempted a connection to the Telnet administrative interface.

Resolution:
Once the refresh has completed, the Telnet interface will be available again.

• Objspawn was unable to generate UUIDs due to an active configuration refresh.

Explanation:
The object spawner was in the process of refreshing its configuration when a
client attempted to request a UUID.

Resolution:
Once the refresh has completed, UUID generation will be available again.

• Client name does not have permission to use server name (ID).

Explanation:
The client that has connected does not have permission to use the specified
server.

Resolution:
Check with your system administrator. A client must have the proper permissions
on the server in order to use the server.

Object Spawner Messages 203

• Objspawn is unable to find server named name. Objspawn was unable to find the
specified server name.

Explanation:
A client requested a server by name from the object spawner. The requested
server is not a server that the object spawner is currently configured to use.

Resolution:
Make sure that the client application is connecting to the correct machine and is
using the correct server. Also make sure that the object spawner configuration
has the correct servers associated with it.

• The server requested is not configured correctly. The client request cannot be
completed.

Explanation:
There was a problem with the server that the client requested, and it cannot be
used by the object spawner. Check the object spawner log for errors or warnings
that indicate the issue with the server.

Resolution:
Correct the server configuration and restart the object spawner. Otherwise, select
a different server to use.

• There is a problem with the Negotiate Package List. Please verify that the property is
set correctly. There is a problem with the Security Package. Please verify that the
property is set correctly. There is a problem with the Service Principal Name. Please
verify that the property is set correctly.

Explanation:
There is a problem with one of the Integrated Windows Authentication
properties. These properties have certain values. Check the applicable
documentation for information about these properties.

Resolution:
Correct the problems with these security properties, and restart your object
spawner.

• Credentials could not be generated for user ID because spawner is not connecting to
the metadata server as a trusted user. This might prevent the launched server from
contacting the metadata server.

Explanation:
Servers that are launched by the object spawner attempt to connect to the
metadata server in order to get further configuration information, including pre-
assigned libraries and security information. In order to facilitate this, the object
spawner generates credentials for the server to use to connect to the metadata
server. If the object spawner is not connected to the metadata server as a trusted
user, then it cannot generate credentials for other users.

Resolution:
Check the object spawner's configuration file or command line. Ensure that the
user that is specified there is a trusted user. Check the security documentation for
more information.

• No host credentials exist to start this server. Either the client needs to send in host
credentials, or credentials need to be specified for the server. No host credentials
exist to start server name (ID). Either the client needs to send in host credentials, or
credentials need to be specified for the server.

204 Appendix 1 • Object Spawner and SAS OLAP Server Messages

Explanation:
The specified server has been configured in metadata to allow SAS Token
Authentication. These servers must have credentials specified for them in
metadata in order for the object spawner to use to launch them.

Resolution:
Ensure that credentials are set for the server on the Options tab. After setting the
credentials, restart your object spawner.

• The spawner cannot accept a new client because it is currently in a paused state. The
spawner cannot accept a new client because it is currently in a deferred shutdown
state.

Explanation:
The object spawner is current in the specified state and cannot currently accept
new clients.

Resolution:
If the object spawner is in a deferred shutdown state, the object spawner will
soon shut down. At that time it will no longer accept clients, and must be
restarted. A paused object spawner can be continued at any time. Once it is
continued or resumed, it will accept clients again.

• A port could not be obtained to allow the client to be connected to this server.

Explanation:
This applies to Pooled Workspace Servers. When a client is redirected to a
workspace server from a pool, the workspace server opens a port briefly for the
client to use in order to connect to the server. This message indicates that at the
time that a client request to the pool was made, no ports were available to have
the server listen on.

Resolution:
Add more ports to the object spawner port bank.

• Objspawn encountered a failure while processing a Telnet request. The peer
connection will be closed.

Explanation:
An error occurred during the processing of an administrative interface request.
The interface will be closed.

Resolution:
Attempt to reconnect to the administrative interface. If the message continues,
restart the object spawner, or contact Tech Support.

• Objspawn encountered a failure while processing a UUID generator request. The
peer connection will be closed.

Explanation:
An error occurred during the generation of a UUID for the client.

Resolution:
Check the object spawner log for warnings or messages that can indicate the
problem. Restart the object spawner if necessary. If the problem continues,
contact Tech Support.

• Line line_number in the configuration file is not in LDIF format and is being
skipped.

Object Spawner Messages 205

Explanation:
The specified line in the configuration file is not in the correct format and cannot
be used.

Resolution:
Correct the specified line.

• The connection to the LDAP server failed.

Explanation:
The specified server in the LDAP configuration could not be accessed. The
object spawner cannot obtain its configuration.

Resolution:
Check the specified LDAP server and ensure that it is running.

• The attribute_name attribute found on line line_number failed to process.

Explanation:
The specified attribute name is incorrect.

Resolution:
Correct the attribute and restart your object spawner.

• Two consecutive blank lines in an LDIF configuration file identify the logical end of
the configuration. The remainder of the LDIF configuration file will be ignored.

Explanation:
The LDIF file contains two consecutive blank lines. This signifies the end of the
configuration file.

Resolution:
If the rest of the file is needed, then remove one of the blank lines.

• The object class definition name contains more than one distinguished name
definition. The object class definition will be ignored.

Explanation:
The specified definition contains multiple distinguished names. A definition can
contain only one distinguished name.

Resolution:
Remove one of the distinguished names.

• The object class definition name contains conflicting object class identifier
definitions. The object class definition will be ignored.

Explanation:
The specified definition contains multiple or incompatible class identifier
definitions.

Resolution:
Correct the object class identifier in the specified definition.

• The object class definition that began on line line_number defines an unknown
object class and is being ignored.

Explanation:
An unknown class identifier was used in the specified definition and must be
corrected.

206 Appendix 1 • Object Spawner and SAS OLAP Server Messages

Resolution:
Correct the specified definition to have a known class identifier.

• The object class definition that began on line line_number contained one or more
attribute resolution failures and is being ignored.

Explanation:
The specified object class definition contained one or more errors and will be
ignored by the object spawner.

Resolution:
See the object spawner log and correct the errors reported. Restart the object
spawner.

• Objspawn was unable to open the configuration file (name).

Explanation:
The configuration file that is specified to the object spawner cannot be located or
opened.

Resolution:
Specify the correct configuration file.

• The name server definition did not specify a protocol. Therefore, this server
definition will not be included.

Explanation:
The server definition is missing the protocol attribute. The protocol must be set.

Resolution:
Correct the configuration by setting the protocol attribute and restart your object
spawner.

Load Balancing Error Messages
Here are error messages that might be reported by the object spawner (or the OLAP
server when load balanced) and explanations to correct their cause. You will find some
of these messages only in the object spawner or OLAP server logs. For more information
about changing the spawner logging level, see “Configure Object Spawner Logging” on
page 116 . For more information about the OLAP server, see “Administering SAS
OLAP Servers” on page 134 . If you are unable to resolve the error, contact SAS
Technical Support.

• Objspawn was unable to launch the server server_name due to the server launch
exceeding the specified wait time. The server did not start in the specified amount of
time.

Explanation:
The specified server took longer than the configured Launch Timeout setting to
start completely.

Resolution:
This message might appear if the system is in heavy use and cannot start a server
in an efficient manner. You might need to increase the value that is specified in
the Launch Timeout to allow sufficient time for your servers to start. You might
want to also investigate the amount of work that this system is currently being
sent and determine whether it is overloaded.

Load Balancing Error Messages 207

• Port is reserved for server name and cannot be used as a load balanced server
instance listen port. Therefore, this server definition will not be included. Port is
reserved for a load balanced server instance of server name. Therefore, this server
definition will not be included.

Explanation:
There is a port conflict between a load-balanced server and a server that is not
load-balanced. These different types of servers cannot use the same port.

Resolution:
Change one of the ports of the server listed so that they are different. Restart your
object spawner.

• Load balanced server listen port is in use. This might cause future load balanced
server launches to fail.

Explanation:
Some other application is already using the port that is specified for the server to
use. Future failures might occur because servers of this kind that are launched for
load balancing might fail.

Resolution:
Select a different port for the server in question.

• The credentials specified for the name (ID) cluster definition failed to authenticate. A
failure occurred during the retrieval of the authenticated credentials for the name
cluster definition.

Explanation:
Load balancing is unable to obtain or authenticate the specified credentials for
the load-balanced logical server or cluster listed in the message. This will prevent
load balancing from sharing the load among the other servers that are defined.

Resolution:
Verify that the correct credentials have been defined for the cluster or logical
server. Credentials are set in the logical server on the Load Balancing tab of the
Logical Server's property page.

• The name (ID) cluster does not contain any valid server definitions. Therefore, this
cluster definition will not be included. No valid cluster could be found for this
configuration. Check your configuration and try again. No valid server definitions
found for cluster name (ID). No valid server definitions were found in cluster name
(ID).

Explanation:
One or more errors were found when trying to process the cluster and its server
definitions. The object spawner will not monitor this cluster.

Resolution:
View the object spawner log to find other errors or warnings that have caused the
cluster and servers to fail to process. Correct these issues and restart your object
spawner.

• The name (ID) server definition is a load balanced server that requires credentials.
No credentials were associated with the definition. Therefore, this server definition
will not be included.

208 Appendix 1 • Object Spawner and SAS OLAP Server Messages

Explanation:
Certain load-balancing servers require credentials in order to be launched by load
balancing. The server that is specified here requires credentials, but none were
found.

Resolution:
Specify credentials on the Options tab of the property page of the listed server
definition. Restart your object spawner.

• There is no available server for this client to use. The Balance algorithm timed out
before a server could be found. Unable to find an available server to redirect client.

Explanation:
There are no available servers at this time. All servers in the cluster are busy with
clients and cannot handle any new clients at this time.

Resolution:
The client can try again later when the servers are less busy. The system
administrator might want to determine whether the settings need to be adjusted to
allow more clients in. Also, more servers might need to be added to handle the
client load.

• More servers were requested to be started than were actually defined. Overflow
requests will be ignored.

Explanation:
The Start Size property for this specified server a number of servers larger than
the number allowed by the configuration.

Resolution:
The Start Size property is found in the Advanced Options of the Options tab of
the server definition. This message is just a warning that only the number of
configured servers will be started, and not more as specified by the Start Size
property.

• An error occurred while server (server_name) was starting. Now attempting a
different server. Unable to start the server name (ID).

Explanation:
The specified server failed to start for load balancing. Load balancing will now
attempt to use a different server.

Resolution:
Check the object spawner log to determine whether any messages indicate why
the server failed to start. A problem with the server or its command line might
need to be corrected. Also, the system might have become to busy or overloaded
to handle starting a new server at this time.

• Attempt to connect to peer failed. Attempt to connect to peer (name) for cluster name
(ID) failed with exception message.

Explanation:
Load balancing was configured to use several machines to balance the client
load, but was unable to connect to one of the other peers as defined in the cluster.
Load Balancing will not be able to use that peer at this time. A peer can be
another object spawner.

Load Balancing Error Messages 209

Resolution:
This message might be seen during initialization due to the fact the other peers or
object spawners have not initialized yet. Once they initialize, load balancing will
be able to communicate with them. Ensure that the other peers have initialized.

• The Max Clients property for this server is set to 0. No clients will be redirected to
this server definition.

Explanation:
The server has been configured to allow a maximum of zero clients. Therefore,
no clients will be sent to this server.

Resolution:
If the intent is to not allow clients in to this server, then there is not resolution.
However, if this is not the intent, the Max Clients property can be updated in the
Advanced Options dialog box on the Options Tab of the server's property page.

• The name (ID) cluster definition requires the use of multibridge connections and
none were found. Therefore, this cluster definition will not be included.

Explanation:
The specified cluster contains servers that require the use of a multibridge
connection. None were defined for the servers in this cluster.

Resolution:
Correct this issue by adding multibridge connections to the servers that are
members of the specified cluster. Multibridge connections can be added on the
Options tab of the server's Bridge connection property page.

• The password obtained from the metadata indicates that it was obtained by a user
that has unrestricted access. Please check your configuration.

Explanation:
The connection to the metadata server has been made by an unrestricted user. An
unrestricted user cannot connect to the metadata server for load balancing,
because this prevents load balancing from getting some necessary information.

Resolution:
Check your configuration file or command line. Ensure that the user is not an
unrestricted user and does not have the User Administration role granted.

• The host name resolved to an address that matches a host name already found in this
definition (name). Therefore, this host name will be skipped.

Explanation:
The specified host name has resolved to an address that the load balancer has
already processed. To avoid potential confusion and conflicts, the load balancer
will treat these two host names as the same machine.

Resolution:
Check and ensure that the machine names are configured correctly.

• The cluster name (ID) does not have a valid user name associated with it. Load
balancing does not support anonymous connections. Specify credentials for you
cluster and retry.

Explanation:
Load balancing has been configured to use multiple servers on multiple hosts in
this particular cluster. To do so, load balancing must connect to the other hosts.
However, no credentials were configured to make this connection with.

210 Appendix 1 • Object Spawner and SAS OLAP Server Messages

Resolution:
Specify credentials in the cluster definition. Credentials can be specified on the
Load Balancing tab of the cluster's property page.

Load Balancing Error Messages 211

212 Appendix 1 • Object Spawner and SAS OLAP Server Messages

Glossary

access control entry
a set of identities and permissions that are directly associated with a particular
resource. Each access control entry is directly associated with only one resource.
More than one ACE can be associated with each resource. Short form: ACE.

ACE
See access control entry.

aggregation
a summary of detail data that is stored with or referred to by a cube.

API
See application programming interface.

application programming interface
a set of software functions that facilitate communication between applications and
other kinds of programs or services. Short form: API.

Application Response Measurement
the name of an application programming interface that was developed by an industry
partnership and which is used to monitor the availability and performance of
software applications. ARM monitors the application tasks that are important to a
particular business. Short form: ARM.

ARM
See Application Response Measurement.

authentication
See client authentication.

authentication domain
a SAS internal category that pairs logins with the servers for which they are valid.
For example, an Oracle server and the SAS copies of Oracle credentials might all be
classified as belonging to an OracleAuth authentication domain.

client authentication
the process of verifying the identity of a person or process for security purposes.

213

client-side pooling
a configuration in which the client application maintains a collection of reusable
workspace server processes.

cube
See OLAP cube.

cube loading
the process of building a logical set of data that is organized and structured in a
hierarchical, multidimensional arrangement.

daemon
a process that starts and waits either for a request to perform work or for an
occurrence of a particular event. After the daemon receives the request or detects the
occurrence, it performs the appropriate action. If nothing else is in its queue, the
daemon then returns to its wait state.

dimension
a data element that categorizes values in a data set into non-overlapping categories
that can be used to group, filter, and label the data in meaningful ways. Hierarchies
within a dimension typically represent different groupings of information that
pertains to a single concept. For example, a Time dimension might consist of two
hierarchies: (1) Year, Month, and Date, and (2) Year, Week, and Day.

DNS name
a name that is meaningful to people and that corresponds to the numeric TCP/IP
address of a computer on the Internet. For example, www.alphaliteairways.com
might be the DNS name for an Alphalite Airways Web server whose TCP/IP address
is 192.168.145.6.

drill-through table
a view, data set, or other data file that contains data that is used to define a cube.
Drill-through tables can be used by client applications to provide a view from
processed data into the underlying data source.

encryption
the act or process of converting data to a form that is unintelligible except to the
intended recipients.

foundation services
See SAS Foundation Services.

grid
a collection of networked computers that are coordinated to provide load balancing
of multiple SAS jobs, scheduling of SAS workflows, and accelerated processing of
parallel jobs.

grid control server
the machine on a grid that distributes SAS programs or jobs to the grid nodes. The
grid control server can also execute programs or jobs that are sent to the grid.

grid monitoring server
a metadata object that stores the information necessary for the Grid Manager plug-in
in SAS Management Console to connect with the Platform Suite for SAS or other
grid middleware to allow monitoring and management of the grid.

214 Glossary

grid node
a machine that is capable of receiving and executing work that is distributed to a
grid.

hierarchy
an arrangement of related objects into levels that are based on parent-child
relationships. Members of a hierarchy are arranged from more general to more
specific.

Integrated Object Model
the set of distributed object interfaces that make SAS software features available to
client applications when SAS is executed as an object server. Short form: IOM.

Integrated Object Model server
See IOM server.

IOM
See Integrated Object Model.

IOM bridge
a software component of SAS Integration Technologies that enables Java clients and
Windows clients to access an IOM server.

IOM server
a SAS object server that is launched in order to fulfill client requests for IOM
services. Short form: IOM server.

level
an element of a dimension hierarchy. Levels describe the dimension from the highest
(most summarized) level to the lowest (most detailed) level. For example, possible
levels for a Geography dimension are Country, Region, State or Province, and City.

load balancing
for IOM bridge connections, a program that runs in the object spawner and that uses
an algorithm to distribute work across object server processes on the same or
separate machines in a cluster.

logical grid server
a metadata object that stores the command that is used by a grid-enabled SAS
program to start a SAS session on a grid.

logical server
the second-level object in the metadata for SAS servers. A logical server specifies
one or more of a particular type of server component, such as one or more SAS
Workspace Servers.

MDX language
See multidimensional expressions language.

Measures dimension
a special dimension that contains summarized numeric data values (measures) that
are analyzed. Total Sales and Average Revenue are examples of measures. For
example, you might drill down within the Clothing hierarchy of the Product
dimension to see the value of the Total Sales measure for the Shirts member.

Glossary 215

member
an element of a dimension. For example, for a dimension that contains time periods,
each time period is a member of the dimension.

metadata object
a set of attributes that describe a table, a server, a user, or another resource on a
network. The specific attributes that a metadata object includes vary depending on
which metadata model is being used.

MultiBridge connection
a specialized bridge connection that is used for stored process servers. Each
MultiBridge connection represents a separate server process and runs on a specific
port.

multidimensional expressions language
a standardized, high-level language that is used to query multidimensional data
sources. The MDX language is the multidimensional equivalent of SQL (Structured
Query Language). Short form: MDX language.

NWAY aggregation
the aggregation that has the minimum set of dimension levels that is required for
answering any business question. The NWAY aggregation is the aggregation that has
the finest granularity.

object spawner
a program that instantiates object servers that are using an IOM bridge connection.
The object spawner listens for incoming client requests for IOM services. When the
spawner receives a request from a new client, it launches an instance of an IOM
server to fulfill the request. Depending on which incoming TCP/IP port the request
was made on, the spawner either invokes the administrator interface or processes a
request for a UUID (Universal Unique Identifier).

OLAP
See online analytical processing.

OLAP cube
a logical set of data that is organized and structured in a hierarchical,
multidimensional arrangement to enable quick analysis of data. A cube includes
measures, and it can have numerous dimensions and levels of data.

OLAP schema
a container for OLAP cubes. A cube is assigned to an OLAP schema when it is
created, and an OLAP schema is assigned to a SAS OLAP Server when the server is
defined in the metadata. A SAS OLAP Server can access only the cubes that are in
its assigned OLAP schema.

online analytical processing
a software technology that enables users to dynamically analyze data that is stored in
multidimensional database tables (cubes).

pool
a group of server connections that can be shared and reused by multiple client
applications. A client-side pool consists of one or more puddles.

216 Glossary

puddle
a group of servers that are started and run using the same login credentials. Each
puddle can also allow a group of clients to access the servers.

Remote Library Services
a feature of SAS/SHARE and SAS/CONNECT software that enables you to read,
write, and update remote data as if it were stored on the client. RLS can be used to
access SAS data sets on computers that have different architectures. RLS also
provides read-only access to some types of SAS catalog entries on computers that
have different architectures. Short form: RLS.

RLS
See Remote Library Services.

SAS Application Server
a logical entity that represents the SAS server tier, which in turn comprises servers
that execute code for particular tasks and metadata objects.

SAS ARM interface
an interface that can be used to monitor the performance of SAS applications. In the
SAS ARM interface, the ARM API is implemented as an ARM agent. In addition,
SAS supplies ARM macros, which generate calls to the ARM API function calls, and
ARM system options, which enable you to manage the ARM environment and to log
internal SAS processing transactions.

SAS batch server
a SAS Application Server that is running in batch mode. In the SAS Open Metadata
Architecture, the metadata for a SAS batch server specifies the network address of a
SAS Workspace Server, as well as a SAS start command that will run jobs in batch
mode on the SAS Workspace Server.

SAS Deployment Wizard
a cross-platform utility that installs and initially configures many SAS products.
Using a SAS installation data file and, when appropriate, a deployment plan for its
initial input, the wizard prompts the customer for other necessary input at the start of
the session, so that there is no need to monitor the entire deployment.

SAS Foundation Services
a set of core infrastructure services that programmers can use in developing
distributed applications that are integrated with the SAS platform. These services
provide basic underlying functions that are common to many applications. These
functions include making client connections to SAS Application Servers, dynamic
service discovery, user authentication, profile management, session context
management, metadata and content repository access, activity logging, event
management, information publishing, and stored process execution.

SAS IOM workspace
in the IOM object hierarchy for a SAS Workspace Server, an object that represents a
single session in SAS.

SAS Management Console
a Java application that provides a single user interface for performing SAS
administrative tasks.

SAS Metadata Repository
a container for metadata that is managed by the SAS Metadata Server.

Glossary 217

SAS Metadata Server
a multi-user server that enables users to read metadata from or write metadata to one
or more SAS Metadata Repositories.

SAS OLAP Cube Studio
a Java interface for defining and building OLAP cubes in SAS System 9 or later. Its
main feature is the Cube Designer wizard, which guides you through the process of
registering and creating cubes.

SAS OLAP Server
a SAS server that provides access to multidimensional data. The data is queried
using the multidimensional expressions (MDX) language.

SAS Open Metadata Architecture
a general-purpose metadata management facility that provides metadata services to
SAS applications. The SAS Open Metadata Architecture enables applications to
exchange metadata, which makes it easier for these applications to work together.

SAS Pooled Workspace Server
a SAS Workspace Server that is configured to use server-side pooling. In this
configuration, the SAS object spawner maintains a collection of workspace server
processes that are available for clients.

SAS Stored Process Server
a SAS IOM server that is launched in order to fulfill client requests for SAS Stored
Processes.

SAS token authentication
a process in which the metadata server generates and verifies SAS identity tokens to
provide single sign-on to other SAS servers. Each token is a single-use, proprietary
software representation of an identity.

SAS Workspace Server
a SAS IOM server that is launched in order to fulfill client requests for IOM
workspaces.

SAS/CONNECT server
a server that provides SAS/CONNECT services to a client. When SAS Data
Integration Studio generates code for a job, it uses SAS/CONNECT software to
submit code to remote computers. SAS Data Integration Studio can also use
SAS/CONNECT software for interactive access to remote libraries.

SAS/CONNECT spawner
a program that runs on a remote computer and that listens for SAS/CONNECT client
requests for connection to the remote computer. When the spawner program receives
a request, it invokes a SAS session on the remote computer.

Scalable Performance Data Engine
a SAS engine that is able to deliver data to applications rapidly because it organizes
the data into a streamlined file format. Short form: SPD Engine.

schema
a map or model of the overall data structure of a database. A schema consists of
schema records that are organized in a hierarchical tree structure. Schema records
contain schema items.

218 Glossary

server component
in SAS Management Console, a metadata object that specifies information about
how to connect to a particular kind of SAS server on a particular computer.

server context
a SAS IOM server concept that describes how SAS Application Servers manage
client requests. A SAS Application Server has an awareness (or context) of how it is
being used and makes decisions based on that awareness. For example, when a SAS
Data Integration Studio client submits code to its SAS Application Server, the server
determines what type of code is submitted and directs it to the correct physical server
for processing (in this case, a SAS Workspace Server).

server-side pooling
a configuration in which a SAS object spawner maintains a collection of reusable
workspace server processes that are available for clients. The usage of servers in this
pool is governed by the authorization rules that are set on the servers in the SAS
metadata.

service
one or more application components that an authorized user or application can call at
any time to provide results that conform to a published specification. For example,
network services transmit data or provide conversion of data in a network, database
services provide for the storage and retrieval of data in a database, and Web services
interact with each other on the World Wide Web.

single sign-on
an authentication model that enables users to access a variety of computing resources
without being repeatedly prompted for their user IDs and passwords. For example,
single sign-on can enable a user to access SAS servers that run on different platforms
without interactively providing the user's ID and password for each platform. Single
sign-on can also enable someone who is using one application to launch other
applications based on the authentication that was performed when the user initially
logged on.

spawner
See object spawner and SAS/CONNECT spawner.

SPD Engine
See Scalable Performance Data Engine.

SSO
See single sign-on.

star schema
tables in a database in which a single fact table is connected to multiple dimension
tables. This is visually represented in a star pattern. SAS OLAP cubes can be created
from a star schema.

thread
a single path of execution of a process that runs on a core on a CPU.

threaded I/O
I/O that is performed by multiple threads in order to increase its speed. In order for
threaded I/O to improve performance significantly, the application that is performing
the I/O must be capable of processing the data rapidly as well.

Glossary 219

threading
a high-performance technology for either data processing or data I/O in which a task
is divided into threads that are executed concurrently on multiple cores on one or
more CPUs.

wizard
an interactive utility program that consists of a series of dialog boxes, windows, or
pages. Users supply information in each dialog box, window, or page, and the wizard
uses that information to perform a task.

workspace
See SAS IOM workspace.

220 Glossary

Index

Special Characters
.bat file 43

A
abnormal OLAP server shutdowns 111
accessibility features 4
application server 3

See also SAS Application Server
server components 5, 6

ARM log files 39
authentication

IOM server 156
security authentication packages 158

B
batch servers 4, 7, 23

SAS DATA Step Batch Server 23, 24
SAS Generic Batch Server 24
SAS Java Batch Server 23, 25

build files
for OLAP cubes, on SAS Workspace

Servers 110

C
catalogs

for servers on multiple machines 101
cleaning up temporary files

after abnormal OLAP server shutdowns
111

client assignment (load balancing)
to OLAP servers 35
to workspace and stored process servers

34
client-side pooling 55

application properties 67
assigning libraries to server 76
choosing 61
concepts 62

configuration overview 62
configuring 69
configuring across multiple machines

69
configuring server properties 65
configuring workspace server for row-

level security 77
connection process 58
converting logical workspace server to

64
creating restricted workspace server 74
creating Web Report Studio deployment

77
how it works 57
metadata identities 63
metadata identities and logins for

puddle access 63
puddles for logical pooled server 63
Restricted Client-side Pool

Administrator 73
Restricted Pool Puddle Login group 73
sensitive data resources 77
verifying, for SAS Web Report Studio

69
coalescing cubes 139
compute services 16
Cost algorithm 45

parameters 46
SAS Stored Process Server example 48
SAS Workspace Server example 47

cube cache
tuning 143

cube viewers 134

D
data access

for servers on multiple machines 101
in database management systems 101

data resources
securing sensitive data resources 77

221

data transfer services 16
database management systems

data access in 101

E
e-mail settings

for SAS Application Servers 101
encoding 105
encryption

FIPS 127
error messages

for load balancing 207
for object spawner 193

F
FIPS 127
flattened rows 144
formats

updating references for user-defined
formats 100

G
Grid algorithm 45, 50
grid computing

SAS/CONNECT and 18
Grid Monitoring Server 28
grid server 27
group definitions 72
group objects 73

H
hosts

for load-balancing clusters 39

I
Integrated Object Model (IOM) server

147
security package for authentication 156
Security Support Provider Interface for

SSO connections 159
start-up parameters 150

Integrated Object Model (IOM)
workspace interface 6

IOMOPERATE procedure 162
examples 183

L
launch command

adding system options to (workspace
server) 109

Least Recently Used algorithm 45, 51
libraries

assigning, for client-side pooling 76
updating, for servers on multiple

machines 100
load balancing 12, 39

See also load-balancing algorithms
See also load-balancing clusters
adding or deleting servers 44
client assignment to OLAP servers 35
client assignment to workspace and

stored process servers 34
edits for UNIX and z/OS 43
error messages 207
initial setup for stored process servers

37
installing and configuring server

software 44
installing server and spawner software

42
log files 39
MultiBridge connections 36
planning, installation, and configuration

36
security for 38
starting or refreshing object spawners or

OLAP servers 44
stopping and restarting servers 44

load-balancing algorithms 38, 51
choosing 40
Cost 45
Grid 45, 50
Least Recently Used 45, 51
Most Recently Used 45, 51
Response Time 45, 50

load-balancing clusters 34
algorithm for 40
converting logical server to load

balancing 40
converting server instance to load

balancing 41
editing metadata 41
hosts and port numbers 39
metadata for 41
metadata for new servers in cluster 41
of OLAP servers 136
reading metadata at initialization 34
workspace servers in SAS Management

Console 36
locale 105

configuring workspace servers for 108
log files

for load balancing 39
logconfig.xml 43
logging

configuring for object spawner 116

222 Index

SAS OLAP Servers 142
logging level

SAS/CONNECT spawner 21
logical grid server 27

configuration files 29
metadata object 29

logical pooled servers
puddles for client-side 63

logical servers 8
adding servers to 93
adding to SAS Application Server 91
converting logical workspace server to

client-side pooling 64
converting to load balancing 40
modifying server definitions 95
puddles for client-side logical pooled

server 63
removing 96

logical workspace servers
converting to client-side pooling 64

M
metadata

editing for load-balancing clusters 41
for load-balancing clusters 41
for new servers in load-balancing

clusters 41
reading load-balancing cluster metadata

at initialization 34
refreshing cube metadata for calculated

members and name sets 146
metadata configuration file 13
metadata connection 13
metadata connection and security options

object spawner 128
metadata identities

for puddle access 63
metadata logins

for puddle access 63
metadata objects

for SAS/CONNECT 19
hierarchy for defining SAS Application

Server 8
logical grid server 29

migration
OLAP cubes 135

Most Recently Used algorithm 45, 51
MultiBridge connections 36

O
object spawners

adding connections to 114
administering with Telnet 119
changing ports 115

configuring and starting on z/OS 120
configuring logging 116
configuring to accept single sign-on

connections 117
defining 114
error messages 193
general invocation options 125
invocation options 124
metadata connection and security

options 128
modifying definitions 115
refreshing 118
service options 130
starting or refreshing for load-balancing

servers 44
updating a Windows service for 119

OBJECTSERVER system option 147
OBJECTSERVERPARMS system option

150
OLAP cubes

authorizing access to cubes and cube
data 141

building 137
changing permissions 141
coalescing 139
configuring storage for build files on

SAS Workspace Servers 110
cube viewers 134
deleting 140
disabling and enabling 137, 141
migrating 135
refreshing metadata for calculated

members and name sets 146
tuning the cube cache 143
updating 138
updating in place 138
updating incrementally 139

OLAP schemas 134, 146
OLAP servers 3

cleaning up, after abnormal shutdowns
111

client assignment to, for load balancing
35

starting or refreshing for load-balancing
servers 44

OLAPOPERATE procedure 134
OLAPServerSSCU.ini 43

P
performance

tuning workspace servers 107
permissions

for OLAP cubes 141
permissions configuration

row-level 72

Index 223

pooled workspace servers 3, 12
changing SAS options with 106

pooling 55
See also server-side pooling
client-side 55, 57, 58

port bank 56
port numbers

for load-balancing clusters 39
ports

changing object spawner-managed
server ports 115

PROC IOMOPERATE 162
examples 183

procedure
IOMOPERATE 162
IOMOPERATE, examples 183

puddle login 57
puddles 57, 62

defining 76
for client-side logical pooled server 63
metadata identities and logins for access

63

Q
queries

managing OLAP queries 142
query thread pool

tuning 144

R
remote data access

with SAS Data Integration Studio 82
remote library services 17
Response Time algorithm 45, 50
Restricted Client-side Pool Administrator

73
restricted client-side pooling workspace

server 74
Restricted Pool Puddle Login group 73
row-level security

for client-side pooling workspace server
77

permissions configuration 72
rows, flattened 144

S
SAS Application Server 3, 6

accessing remote data with SAS Data
Integration Studio 82

adding 81
adding logical server to 91
adding or modifying e-mail settings

101

as collection of server components 5
defining multiple 83
hierarchy of metadata objects for

defining 8
modifying server definitions 95
multiple, with SAS Web Report Studio

83
removing logical servers 96
SASMeta application server and 8
server components 6
server context 6
structure of 8
system options for 147

SAS Data Integration Studio
accessing remote data 82
SAS/CONNECT and 17

SAS DATA Step Batch Server 23, 24
SAS Deployment Wizard 77
SAS Enterprise Miner

SAS/CONNECT and 17
SAS Generic Batch Server 24
SAS Grid Manager 18
SAS Grid Server 4, 7, 27

initial configuration 29
role of 28

SAS Java Batch Server 23, 25
SAS Management Console

clustered workspace servers in 36
in OLAP implementation 134

SAS Metadata Server 134
SAS Object Spawners 14

balancing the server workload 14
configuration file for metadata

connection 13
initiating the operator interface 14
requesting a server 14
tasks 14

SAS OLAP Cube Studio 134
changing permissions and disabling

cubes 141
SAS OLAP Server Monitor 135
SAS OLAP Servers 7

adding 136
adding a load-balancing cluster of 136
administrative overview 134
authorizing access to 140
authorizing access to cubes and cube

data 141
building cubes 137
coalescing cubes 139
connecting to 136
deleting cubes 140
disabling and enabling cubes 137
flattened row values 144
implementation components 134
installing and configuring 136

224 Index

logging 142
managing sessions and queries 142
migrating OLAP cubes 135
monitoring 141
OLAP schemas 146
refreshing cube metadata for calculated

members and name sets 146
starting 136
stopping, pausing, and resuming 137
tuning cube cache 143
tuning query thread pool 144
tuning subquery caches 143
tuning with advanced server options

142
updating cubes 138

SAS options
changing with pooled workspace server

106
changing with workspace server 106

SAS Pooled Workspace Server 6, 12
SAS Stored Process Server 11

Cost algorithm example 48
MultiBridge connections 36

SAS Web Report Studio
creating deployment for client-side

pooling 77
multiple SAS Application Servers with

83
verifying client-side connection pooling

69
SAS Workspace Server 6, 12

cleaning up, after abnormal OLAP
server shutdowns 111

configuring storage for OLAP cube
build files on 110

Cost algorithm example 47
in OLAP implementation 134

SAS/CONNECT 15, 17
accessing remote data 17
compute services 16
configuration files 21
data transfer services 16
grid computing and 18
overview of services 16
remote library services 17
SAS Data Integration Studio and 17
SAS Enterprise Miner and 17

SAS/CONNECT server 3, 7
accessing remote data 17
configuration files 21
initial configuration 21
metadata objects 19

SAS/CONNECT spawner
changing logging level 21

SAS/SECURE 127

SASApp - Logical Workspace Server
object 8

SASApp object 5
SASMain object 5
SASMeta application server 8
sasv9_usermods.cfg 42
scheduling 23
SECPACKAGE system option 156
SECPACKAGELIST system option 158
security

for load balancing 38
row-level, for client-side pooling

workspace server 77
securing sensitive data resources 77
security package for IOM server

authentication 156
security authentication packages 158
Security Support Provider Interface

(SSPI) 159
server components 5, 6
server context 6
server instance

converting to load balancing 41
Server Manager 8, 134
server pooling

See pooling
server ports

changing object spawner-managed 115
server-side pooling 55

connection process 56
how it works 56

service options
object spawner 130

sessions
managing OLAP sessions 142

shortcuts.ini 43
single sign-on connections

configuring the object spawner for 117
spawner software

for load-balancing servers 42
SSO connections to IOM servers

Security Support Provider Interface for
159

SSPI system option 159
Stored Process Server 6
stored process servers 3, 11

client assignment to, for load balancing
34

default 12
encoding and locale information 105
initial setup for load balancing 37
moving 105
on multiple machines 101
pooling 55

stored processes 11
subquery caches

Index 225

tuning 143
system options

adding to workspace server launch
command 109

for SAS Application Server components
147

T
Telnet

administering object spawner 119
temporary files

cleaning up, after abnormal OLAP
server shutdowns 111

tuning
cube cache 143
query thread pool 144
SAS OLAP Servers 142
subquery caches 143
workspace servers 107

U
UNIX

load-balancing servers 43
user accounts 72
user definitions 72
user objects 73
user-defined formats

updating references, for servers on
multiple machines 100

W
Windows services

updating for object spawner 119
workspace servers 3, 11

adding system options to launch
command 109

changing SAS options with 106
client assignment to, for load balancing

34
clustered in SAS Management Console

36
configuration options for pool 65
configuration tasks 111
configuring for a locale 108
configuring for row-level security 77
converting logical server to client-side

pooling 64
creating restricted client-side pool 74
default 12
encoding and locale information 105
moving 105
on multiple machines 101
pooling 55
tuning 107

Z
z/OS

configuring and starting object spawner
120

load-balancing servers 43

226 Index

	Contents
	What's New in Application Server Administration for the SAS
9.3 Intelligence Platform
	Overview
	Added Object Spawner Command Option for Load-balancing Peer
without a Peer Refresh
	Enhanced Support for Running SAS Code at Server Session Boundaries
	Enhanced Support for Running SAS Code at Server Boundaries
	Added Single Sign-on Support, Based on Kerberos, for UNIX
	Added Object Spawner Support for FIPS
	Changed Server Credentials for Load Balancing
	Added Support for Grid Algorithm
	Changed Object Spawner Refresh
	Added New SAS Procedure: PROC IOMOPERATE

	Recommended Reading
	Getting Started
	Before You Begin
	Introduction to This Guide
	Accessibility Features in the SAS Intelligence Platform Products

	Understanding the SAS Application Server
	Overview of SAS Application Servers
	What are SAS Application Servers?
	A Collection of Server Components
	A Server Context

	The Structure of a SAS Application Server
	The SAS Application Server's Server Components
	The SASMeta Application Server
	The Hierarchy of Metadata Objects Used to Define a SAS Application
Server

	Server Concepts
	Understanding Workspace Servers and Stored Process Servers
	Overview of Workspace Servers and Stored Process Servers
	What are Stored Process Servers and the Workspace Servers?
	SAS Stored Process Servers
	SAS Workspace Servers
	SAS Pooled Workspace Servers
	The Default Stored Process Server and the Workspace Servers

	SAS Object Spawners
	Overview of SAS Object Spawners
	Configuration File for Metadata Connection
	Spawner Tasks

	Understanding SAS/CONNECT Servers
	Overview of SAS/CONNECT and the SAS Intelligence Platform
	Introduction to SAS/CONNECT
	Overview of Services
	Compute Services
	Data Transfer Services
	Remote Library Services

	The Uses of SAS/CONNECT in the SAS Intelligence Platform
	Overview of the Uses of SAS/CONNECT in the SAS Intelligence
Platform
	SAS/CONNECT, SAS Data Integration Studio, and SAS Enterprise
Miner
	SAS/CONNECT and Grid Computing

	Initial Configuration of the SAS/CONNECT Server
	Overview of the Initial Configuration of the SAS/CONNECT Server
	SAS/CONNECT Metadata Objects
	SAS/CONNECT Configuration Files
	Changing the Logging Level of the SAS/CONNECT Spawner

	Understanding the Batch Servers
	Overview of SAS Batch Servers
	The SAS DATA Step Batch Server
	The SAS Java Batch Server
	Additional Information

	Understanding SAS Grid Servers
	Overview of SAS Grid Servers
	Overview of Grid Monitoring Servers
	The Role of the SAS Grid Server in the SAS Intelligence Platform
	The Initial Configuration of the SAS Grid Server
	Overview of the Initial Configuration of the SAS Grid Server
	The Logical Grid Server Metadata Object
	Logical Grid Server Configuration Files

	Load Balancing and Pooling
	Understanding Server Load Balancing
	Overview of Load Balancing
	What Is Load Balancing?
	Overview of Planning, Installation, and Configuration
	MultiBridge Connections (SAS Stored Process Servers Only)
	Overview of the Initial Load Balancing Setup for Stored Process
Servers
	Security
	Load-Balancing Algorithms
	Log Files

	Configuring OLAP Load-Balancing Clusters
	Planning a Load-Balancing Cluster
	Overview
	Select Hosts and Port Numbers
	Choose a Load-Balancing Algorithm

	Creating Metadata for Load-Balancing Clusters
	Overview
	Convert the Logical Server to Load Balancing
	Edit Metadata and Convert the Server Instance to Load Balancing
	Create Metadata for the Other Load-Balancing Servers

	Installing and Configuring Software for Load-Balancing Servers
	Overview
	Install Server and Spawner Software
	Edit sasv9_usermods.cfg
	Edit logconfig.xml
	Edit the .bat File
	Edit shortcuts.ini
	Edit OLAPServerSSCU.ini and Install the Service
	Edits for the UNIX and z/OS Operating Environments
	Start or Refresh the Object Spawners or OLAP Servers

	Stopping and Restarting Load-Balancing Servers
	Adding or Deleting Load-Balancing Servers
	Understanding the Load-Balancing Algorithms
	Overview
	Cost Algorithm: Overview
	Cost Algorithm: Parameters
	Cost Algorithm: SAS Workspace Server Example
	Cost Algorithm: SAS Stored Process Server Example
	Response Time Algorithm
	Grid Algorithm
	Most Recently Used (MRU) Algorithm
	Least Recently Used (LRU) Algorithm
	MRU and LRU Algorithms: Pooled Workspace Server Examples

	Understanding Server Pooling
	Overview of Pooling
	How Server-side Pooling Works
	Understanding the Server-side Pooling Connection Process
	How Client-side Pooling Works
	Understanding the Client-side Pooling Connection Process

	Configuring Client-side Pooling
	Client-side Pooling Concepts and Overview
	Is Client-side Pooling Right for My Site?
	Understanding Client-side Pooling Concepts
	Overview of Configuring Client-side Pooling

	Configuring Client-side Pooling
	Plan the Metadata Identities and Logins for Puddle Access
	Plan the Puddles for the Client-side Logical Pooled Server
	Convert a Logical Workspace Server to Client-side Pooling
	Configure Client-side Pooling Properties for Each Server
	Setting Client-side Pooling Application Properties
	Verify That Client-side Connection Pooling Is Working for SAS
Web Report Studio

	Configure Client-side Pooling across Multiple Machines
	Configuring a Client-side Pooling Workspace Server to Enforce
Row-Level Security
	About Row-Level Permissions Configuration
	Defining the Necessary Users and Groups
	Create a Restricted Workspace Server Client-side Pool
	Assign Libraries to the New Server
	Create a Second SAS Web Report Studio Deployment
	Secure Sensitive Data Resources

	Server Administration
	Managing SAS Application Servers
	Defining Multiple Application Servers
	Overview of Adding an Additional SAS Application Server
	Scenario 1: Using SAS Data Integration Studio to Access Remote
Data
	Scenario 2: Using Multiple Application Servers with SAS Web
Report Studio
	Create a SAS Application Server for a SAS Solution

	Add a New Logical Server in an Existing SAS Application Server
	Adding a New Server in an Existing Logical Server
	Overview of Adding a New Server in an Existing Logical Server
	Add a New Server in an Existing Logical Server

	Modify a Server Definition
	Remove Logical Servers

	Managing Workspace Servers and Stored Process Servers
	Managing Data and Catalogs for Servers on Multiple Machines
	Overview of Managing Data and Catalogs for Servers on Multiple
Machines
	Update SAS Libraries
	Update References to User-Defined Formats
	Access Data in Database Management Systems

	Adding or Modifying E-Mail Settings for SAS Application Servers
	Overview of Adding or Modifying E-Mail Settings for SAS Application
Servers
	Add or Modify E-Mail Settings for SAS Application Servers

	Moving Workspace Servers and Stored Process Servers
	Overview of Moving Workspace Servers and Stored Process Servers
	Move Workspace Servers and Stored Process Servers
	Required Tasks After You Move Workspace Servers and Stored
Process Servers

	Encoding and Locale Information
	Adding Environment Variables to Server Invocations
	Run SAS Code at Server Session Boundaries
	Workspace Server Configuration Tasks
	Tune Workspace Servers for Best Performance
	Configure Workspace Servers for a Locale
	Add System Options to the Workspace Server Launch Command
	Configure Storage for Temporary OLAP Cube Build Files on SAS
Workspace Servers
	Clean Up Temporary Files after Abnormal OLAP Server Shutdowns

	Managing the Object Spawner
	Object Spawner Configuration Tasks
	Overview of Object Spawner Configuration Tasks
	Define a New Object Spawner
	Add a Connection to the Object Spawner
	Modify an Object Spawner Definition
	Change Object Spawner-Managed Server Ports
	Configure Object Spawner Logging
	Configure the Object Spawner to Accept Single Sign-on Connections
	Refresh the Object Spawner
	Update a Windows Object Spawner Service
	Using Telnet to Administer the Spawner

	Configuring and Starting the Object Spawner on z/OS
	Overview of Configuring and Starting the Object Spawner on
z/OS
	Task 1: Configure TCP/IP
	Task 2: Create the Object Spawner Started Task
	Task 3: Create a SAS Start-up Command

	Spawner Invocation Options
	Overview of Spawner Invocation Options
	General Options
	Metadata Connection and Security Options
	Service Options

	Administering SAS OLAP Servers
	Administrative Overview for SAS OLAP Servers
	Migrating OLAP Cubes
	Installing and Configuring SAS OLAP Servers
	Considerations for SAS OLAP Servers
	Initial Deployment
	Add a SAS OLAP Server
	Add a Load-Balancing Cluster of SAS OLAP Servers

	Connecting to SAS OLAP Servers
	Starting SAS OLAP Servers
	Stopping, Pausing, and Resuming SAS OLAP Servers
	Disabling and Enabling Cubes
	Building Cubes: Overview for Administrators
	Updating Cubes: Overview for Administrators
	Overview of Updating Cubes: Overview for Administrators
	Update a Cube in Place
	Update a Cube Incrementally

	Coalescing Cubes
	Deleting Cubes
	Authorizing Access to SAS OLAP Servers
	Authorizing Access to OLAP Cubes and Cube Data
	Overview of Authorizing Access to OLAP Cubes and Cube Data
	Change Permissions and Disable Cubes Using SAS OLAP Cube Studio

	Monitoring SAS OLAP Servers
	Managing OLAP Sessions and Queries
	Logging SAS OLAP Servers
	Tuning SAS OLAP Servers with Advanced Server Options
	Overview of Tuning SAS OLAP Servers with Advanced Server Options
	Tune the Cube Cache
	Tune the Subquery Caches
	Tune the Query Thread Pool
	Set Values for Flattened Row in the Server Tab of the Advanced
Options Window
	Set Values in the Performance Tab of the Advanced Options Window

	Refreshing Cube Metadata for Calculated Members and Named Sets
	Administering OLAP Schemas

	System Options for SAS Application Server Components
	Overview of System Options for SAS Application Server Components
	Dictionary
	OBJECTSERVER System Option
	OBJECTSERVERPARMS System Option
	SECPACKAGE System Option
	SECPACKAGELIST System Option
	SSPI System Option

	IOMOPERATE Procedure
	Overview: IOMOPERATE Procedure
	Concepts: IOMOPERATE Procedure
	Syntax: IOMOPERATE Procedure
	PROC IOMOPERATE Statement
	CONNECT Statement
	CONTINUE Statement
	DISCONNECT Statement
	FLUSH AUTHORIZATION CACHE Statement
	LIST Statement
	PAUSE Statement
	QUIESCE Statement
	QUIT Statement
	REFRESH CONFIGURATION Statement
	RESET PERFORMANCE Statement
	SET Statement
	STOP Statement

	Using: IOMOPERATE Procedure
	About the IOMOPERATE Procedure
	Connecting to an IOM Server
	Disconnecting from an IOM Server

	Examples: IOMOPERATE Procedure
	Basic CONNECT Example
	CONNECT Example Using Credentials
	CONNECT Example Using a URI and a Class Identifier
	CONNECT Example Using a Logical Server Name
	CONNECT Example with a Server Name
	CONNECT Example with a URI and Explicit Server Name
	CONNECT and LIST Examples Using a Spawner
	CONNECT Example Using Kerberos
	Pausing an Object Spawner
	Continuing an Object Spawner
	Quiescing an Object Spawner
	LIST TYPES Example
	Stopping a Metadata Server
	DISCONNECT Example
	FLUSH AUTHORIZATION CACHE Example
	REFRESH CONFIGURATION Example
	RESET PERFORMANCE Example
	SET Example

	Appendixes
	Object Spawner and SAS OLAP Server Messages
	Object Spawner Messages
	Load Balancing Error Messages

	Glossary
	Index

