SAS® Add-In 7.1 for Microsoft Office: Getting Started in Microsoft Excel, Microsoft Word, and Microsoft PowerPoint, Second Edition
Contents

Using This Book ... v

Accessibility Features of the SAS Add-In for Microsoft Office xi

Chapter 1 / Introduction to the SAS Add-In for Microsoft Office ... 1
 - What Is the SAS Add-In for Microsoft Office? 1
 - Benefits to Using the SAS Add-In for Microsoft Office 2
 - How to Use the SAS Add-In for Microsoft Office 5

Chapter 2 / Adding SAS Content to a Microsoft Excel Workbook ... 7
 - About the Tasks That You Will Perform ... 8
 - How to Access the Input Data Source ... 8
 - Generate the Summary Statistics for the Federal Reserve Data 9
 - Apply a Style to the Summary Statistics Results 12
 - Apply the Same Style to All Future Results 13
 - Adding Results to an Existing Worksheet ... 14
 - Simulate the Federal Reserve Rate .. 17
 - Display the Historical and Predicted Rate Values in a Line Plot 19
 - Simulate the Federal Reserve Rates with the Click of a Button 23
 - Plot the Federal Reserve Rates over Time .. 29

Chapter 3 / Adding SAS Content to a Microsoft Word Document ... 37
 - About the Tasks That You Will Perform ... 37
 - Access to the Input Data Source .. 38
 - Sort the Soccer Teams by Number of Wins and Conference 38
 - Generate a Report ... 48
 - Apply a Style to the Results ... 52
 - Specify the Contents of the Report with a Click of a Button 58

Chapter 4 / Sending SAS Content from Microsoft Excel to Microsoft PowerPoint .. 71
 - About the Tasks That You Will Perform ... 71
 - How to Access the Input Data Source ... 72
Drop Columns from the Input Data Source .. 73
Plot the Total Criminal Offenses over Time .. 77
Preview and Select the Results .. 84
Determine the Correlation between Population and Violent Crime 84
Determine the Number of Violent Crimes by Year 88
Send Results to a Microsoft PowerPoint Presentation 92
Refresh Results in the PowerPoint Presentation 94

Chapter 5 / Editing and Refreshing SAS Content in Microsoft Excel and Microsoft Word .. 99
About the Tasks That You Will Perform ... 99
Access to the Input Data Source .. 100
Save the College Sample to a Local Directory 100
Edit the Tuition Costs in Microsoft Excel 100
Refresh the Tuition Data in the Pamphlet 103

Recommended Reading .. 107
Glossary .. 109
Index .. 111
Using This Book

Audience

This book is intended for users of Microsoft Office 2007, 2010, or 2013. Each chapter in this book explains how to re-create a sample that is available from your installation directory. (For more information, see “Access to Samples and Input Data Sources” on page ix.) Samples are available for Microsoft Excel, Microsoft Word, and Microsoft PowerPoint. By re-creating these samples, you learn how to perform these tasks using the SAS Add-In for Microsoft Office:

- run a SAS analysis and include the results in an Excel worksheet, Word document, or PowerPoint presentation
- use Visual Basic code to refresh your content
- preview the results from a SAS analysis and select the results that you want to include in the output
- apply a custom style to your results
- edit SAS data in Microsoft Excel
- send content from one Microsoft Office application to another
Prerequisites for This Scenario

Software and Configuration Requirements

When you are ready to perform the tasks in this book, administrators at your site should have installed and configured all necessary components of the SAS Enterprise Intelligence Platform. You must also have the following software and permissions set up:

- permissions to access the SAS Metadata Server. SAS support personnel at your site set these permissions and provide the name and location of the SAS Metadata Server.

- a metadata configuration file to specify which SAS Metadata Server you will connect to by default. This file enables you to access SAS data sources on remote servers. For more information about setting up a metadata configuration file, see the online Help for the SAS Add-In for Microsoft Office.

Enable the SAS Add-In in Microsoft Excel, Word, and PowerPoint

To create the examples in this document, the SAS Add-In 7.1 for Microsoft Office must be available in Excel, Word, and PowerPoint. If the SAS add-in is enabled in a specific Microsoft Office application, a SAS tab appears in the Ribbon for that Microsoft Office application. If the SAS tab is not available, contact the SAS support personnel at your site. An administrator might need to load the SAS add-in in a Microsoft Office application or use the SAS Add-In for Microsoft Office Switcher Utility to enable the SAS add-in in a Microsoft Office application.

For more information about loading the SAS add-in or the SAS Add-In for Microsoft Office Switcher Utility, see the online Help for the SAS Add-In for Microsoft Office.
Set Your Microsoft Office Documents to Support Macro-Enabled Content

The samples that you create in this book include macro-enabled content. When you save your Microsoft Office documents, you must use the file extensions for macro-enabled content. These file extensions are .xlsm in Excel, .docm in Word, and .pptm in PowerPoint. When you open a Microsoft Office document that includes macro-enabled content, you want to be notified that this content is disabled.

To receive these notifications when you open macro-enabled content in Microsoft Excel, Word, or PowerPoint:

1. In Microsoft Office 2013 or 2010, select File ▶ Options. In Microsoft Office 2007, click and select product-name Options, where product-name is Excel, Word, or PowerPoint.

 The product-name Options dialog box appears, where product-name is Excel, Word, or PowerPoint.

2. In the selection pane, click Trust Center. The Trust Center panel appears.

3. Click Trust Center Settings. The Trust Center dialog box appears.

4. In the selection pane, click Macro Settings. The Macro Settings panel appears.

5. Select Disable all macros with notification, and then click OK.

6. Click OK to close the product-name Options dialog box.

7. Close and restart Microsoft Excel, Word, or PowerPoint to activate this option.

Now, when you open a Microsoft Office document that contains macro-enabled content, you are warned that some active content has been disabled. To enable the content in your Microsoft Office document:
Configure Your Server Connection

You must configure the connection between the SAS Add-In for Microsoft Office and a SAS Metadata Server in order to copy the data for the Word and PowerPoint examples in this book. This connection is called a profile.

To configure your server connection:

1 In the Ribbon, click the **SAS** tab. In the **Tools** group, click **Tools**, and then select **Connections**.

 The Connections window appears.

 Note: If you are running SAS Add-In 7.14 for Microsoft Office or later, the SAS Connections window appears. Click **Manage** to open the Connections window.

2 In the selection pane, click **Profiles** to open the **Profiles** panel. From this panel, select a profile and click **Set Active**.

 If no profiles are available, see the online Help for the SAS Add-In for Microsoft Office to learn how to create a profile.

 Note: If you do not use a profile, then you can access only the SAS server that is installed on your local machine. You cannot define libraries or share SAS resources with other SAS applications.

3 In the selection pane, click **Servers** to open the **Servers** panel. From the drop-down list, select the default server for the active profile.

 TIP To complete the Word and PowerPoint tasks, you copy data from an Excel workbook to your default server. To access these data sources, you need to know
the default server for your active profile. This book assumes that your default server is SASApp.

4 Click **Close** to close the Connections window.

Access to Samples and Input Data Sources

The samples that are used in this book are available from `SAS-installation-directory\SAS\AddinforMicrosoftOffice\7.1\Samples`.

For the Microsoft Excel samples, the input data for the SAS content is included in the Excel workbook. Because data sources cannot be saved in Word or PowerPoint, the data for these samples is saved in the RunFirst.xslm workbook. You must copy this data to a SAS server. After a data source is copied to a SAS server, the data source becomes a SAS data set, and you can use it like any other SAS data source.

To copy the data for the Word and PowerPoint samples to your SAS server:

1 Open Microsoft Excel and verify that the **SAS** tab is available in the Ribbon. The SAS add-in must be available in Microsoft Excel for you to copy the Excel data to the SAS server. If the **SAS** tab is not available, see “Enable the SAS Add-In in Microsoft Excel, Word, and PowerPoint” on page vi.

2 Open the RunFirst.xlsm workbook.

 Note: The RunFirst.xlsm workbook contains some macro-enabled content. To copy the data from the workbook to a SAS server, you must enable the document for macro-enabled content. For more information, see “Set Your Microsoft Office Documents to Support Macro-Enabled Content” on page vii.

3 In the Run First! worksheet, click **Copy to Server**.

4 To verify that all of the data was copied to your SAS server, select **Manage Content** on the **SAS** tab. The Manage Content window appears and lists the seven data sets that were created on the SAS server.
The names of these data sets use the following format: server-name:library-name_data-set-name. For the examples in this book, the default server is SASApp and the library is SASData.

5 Click Close to close the Manage Content window.

6 Close the RunFirst.xlsm workbook in Microsoft Excel.
Accessibility Features of the SAS Add-In for Microsoft Office

For information about the accessibility of the SAS Add-In for Microsoft Office, see the product documentation page for SAS Add-In for Microsoft Office.
Introduction to the SAS Add-In for Microsoft Office

What Is the SAS Add-In for Microsoft Office? 1
Benefits to Using the SAS Add-In for Microsoft Office 2
How to Use the SAS Add-In for Microsoft Office 5

What Is the SAS Add-In for Microsoft Office?

The SAS Add-In for Microsoft Office extends the functionality of Microsoft Excel, Microsoft Word, Microsoft PowerPoint, and Microsoft Outlook by enabling you to access SAS analytics and SAS reporting functionality without any SAS programming experience. The SAS add-in is designed for users who are familiar with these Microsoft Office applications but who might be new to SAS.

In general, the functionality of the SAS add-in is the same for Excel, Word, and PowerPoint. In all of these applications, you can run analyses, generate reports, and share this SAS content with other users at your site. Additional functionality is available in Microsoft Excel. For example, in Excel, you can open and edit data sources.

Note: The functionality in Microsoft Outlook is unique. Using the native functionality in Outlook, you can monitor reports and share this information with other users at your site. However, you cannot create new reports or run SAS tasks in Outlook. Therefore,
the functionality in Outlook is not covered in this documentation. For more information, see the online Help for the SAS Add-In for Microsoft Office in Microsoft Outlook.

The SAS add-in includes approximately 80 SAS tasks that enable you to perform a variety of analyses. If SAS Studio is installed on the same machine as the SAS Add-In for Microsoft Office and you are running Internet Explorer 10 (or later), you can also run SAS Studio tasks by using the SAS add-in. Examples of analyses include linear and nonlinear regressions, multivariate analyses, time series analyses, one-way frequencies, and summary statistics. The SAS add-in enables you to refresh these analyses so that your results include the most up-to-date information. You can also easily share the results with other users at your site.

Depending on the SAS products that you have installed, you can also open reports or stored processes that were created in other SAS applications such as SAS Visual Analytics or SAS Enterprise Guide. These reports are saved in a common repository, which enables all SAS users at your site to get the most up-to-date information.

When the SAS add-in is installed on your computer, a SAS tab is automatically integrated into the Ribbon in Excel, Word, and PowerPoint 2007, 2010, and 2013. The SAS tab enables you to access the SAS analytics and reporting functionality directly from these Microsoft Office applications without opening a separate SAS interface.

Benefits to Using the SAS Add-In for Microsoft Office

Most of the SAS add-in functionality is identical in Excel, Word, and PowerPoint. For example, you can run analyses and reports in all three applications.

The SAS add-in extends the functionality in Excel, Word, and PowerPoint by enabling you to perform these tasks:

- Access SAS data sources as the input data for your analysis. You can use any SAS data source or any data source that is available from your SAS server (including databases such as Oracle, Teradata, and DB2) as the input data for an analysis.

- Perform more complex analyses and computations than what is available in Microsoft Excel. For example, one of the complex analyses that SAS provides is the
Canonical Correlation task. This task enables you to examine the relationship between a linear combination of a set of X variables and a linear combination of a set of Y variables. You might run a canonical correlation analysis to determine the degree of correspondence between a set of job characteristics and a set of measures of employee satisfaction. This SAS task extends the correlation analysis that is available in Excel. You can run these complex analyses and computations in Excel, Word, or PowerPoint.

- Run custom analyses that were developed by other users at your company. Using the SAS add-in, you can also open reports that were developed by SAS Visual Analytics or SAS Enterprise Guide users at your site. Some of these reports might run programs called SAS Stored Processes. These programs are customized SAS code that is developed by business analysts or your IT department. Running these programs enables you to quickly generate a custom report without writing any SAS code.

- Refresh the content in the Excel worksheet, Word document, or PowerPoint presentation on demand or automatically at a specified time. Scheduling when the content is refreshed enables you to have the most up-to-date data and reports when you need them.

- Send the SAS content to another Microsoft Office application. For example, you ran an analysis of your company’s sales for this year, and now you need to present the results. Using this functionality in Excel, you can select which results to include in a PowerPoint presentation. This saves you time because you run the analysis only once.

- Save the results to a central repository. When you save a document to a central repository, you can share this information with other users without e-mailing it. If you save the document to a metadata repository (such as SAS Folders), you can also perform an impact analysis on the document. Impact analysis enables you to know the location of the data source and the items that are dependent on this source. This analysis enables you to know how changing a data source might affect other documents.

Additional functionality is available in Excel. In Microsoft Excel, you can also complete these tasks:
Use these tools to automatically calculate basic statistics and charts that best fit your input data source.

- **Automatic Charts** creates bar charts, bubble plots, line plots, pie charts, or scatter plots based on how you assign variables to the Categories and Measures roles.

- **Quick Stats** enables you to quickly calculate the basic statistics and create basic graphs based on your input data source. The input data could be an entire SAS data source, a sample of a SAS data source, or an individual column in the SAS data source.

Access and view data sources that exceed the record limitation in Microsoft Excel. The SAS add-in does its processing on the server, which enables the SAS add-in to bypass the record limitation in Excel.

Copy data to a SAS server. You can copy an Excel data source or a SAS data source to a SAS server. After a data source is copied to a SAS server, the data source becomes a SAS data set. This enables you to share Excel data with Word and PowerPoint users at your site. This functionality also enables Excel users to update information in a SAS data source and upload the updated data source to the SAS server.

Edit any data source that is accessible from a SAS server. You open the data set in Edit mode in Excel. When the data set is in Edit mode, the data set is locked and cannot be opened by other users at your site. After you edit the data, you commit your changes to the SAS server and update the existing data set.

Use the OLAP Analyzer to view data that is stored in an OLAP (online analytical processing) cube. In Microsoft Excel, you can use the OLAP Analyzer to create table and graph views of your data. You can also drill down through the data, create bookmarks, add calculated measures and calculated members, filter the OLAP data, and view ESRI maps.

Note: The availability of some functionality depends on the SAS products that you have installed and also on your role-based capabilities, which are defined by your SAS administrator.
This documentation explores some of the basic tasks that you can perform in Excel, Word, and PowerPoint.

How to Use the SAS Add-In for Microsoft Office

In Microsoft Office, the SAS add-in is available from the SAS tab in the Ribbon. You access the SAS add-in from the menu options on this tab.

Note: If you do not see a SAS tab, then you might not have the SAS add-in installed or enabled. For help, contact the SAS support personnel at your site.

You can perform a variety of tasks using the SAS add-in. The following process briefly explains how you would run a SAS analysis:

1. Open Microsoft Excel, Word, or PowerPoint.
2. Select the analysis that you want to perform.

 Note: After you select the analysis, you might be prompted to log on to the SAS server. You must be connected to a SAS server to run an analysis or to access a SAS data source.

3. Select the data source that you want to use in the analysis. In Excel, you can use data in an existing Excel worksheet or in a SAS data source. If you select a SAS data source, you can filter and sort the data before the analysis.

4. Select the options in the analysis that you want to use, and then run the analysis.

5. Specify the location of the output. For example, in Excel, you can include the results in the existing worksheet, in a new worksheet, or in a new workbook.
The results open in the Microsoft Office document.
Adding SAS Content to a Microsoft Excel Workbook

About the Tasks That You Will Perform .. 8

How to Access the Input Data Source ... 8

Generate the Summary Statistics for the Federal Reserve Data 9

Apply a Style to the Summary Statistics Results 12

Apply the Same Style to All Future Results .. 13

Adding Results to an Existing Worksheet ... 14

Simulate the Federal Reserve Rate ... 17

Display the Historical and Predicted Rate Values in a Line Plot 19

Simulate the Federal Reserve Rates with the Click of a Button 23

Plot the Federal Reserve Rates over Time .. 29
About the Tasks That You Will Perform

For this example, you are researching the trend of the Federal Reserve rate from January 1962 to May 2010. The data is publicly available from http://www.federalreserve.gov, which is the website for the Board of Governors of the Federal Reserve System. (To help you complete this example, this data is included in the sample data that is installed with the SAS Add-In for Microsoft Office.)

After completing this example, you will know how to perform these tasks:

- run a SAS analysis (specifically, the Summary Statistics, Linear Regression, and Line Plot tasks) in Microsoft Excel
- specify Excel data as the input data source for a SAS task
- select the location of the output from a SAS task
- change the properties of the generated output
- quickly refresh your results by including Visual Basic code in your Excel worksheet

How to Access the Input Data Source

Before you can run any analysis, you need access to the input data source.

To copy the data for the Federal Reserve sample:

1. Open the FedReserveRate.xlsm sample.
2. In the Original Data worksheet, select the data in range A15:B12638.
3. Copy the data from the Original Data worksheet and paste the data into Sheet1 in a new workbook.
4. Change the name of this worksheet to Original Data.
Save the new workbook on your computer as `FedReserveRate.xlsm`.

Generate the Summary Statistics for the Federal Reserve Data

Now that you have access to the input data source, you can start your analysis.

1. On the **SAS** tab, click **Tasks**. The Tasks window appears.

 TIP This task interface could appear as a pane in your Microsoft Office application. The functionality in the pane and the window is identical. This book assumes that you are using the Tasks window.

2. In the Tasks window, click **Browse**, and then select **Summary Statistics Wizard**. The Choose Data dialog box appears.

 TIP On the **Browse** tab in the Tasks window, the tasks are listed alphabetically. However, you can search for tasks by keyword, or you can filter the list of tasks by type, category, or SAS procedure. The Summary Statistics Wizard is in the Describe category.
For the input data, select **Excel Data** and specify the range of the Excel data in the Original Data worksheet.

TIP If your input data source is selected in Excel, then the SAS add-in automatically lists this range in the **Excel Data** box.

For the location of the results, select **New worksheet**. Change the name of this worksheet to **Summary Statistics**.

Click **OK**. The Summary Statistics Wizard appears.

In step 1 of the wizard, verify that you have selected the data source that you want to use. Click **Next**.

In step 2 of the wizard, assign the VALUE variable to the **Summary statistics of** (Analysis variable) role.
7 In step 3 of the wizard, click **Next** to generate the default summary statistics.

8 In step 4 of the wizard, delete the text for the footnote, and then click **Finish**. The results open in a new worksheet called **Summary Statistics**.

Notice that the style of the results does not match your corporate style.
Apply a Style to the Summary Statistics Results

To apply a style to the results from the Summary Statistics Wizard:

1. Select the summary statistics results in the worksheet, and on the SAS tab, click Properties. The Summary Statistics Wizard Properties dialog box appears.

2. Click the Appearance tab, and select the **Always apply the SAS style to the results** check box. By default, the SAS Add-In for Microsoft Office uses the AMODefault style for any results.

 For this example, select **Seaside** from the drop-down menu.

3. Select the **Refresh** check box to refresh the results after you close the Summary Statistics Wizard Properties dialog box. Click **OK**.
The SAS add-in refreshes the results and applies the newly selected style.

Apply the Same Style to All Future Results

These steps apply the Seaside style only to the results from the Summary Statistics Wizard. However, you want to use your company’s style for all results in this workbook. To globally apply a style to the results:

1. On the SAS tab, click Tools, and then select Options.

2. Click Results to view the results options.
Specify that you always want to apply the SAS style to the results, which means that the SAS style is applied when you are inserting or refreshing content. From the drop-down menu, select the style that you want to apply. For this example, the style is **Seaside**.

Click **OK**.

Now, any future results will use the style that you selected.

Adding Results to an Existing Worksheet

Next, you want to perform a linear regression analysis and add the results to the Summary Statistics worksheet. To run a linear regression analysis:

1. In the Original Data worksheet, select the Excel data.
2. On the **SAS** tab, click **Tasks**. The Tasks window appears.

 TIP By default, the Tasks window stays open when you run a task, so unless you closed the Tasks window, it should still be open in Microsoft Excel. For the SAS add-in to automatically close this window every time you open a task, click **Tools** and then select **Options**. Click **Tasks** to view the task options, and then select the **Close task browser when opening a task** check box.

3. In the Tasks window, click **Browse**. In the search field, enter **Linear Regression**. From the list of results, select **Linear Regression**.
The Choose Data dialog box appears.

4 For the input data source, select **Excel data**. By default, the input data source is the range of Excel data in the Original Data worksheet. You can also use ![to select the input data.](image)

5 For the location of the results, select **Existing worksheet**, and then click ![OK](image). The SAS Add-In dialog box appears.

6 In the Summary Statistics worksheet, select cell G1. In the SAS Add-In dialog box, click **OK**.

After completing these steps, the content in your Choose Data dialog box should look similar to the following display:
Click OK. The Linear Regression task appears.

7 In the Data panel, assign the VALUE variable to the Dependent variable role.

In the selection pane, click Titles.

8 In the Titles panel, select Footnote, and then clear the Use default text check box. Delete the text in the Text for section: Footnote box.

Click Run.
The results from the linear regression analysis open in the Summary Statistics worksheet. Because Seaside was selected as the style for the results, the results from the Linear Regression task automatically use the Seaside style.

Simulate the Federal Reserve Rate

Next, use the functionality in Microsoft Excel to predict the Federal Reserve rate over the next six days. You want these calculated values to appear in a table and in a line plot.

To simulate the Federal Reserve rate for the next six days:

1. Create a new worksheet called Basic Forecasting.

2. In the new worksheet, specify Date and Rate as column headings.

3. From the Original Data worksheet, copy the data from 2010-04-27 through 2010-05-20, and paste it into the Basic Forecasting worksheet.
In the Date column, add rows for 2010-05-21 through 2010-05-26.

In the Rate column, specify the following formula for the new dates:

Yesterday's Rate + \((RANDBETWEEN(-100,100)/100)/2 \)

In this example, the formula for the B20 cell is B19+(RANDBETWEEN(-100,100)/100)/2.

Although the calculated values could vary, your results should appear similar to this display:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Rate</td>
<td></td>
</tr>
<tr>
<td>2010-04-27</td>
<td>3.71</td>
<td></td>
</tr>
<tr>
<td>2010-04-28</td>
<td>3.80</td>
<td></td>
</tr>
<tr>
<td>2010-04-29</td>
<td>3.76</td>
<td></td>
</tr>
<tr>
<td>2010-04-30</td>
<td>3.69</td>
<td></td>
</tr>
<tr>
<td>2010-05-03</td>
<td>3.72</td>
<td></td>
</tr>
<tr>
<td>2010-05-04</td>
<td>3.63</td>
<td></td>
</tr>
<tr>
<td>2010-05-05</td>
<td>3.58</td>
<td></td>
</tr>
<tr>
<td>2010-05-06</td>
<td>3.41</td>
<td></td>
</tr>
<tr>
<td>2010-05-07</td>
<td>3.45</td>
<td></td>
</tr>
<tr>
<td>2010-05-08</td>
<td>3.57</td>
<td></td>
</tr>
<tr>
<td>2010-05-09</td>
<td>3.56</td>
<td></td>
</tr>
<tr>
<td>2010-05-10</td>
<td>3.56</td>
<td></td>
</tr>
<tr>
<td>2010-05-11</td>
<td>3.55</td>
<td></td>
</tr>
<tr>
<td>2010-05-12</td>
<td>3.44</td>
<td></td>
</tr>
<tr>
<td>2010-05-13</td>
<td>3.47</td>
<td></td>
</tr>
<tr>
<td>2010-05-14</td>
<td>3.38</td>
<td></td>
</tr>
<tr>
<td>2010-05-15</td>
<td>3.36</td>
<td></td>
</tr>
<tr>
<td>2010-05-16</td>
<td>3.25</td>
<td></td>
</tr>
<tr>
<td>2010-05-17</td>
<td>3.695</td>
<td></td>
</tr>
<tr>
<td>2010-05-18</td>
<td>4.015</td>
<td></td>
</tr>
<tr>
<td>2010-05-19</td>
<td>4.07</td>
<td></td>
</tr>
<tr>
<td>2010-05-20</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>2010-05-21</td>
<td>4.59</td>
<td></td>
</tr>
<tr>
<td>2010-05-22</td>
<td>4.995</td>
<td></td>
</tr>
<tr>
<td>2010-05-23</td>
<td>4.73</td>
<td></td>
</tr>
</tbody>
</table>
Display the Historical and Predicted Rate Values in a Line Plot

Now, you want to create a line plot of the historical data and the calculated values.

1. In the Basic Forecasting worksheet, select the Excel data.

2. On the SAS tab, click Tasks. In the Tasks window, select Line Plot. The Choose Data dialog box appears.

3. For the input data source, select Excel Data. Because you previously selected the data, the range of data appears in the Excel Data box. In this example, the range of the Excel data is A1:B26.

4. For the location of the results, select Existing worksheet. Then click and select the location of the output. In this example, the output is placed in cell D3.

 After completing these steps, the content in your Choose Data dialog box should look similar to this display:

 ![Choose Data dialog box](image)

 Click OK. The Line Plot task appears.

5. In the Line Plot panel, select Line Plot.
In the selection pane, click **Data**.

6 In the **Data** panel, assign Date to the **Horizontal** role, and assign Rate to the **Vertical** role.

In the selection pane, click **Chart Area**.
7 In the **Chart Area** panel, select gray as the background color of the chart.

![Chart Area panel showing gray background color](image)

In the selection pane, click **Titles**.

8 In the **Titles** panel, change the title of the line plot and remove the generated footnote.

To change the title of the line plot:

- a In the **Section** box, select **Graph**.

- b In the **Text for section: Title** area, clear the **Use default text** check box. Replace **Line Plot** with **Simulated Federal Reserve Rate**.

To remove the footnote:

- a In the **Section** box, select **Footnote**.

- b In the **Text for section: Footnote** area, clear the **Use default text** check box. Delete the generated text that appears in the text box.
Click **Run**.

The new line plot appears in the Basic Forecasting worksheet.
Simulate the Federal Reserve Rates with the Click of a Button

Using Visual Basic code, you can add a button to the Basic Forecasting worksheet. Now, with the click of that button, you can simulate the Federal Reserve rate and update the contents of the table and the line plot.

1. In the Ribbon, click the Developer tab.

2. Click Insert, and under ActiveX Controls, select the icon for the command button.

3. In the Excel worksheet, select the region where you want the button to appear.
4 To change the text on this button, select Properties on the Developer tab. The Properties dialog box appears.

5 In the Caption field, type Simulate.
Close the Properties dialog box. In the worksheet, the button text now reads Simulate.
6 Double-click **Simulate** to open the Visual Basic Editor. The code for **CommandButton1_Click** is created for you.
Next, it is important that you add a reference to the SAS Add-In 7.1 for Microsoft Office in your Visual Basic code.

7 In the Visual Basic Editor, select **Tools ▶ References**. The References - VBAProject dialog box appears.

8 Select the **SAS Add-In 7.1 for Microsoft Office** check box.

Click **OK**.

9 To access the automation interface for the SAS Add-In for Microsoft Office, enter the following lines of code:

 Dim sas As SASExcelAddIn
 Set sas = Application.COMAddIns.Item("SAS.ExcelAddIn").Object

10 For Excel to recalculate the forecasts by using the formulas that you specified, add this code:

 Application.Calculate
To refresh the line plot to reflect the recalculated forecasts, add this code:

```sas
sas.Refresh("Line_Plot")
```

Note: The object name for your line plot might be different. To verify the object name for your line plot, select the line plot in the Basic Forecasting worksheet, and on the SAS tab, select **Properties**. The object name is available from the **General** tab in the Line Plot Properties dialog box.

After adding these additional lines of code, the code in your Visual Basic Editor should appear similar to the following display:

![Visual Basic Editor screenshot](image)

12 Save your changes and close the Visual Basic Editor.

13 On the **Developer** tab, deselect **Design Mode**.

14 In the Basic Forecasting worksheet, click **Simulate**. The forecasts in the table are recalculated, and the line plot is updated to show the recalculated rates.
Finally, you want to observe how the Federal Reserve rate has changed over time. To quickly determine any trends, you decide to create a line plot of the Federal Reserve rates from January 2, 1962, to May 20, 2010.

1. In the Original Data worksheet, select the Excel data.
2 On the SAS tab, click Tasks. In the Tasks window, select Line Plot. The Choose Data dialog box appears.

3 For the input data, select Excel Data. Because you previously selected the data in the Original Data worksheet, the range of the data appears in the Excel Data box.

4 For the location of the results, select New worksheet. By default, the name of this worksheet is Line Plot.

 Click OK. The Line Plot task appears.

5 In the Data panel, assign DATE to the Horizontal role and VALUE to the Vertical role.

 In the selection pane, select Appearance ▶ Plots.

6 In the Appearance > Plots panel, specify blue as the line color.

 In the selection pane, select Appearance ▶ Axes ▶ General.

7 In the Appearance > Axes > General panel, select the Display Grid Lines check box.
In the selection pane, select **Appearance ▶ Axes ▶ Horizontal Axis ▶ Major Ticks**.

8 In the **Appearance > Axes > Horizontal Axis > Major Ticks** panel, select **Specify**, and then add the following values for the major tick marks:

- **02JAN1962**
- **25JAN1970**
- **17FEB1978**
- **12MAR1986**
- **04APR1994**
- **27APR2002**
- **20MAY2010**
In the selection pane, select **Appearance ➤ Axes ➤ Vertical Axis ➤ Axis**.

9. In the **Appearance > Axes > Vertical Axis > Axis** panel, enter **Federal Reserve Rate** in the **Label** field.

In the selection pane, select **Chart Area**.
10 In the **Chart Area** panel, select gray as the background color for the chart.

![Chart Area panel](image)

In the selection pane, click **Titles**.

11 In the **Titles** panel, change the title of the line plot and remove the generated footnote.

To change the title of the line plot:

a In the **Section** box, select **Graph**.

b In the **Text for section: Title** area, clear the **Use default text** check box. Replace **Line Plot** with **Federal Reserve Rate over Time**.
To remove the footnote:

a In the Section box, select Footnote.

b In the Text for section: Footnote area, clear the Use default text check box. Delete the generated text that appears in the text box.

Click Run.

The results appear in the new Line Plot worksheet.
For this example, you are the organizer of a local soccer league. This league has several teams that are divided into two conferences. It is the end of the season, and you need to seed the teams for the upcoming tournament.

After completing this example, you will know how to perform these tasks:
run a SAS analysis (specifically, the List Data task) in Microsoft Word

use a SAS data source as the input data source for the task

quickly subset and rank data by including Visual Basic code in your Microsoft Word document

Access to the Input Data Source

Before you can analyze the soccer data in Microsoft Word, you must copy the necessary data to your SAS server. For more information, see “Access to Samples and Input Data Sources” on page ix.

When this copy operation completes, the _SoccerClub data set should be available from the SASData library on your default server. In this example, the location of this data set is the SASApp:SASApp - SASDATA directory.

Sort the Soccer Teams by Number of Wins and Conference

To complete this example, you must run the Sort Data task three times: once to sort the soccer teams by number of wins; once to sort the teams in the Eastern Conference; and once to sort the teams in the Western Conference. The Sort Data task generates an output SAS data set that is saved to your default server. This data set is used later as the input data source for the List Data task. The contents of the data set change depending on which Sort Data task you run.
Step 1: Run the Sort Data Task on All of the Data

Create a Temporary Data Set

First, create a temporary data set that lists the soccer teams in the league by number of wins.

1. Open Microsoft Word.

2. On the SAS tab, click Tasks.

3. In the Tasks window, select Sort Data. The Choose Data dialog box appears.

4. Click Browse. The Open Data Source dialog box appears.

5. To open the _SoccerClub data set:
 a. In the selection pane, select Servers.
 b. From the list of servers, select your default server. In this example, the default server is SASApp.
 c. From your default server, select the SASDATA library and click Open. In this example, the library name is SASApp - SASDATA.
 d. In the SASDATA library, select the _SOCCERCLUB data set.
Click **Open**. Now, the contents of the Choose Data dialog box should appear similar to the following display:

![Choose Data dialog box](image)

Click **OK**. The Sort Data task appears.

6 In the **Data** panel, assign the W variable to the **Sort by** role. From the **W sort order** drop-down menu, select **Descending**.
In the selection pane, click **Results**.

7 In the **Results** panel, change the directory path in the **Location to save output data** field to `default-server:WORK.SOCCERCLUB`. This path is where the temporary data set is saved. You need this information to run the List Data task later.

For this example, the default location is **SASApp:WORK.SOCCERCLUB**.
Click **Run**.

The Sort Data task generates the SoccerClub data set in the Work library. However, there is no visual output for this task, so when the task completes, you see the following message:

Click **Close**.

Determine the Object Name for the Sort Data Task

To run this Sort Data task by using Visual Basic code, you need the object name that the SAS add-in assigned to this task. To determine this object name:

1. On the **SAS** tab, click **Manage Content**. The Manage Content window appears. The Sort Data task is listed in this window.
Select the Sort Data task and click . The Sort Data Properties dialog box appears.

On the General tab, remember the object name for this task. In this example, the object name is Sort_Data. You use this object name later.

Close the Sort Data Properties dialog box and the Manage Content window.

Step 2: Run the Sort Data Task on Teams in the Eastern Conference

Create a Temporary Data Set for the Eastern Conference

Now, you need to create a temporary data set for the teams in the Eastern Conference.
On the SAS tab, click Tasks.

In the Tasks window, select Sort Data. The Choose Data dialog box appears.

Select the _SOCCERCLUB data set as your input data source. In this example, the location of this set is SASApp:SASApp — SASDATA_SOCCERCLUB.

Click Filter & Sort. The Modify Data Source window appears.

Click the Filter tab.

To create this filter:

a In the first drop-down menu, select Conference.

b In the second drop-down menu, select Equal to.

c In the text box, enter EC. You can also click to select this value.

Click OK to apply this filter.

In the Choose Data dialog box, click Details. These details show that the filter is applied to your input data source.
Click **OK**. The Sort Data task appears.

8 In the **Data** panel, assign the **W** variable to the **Sort by** role. From the **W sort order** drop-down menu, select **Descending**.

In the selection pane, click **Results**.

9 In the **Results** panel, change the directory path in the **Location to save output data** field to `default-server:WORK.SOCCELERCLUB`. This path is where the temporary data set is saved. You need this information to run the List Data task later.

For this example, the default location is `SASApp:WORK.SOCCELERCLUB`.

10 Click **Run**.

Note: If you are prompted to replace an existing data set, click **Yes** in the dialog box. Click **Run** again in the Sort Data task.

The Sort Data task overwrites the SoccerClub data set in the Work library. Now, this data set contains only the teams in the Eastern Conference.

Determine the Object Name for the Second Sort Data Task

To run this Sort Data task by using Visual Basic code, you need the object name that the SAS add-in assigned to this task. To determine this object name:

1 On the **SAS** tab, click **Manage Content**. The Manage Content window appears.

Now, there are two Sort Data tasks listed in this window.
2 Select the second Sort Data task and click . The Sort Data Properties dialog box appears.

3 On the General tab, remember the object name for this task. In this example, the object name is Sort_Data_2_2. You use this object name later.

4 Close the Sort Data Properties dialog box and the Manage Content window.

Step 3: Run the Sort Data Task on Teams in the Western Conference

Create a Temporary Data Set for the Western Conference

Now, you need to create a temporary data set for the teams in the Western Conference.

1 On the SAS tab, click Tasks.

2 In the Tasks window, select Sort Data. The Choose Data dialog box appears.

3 For the input data source, select the _SOCCERCLUB data set. In this example, the path to the input data source is SASApp:SASApp — SASDATA_SOCCERCLUB.

4 Click Filter & Sort. The Modify Data Source window appears.

5 Click the Filter tab.

6 To create the filter:
a In the first drop-down menu, select **Conference**.

b In the second drop-down menu, select **Equal to**.

c In the text box, enter **WC**. You can also click ![...](image) to select this value.

Click **OK** to apply this filter.

7 In the Choose Data dialog box, click **Details**. These details show that the filter is applied to your input data source.

![Choose Data dialog box](image)

Click **OK**. The Sort Data task appears.

8 In the Sort Data task, select **Data** in the selection pane. In the **Data** panel, assign the W variable to the **Sort by** role. From the **W sort order** drop-down menu, select **Ascending**.

9 In the selection pane, click **Results**. In the **Results** panel, the **Location to save output data** field lists the directory path where this temporary data set is saved. You need this information to run the List Data task later. For this example, change the default location to `SASApp:WORK.SOCCERCLUB`.

10 Click **Run**.

Note: If you are prompted to replace an existing data set, click **Yes** in the dialog box. Click **Run** again in the Sort Data task.
Determine the Object Name for the Third Sort Data Task

To run this Sort Data task by using Visual Basic code, you need the object name that the SAS add-in assigned to this task. To determine this object name:

1. On the SAS tab, click Manage Content. The Manage Content window appears. Now, there are three Sort Data tasks listed in this window.

2. Select the third Sort Data task and click Edit. The Sort Data Properties dialog box appears.

3. On the General tab, remember the object name for this task. In this example, it is Sort_Data_2_3. You use this object name later.

4. Close the Sort Data Properties dialog box and the Manage Content window.

Generate a Report

Now that you have created the data for this example, you want to generate a report that lists all the teams by number of wins.

1. On the SAS tab, click Manage Content. The Manage Content window appears.

2. Select the check box for the first Sort Data task and click Refresh. When the refresh is complete, the date-and-timestamp in the Date Modified column is updated.
With this refresh, the Work.SoccerClub data set contains all of the teams in the soccer league. Click **Close** to exit the Manage Content dialog box.

3 On the **SAS** tab, click **Tasks**.

4 In the **Tasks** window, select **List Data**. The Choose Data dialog box appears.

5 Select the Work.SoccerClub data set as your input data source. In this example, the path to the input data source is `SASApp:WORK.SOCCERCLUB`.

Click **OK**. The List Data task appears.

6 In the **Data** panel, assign all variables to the **List variables** role.
In the selection pane, click **Options**.

7. In the **Options** pane, clear the **Print the row number** check box.

In the selection pane, click **Titles**.

8. In the **Titles** pane, remove the default title and footnote.

 a. In the **Section** box, select **Report Titles**.

 b. In the **Text for section: Report Titles** area, clear the **Use default text** check box. Delete the generated text that appears in the text box.
Repeat these steps to remove the default text for the footnote. Click **Run**.

The results from the List Data task open in your Microsoft Word document.
Apply a Style to the Results

By default, any generated results use the AMODefault style. However, you can change the style of the results by using a style that is shipped with the SAS add-in or by
creating your own style. For this example, you want to apply a custom style to the results.

To create a custom style:

1. In the document, select the results from the List Data task, and on the SAS tab, click **Properties**. The List Data Properties dialog box appears.

2. In the List Data Properties dialog box, click the **Appearance** tab.

3. On the **Appearance** tab, select the **Always apply the SAS style to the results** check box.

4. Click **Manage Styles**. The Style Manager appears.

5. In the Style Manager, click **Add**. The Add New Style dialog box appears.

To create a new style based on an existing style:

a. Select **Add new based on existing style**.

b. Enter **SoccerClub** as the name of the new style.

c. From the **Based on** drop-down menu, select **AMODefault**.

d. Click **OK**.
The new SoccerClub style is now available from the Style Manager.

Currently, the SoccerClub style is identical to the AMODefault style. To customize the new SoccerClub style, you must edit it.

6 In the Style Manager, select the SoccerClub style and click Edit. The Style Editor appears.

7 To customize the text in the body of your results:

 a From the Selected element drop-down menu, select Body.

 b Click the Text tab and change the following options:

 ■ Specify Arial as the font.
8 To apply these text attributes to the column headings, click **Apply to Other Elements**. The Apply to Other Elements dialog box appears. From the list of style elements, select the check box for **Header**. Click **OK** to return to the Style Editor.

9 To specify the attributes for the borders in the Style Editor, click the **Borders** tab, and specify the following options:

- From the **Line Style** drop-down menu, select **Solid**.
- From the **Line Width** drop-down menu, select **Thin**.

Click **OK** in the Style Editor and in the Style Manager to return to the List Data Properties dialog box.

10 In the List Data Properties dialog box, verify that SoccerClub is the selected style. Select the **Refresh** check box and click **OK**.
Because you selected the **Refresh** check box, the content is immediately refreshed and the style is applied to the results.
<table>
<thead>
<tr>
<th>Club</th>
<th>PTS</th>
<th>GP</th>
<th>W</th>
<th>L</th>
<th>T</th>
<th>GF</th>
<th>GA</th>
<th>GO</th>
<th>Conference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles Milky-Way</td>
<td>20</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>WC</td>
</tr>
<tr>
<td>Columbus Crazies</td>
<td>20</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>EC</td>
</tr>
<tr>
<td>New York Raging Rhinos</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>EC</td>
</tr>
<tr>
<td>San Jose Tremors</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>WC</td>
</tr>
<tr>
<td>Salt Lake Fire</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>WC</td>
</tr>
<tr>
<td>Houston Dynamite</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>WC</td>
</tr>
<tr>
<td>Toronto Tundra</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>WC</td>
</tr>
<tr>
<td>Colorado Canyons</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>WC</td>
</tr>
<tr>
<td>Seattle Snakes</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>WC</td>
</tr>
<tr>
<td>Galloping Goats</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>WC</td>
</tr>
<tr>
<td>Chicago FC</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>EC</td>
</tr>
<tr>
<td>New England Reds</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>EC</td>
</tr>
<tr>
<td>Kansas City Commodores</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>EC</td>
</tr>
<tr>
<td>Dallas Cowpokes</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>WC</td>
</tr>
<tr>
<td>Philadelphia Quakes</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>EC</td>
</tr>
<tr>
<td>D.C. FC</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>EC</td>
</tr>
</tbody>
</table>
Specify the Contents of the Report with a Click of a Button

Next, you want to create reports that display the teams for a specific conference or all of the teams in both conferences. By adding Visual Basic Code to your document, you can quickly create these reports with the click of a button.

1. In the Word document, select the location for the button.

2. In the Ribbon, click the **Developer** tab.

3. In the **Controls** group, click the **Command Button** icon, and under the **ActiveX Controls** heading, click the icon for the command button.

The button appears at the location that you selected.
4. To change the text on this button, select **Properties** on the **Developer** tab. The Properties dialog box appears.

5. In the **Caption** field, type **All**.
Select the **Font** field. Click the button. The Font dialog box appears. Specify the font size for the button text and click **OK**. In this example, the font size is 8 points.

Close the Properties dialog box. In the document, the button is now labeled “All” and appears in the specified font.
7 Create the buttons for the eastern and western conferences.

a Select the location for the button for the eastern conference and repeat steps 2 through 5. The caption for this button is Eastern Conference.

b Select the location for the button for the western conference and repeat steps 2 through 5. The caption for this button is Western Conference.
When you are finished, you should have three buttons in your document, as shown in the following display:

Double-click All to open the Visual Basic Editor. The code for this button is created for you.
Next, it is important that you add a reference to the SAS Add-In 7.1 for Microsoft Office in your Visual Basic code.

9 In the Visual Basic Editor, select **Tools ➤ References**. The References - Project dialog box appears.

10 Select the **SAS Add-In 7.1 for Microsoft Office** check box.

Click **OK**.

11 To access the automation interface for the SAS Add-In for Microsoft Office, add the following lines of code:

```vba
Dim sas As SASWordAddIn
Set sas = Application.COMAddIns.Item("SAS.WordAddIn").Object
```
12 To run the Sort Data and List Data tasks when you click the **All** button, add the following lines of code:

```sas
sas.Refresh ("Sort_Data") 'output: SASApp:WORK.SOCCKERCLUB
sas.Refresh ("List_Data")
```

The first line of code runs the Sort Data task so that the generated Work.SoccerClub data set includes all of the soccer teams. Now, you need the object name (Sort_Data) for this task. For more information, see “**Determine the Object Name for the Sort Data Task**” on page 42.

The second line of code runs the List Data task to create a report that includes all of the teams.

13 In the Visual Basic Editor, select **CommandButton2** from the drop-down menu.
The code for this button is added to the Visual Basic editor.

Add the following code for the second command button, which is the button labeled Eastern Conference:

```vba
dim sas as SASWordAddIn
set sas = application.comaddins.item("sas.wordaddin").object

sas.refresh ("sort_data_2_2") 'output: sasapp:work.soccerclub
sas.refresh ("list_data")
```

The first line of code runs the Sort Data task so that the generated WORK.SOCOCKCLUB data set contains the data only for teams in the Eastern Conference. Now, you need the object name (Sort_Data_2_2) for the task. For more information, see “Determine the Object Name for the Second Sort Data Task” on page 45.

The second line of code runs the List Data task to create a report that ranks only the teams in the Eastern Conference.
In the Visual Basic Editor, select **CommandButton3** from the drop-down menu. The code for this button is added to the Visual Basic editor.

Add the following code for the third command button, which is the button labeled Western Conference:

```vba
Dim sas As SASWordAddIn
Set sas = Application.COMAddIns.Item("SAS.WordAddIn").Object

sas.Refresh ("Sort_Data_2_3") 'output: SASApp:WORK.SOCKETCLUB
sas.Refresh ("List_Data")
```

The first line of code runs the Sort Data task so that the generated WORK.SOCKETCLUB data set contains the data only for teams in the Western Conference. Now, you need the object name (Sort_Data_2_3) for the task. For more information, see “Create a Temporary Data Set for the Western Conference” on page 46.

The second line of code runs the List Data task to create a report that ranks only the teams in the Western Conference.
17 Save your changes and close the Visual Basic Editor.

Note: You must save the Word document as a macro-enabled document (.docm).

18 On the **Developer** tab, deselect **Design Mode**.

19 In the document, click **All**. Your results should appear similar to the following display:
<table>
<thead>
<tr>
<th>Club</th>
<th>PTS</th>
<th>GP</th>
<th>W</th>
<th>L</th>
<th>T</th>
<th>GF</th>
<th>GA</th>
<th>GD</th>
<th>Conference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles Milky-Way</td>
<td>26</td>
<td>10</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>16</td>
<td>2</td>
<td>14</td>
<td>WC</td>
</tr>
<tr>
<td>Columbus Crazies</td>
<td>20</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>14</td>
<td>6</td>
<td>8</td>
<td>EC</td>
</tr>
<tr>
<td>New York Raging Rhinos</td>
<td>15</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>9</td>
<td>12</td>
<td>-3</td>
<td>EC</td>
</tr>
<tr>
<td>San Jose Tremors</td>
<td>16</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>7</td>
<td>5</td>
<td>WC</td>
</tr>
<tr>
<td>Salt Lake Fire</td>
<td>16</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>17</td>
<td>10</td>
<td>7</td>
<td>WC</td>
</tr>
<tr>
<td>Houston Dynamite</td>
<td>16</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>14</td>
<td>10</td>
<td>4</td>
<td>WC</td>
</tr>
<tr>
<td>Toronto Tundra</td>
<td>13</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>12</td>
<td>13</td>
<td>-1</td>
<td>EC</td>
</tr>
<tr>
<td>Colorado Canyons</td>
<td>13</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td>WC</td>
</tr>
<tr>
<td>Seattle Snakes</td>
<td>12</td>
<td>10</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>9</td>
<td>13</td>
<td>-4</td>
<td>WC</td>
</tr>
<tr>
<td>Galloping Goats</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>11</td>
<td>14</td>
<td>-3</td>
<td>WC</td>
</tr>
<tr>
<td>Chicago FC</td>
<td>10</td>
<td>9</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>12</td>
<td>13</td>
<td>-1</td>
<td>EC</td>
</tr>
<tr>
<td>New England Reds</td>
<td>8</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>10</td>
<td>15</td>
<td>-5</td>
<td>EC</td>
</tr>
<tr>
<td>Kansas City Comroidors</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>9</td>
<td>-1</td>
<td>EC</td>
</tr>
<tr>
<td>Dallas Cowpokes</td>
<td>12</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>WC</td>
</tr>
<tr>
<td>Philadelphia Quakes</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>15</td>
<td>-8</td>
<td>EC</td>
</tr>
<tr>
<td>D.C. FC</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>4</td>
<td>18</td>
<td>-14</td>
<td>EC</td>
</tr>
</tbody>
</table>
When you click **Eastern Conference**, your results should appear similar to the following display:

<table>
<thead>
<tr>
<th>Club</th>
<th>PTS</th>
<th>GF</th>
<th>W</th>
<th>L</th>
<th>T</th>
<th>GF</th>
<th>SA</th>
<th>GD</th>
<th>Conference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbus Crazies</td>
<td>20</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>14</td>
<td>6</td>
<td>8</td>
<td>EC</td>
</tr>
<tr>
<td>New York Raging Rhinos</td>
<td>15</td>
<td>9</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>9</td>
<td>12</td>
<td>-3</td>
<td>EC</td>
</tr>
<tr>
<td>Toronto Tundra</td>
<td>13</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>12</td>
<td>13</td>
<td>-1</td>
<td>EC</td>
</tr>
<tr>
<td>Chicago FC</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>12</td>
<td>13</td>
<td>-1</td>
<td>EC</td>
</tr>
<tr>
<td>New England Reds</td>
<td>8</td>
<td>10</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>10</td>
<td>15</td>
<td>-5</td>
<td>EC</td>
</tr>
<tr>
<td>Kansas City Commodores</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>9</td>
<td>-1</td>
<td>EC</td>
</tr>
<tr>
<td>Philadelphia Quakes</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>17</td>
<td>16</td>
<td>-8</td>
<td>EC</td>
</tr>
<tr>
<td>D.C. FC</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>4</td>
<td>18</td>
<td>-14</td>
<td>EC</td>
</tr>
</tbody>
</table>
When you click **Western Conference**, your results should appear similar to the following display:

```
<table>
<thead>
<tr>
<th>Club</th>
<th>Pts</th>
<th>GP</th>
<th>W</th>
<th>L</th>
<th>T</th>
<th>GF</th>
<th>GA</th>
<th>GD</th>
<th>Conference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles Milky-Way</td>
<td>25</td>
<td>10</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>16</td>
<td>2</td>
<td>14</td>
<td>WC</td>
</tr>
<tr>
<td>San Jose Tremors</td>
<td>16</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>7</td>
<td>5</td>
<td>WC</td>
</tr>
<tr>
<td>Salt Lake Fire</td>
<td>16</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>17</td>
<td>10</td>
<td>7</td>
<td>WC</td>
</tr>
<tr>
<td>Houston Dynamite</td>
<td>16</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>14</td>
<td>10</td>
<td>4</td>
<td>WC</td>
</tr>
<tr>
<td>Colorado Canyons</td>
<td>13</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td>WC</td>
</tr>
<tr>
<td>Seattle Snakes</td>
<td>12</td>
<td>10</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>9</td>
<td>13</td>
<td>.4</td>
<td>WC</td>
</tr>
<tr>
<td>Galloping Goats</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>11</td>
<td>14</td>
<td>-3</td>
<td>WC</td>
</tr>
<tr>
<td>Dallas Cowboys</td>
<td>12</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>WC</td>
</tr>
</tbody>
</table>
```
About the Tasks That You Will Perform

For this example, you are an analyst for a home security company. You want to determine how violent crime has changed over time. The FBI Crime Data sample demonstrates how you can include SAS content in your Microsoft Excel worksheet. The
Crime Analysis sample demonstrates how you can include SAS content in your Microsoft PowerPoint presentation.

After completing this example, you will know how to perform these tasks:

- run a SAS analysis in Microsoft Excel
- send SAS content from Microsoft Excel to Microsoft PowerPoint
- refresh SAS content in Microsoft PowerPoint

How to Access the Input Data Source

Before you can run an analysis, you must access the input data source. You can download the crime data directly from the FBI website, or you can copy the data from the FBI Crime Data sample. Open FBI Crime data.xlsm, and copy the data from the Original Data worksheet. Paste this data into a new workbook.

To copy the data for the Crime Analysis sample:

1. Open the FBI Crime data.xlsm sample.

2. In the Original Data worksheet, select the data in range A3:T23.

3. Copy the data from the Original Data worksheet and paste the data into the Sheet1 worksheet in a new workbook.

4. Rename this worksheet Original Data.

5. Save the new workbook on your computer as FBI Crime Data Example.xlsm.
Drop Columns from the Input Data Source

The original data source includes the number of offenses and rate for each type of violent crime. For your analysis, you want the data to include the number of offenses for murder and nonnegligent manslaughter, robbery, aggravated assault, and burglary only.

To select the columns to include in your analysis:

1. In the Original Data worksheet, select a cell in the Excel data.
2. On the SAS tab, click Tasks.
3. In the Tasks window, select Sort Data. The Choose Data dialog box appears.
4. For the input data, select Excel Data. By default, the input data source is the range of Excel data in the Original Data worksheet. In this example, the range of the Excel data is A3:T23. You can also use 📈.
5. For the location of the results, select New worksheet. By default, the name of this new worksheet is Sort Data. Rename this worksheet Sorted data.
Click **OK**. The Sort Data task appears.

6 In the **Data** panel, complete these steps:

 a Assign the Year column to the **Sort by** role.

 b Assign these columns to the **Columns to be dropped** role:
 - Violent crime rate
 - Murder and nonnegligent mansla_2
 - Forcible rape
 - Forcible rape rate
 - Robbery rate
 - Aggravated assault rate
 - Property crime
 - Property crime rate
 - Burglary rate
 - Larceny-theft
- Larceny-theft rate
- Motor Vehicle theft
- Motor Vehicle theft rate

In the selection pane, click **Results**.

7 In the **Results** panel, specify the location for the output data set. Because you need access to this data source to refresh the SAS content in Microsoft PowerPoint, save this output data to a permanent library rather than the temporary Work library. In this example, the default location is `SASApp:SASDATA.Sorted_Crime_Data`.
Click **Run**.

When the Sort Data task finishes, two new worksheets appear in Microsoft Excel.

- In the Sorted Data worksheet, a placeholder appears. This placeholder displays the date and time that the Sort Data task ran.

- In the SASDATA.SORTED_CRIME_DATA worksheet, you see a copy of the output data set that the Sort Data task generated. In this example, the name of the worksheet is SASDATA.SORTED_CRIME_DATA. In your workbook, the actual name of this worksheet is the name of the output data set that you specified in the **Results** panel in the Sort Data task.

Note: This data set is also saved to the location that you specified in the **Results** panel.
Plot the Total Criminal Offenses over Time

To show the trend of each criminal offense from 1989 to 2008, use a line plot.

1. On the SAS tab, click Tasks.

2. In the Tasks window, select Line Plot. The Choose Data dialog box appears.
3 To use the sorted data as your input data source, select **SAS Data in Excel**. This option uses the output data set that was generated by the Sort Data task and saved to the SAS server. The data set on the server is the same as the data in the SASDATA.SORTED_CRIME_DATA worksheet.

4 For the location of the results, select **New worksheet**. By default, the name of the new worksheet is Line Plot.

![Choose Data Window](image)

Click **OK**. The Line Plot task appears.

5 In the **Line Plot** panel, select **Multiple vertical column line plots using overlay**.
In the selection pane, click **Data**.

6 In the **Data** panel, complete these steps:

a Assign the Year column to the **Horizontal** role.

b Assign the Murder and nonnegligent manslaug, Robbery, Aggravated assault, and Burglary columns to the **Vertical** role.
In the selection pane, click **General** under the Appearance > Axes heading.

7 In the **Appearance > Axes > General** panel, select the **Display Grid Lines** check box.

In the selection pane, click **Axis** under the Vertical Axis heading.

8 In the **Appearance > Axes > Vertical Axis > Axis** panel, enter **Number of Offenses** in the **Label** field.
In the selection pane, click **Titles**.

9 In the **Titles** pane, modify the title and the footnote for the line plot.

To change the title:

a In the **Section** area, select **Graph**. In the **Text for section: Graph** area, clear the **Use default text** check box.

b Delete the default text and enter **Total Criminal Offenses over Time**.

To change the footnote:

a In the **Section** area, select **Footnote**. In the **Text for section: Footnote** area, deselect the **Use default text** check box.

b Modify the text of the footnote to read `Updated %TRIM(%QSYSFUNC(DATE(), NLDATE20.)) at %TRIM(%SYSFUNC(TIME(), NLTIMAP20.))`.
Click **Run**. The generated line plot appears in the new Line Plot worksheet. Your results could look similar to the following display:
TIP You can customize the title of the plot and the footnote by using the formatting tools in Excel.
Preview and Select the Results

Next, you want to analyze the correlation between population and violent crime. Depending on the options that you select, the Correlations task can generate multiple types of output, and you might not want all of this output included in an Excel worksheet. In the SAS Add-In for Microsoft Office, you can preview the results of a task or SAS job. Then you can select the output that you want to display in the Excel worksheet.

The preview functionality that is available with the SAS add-in is not turned on by default. To enable the preview functionality:

1. On the SAS tab, click Tools, and then select Options.
2. Click Results to view the results options.
3. Select the Show Preview Changes dialog box check box, and click OK.

Now whenever you run a task, you can preview the results of the task before the results open in a Microsoft Excel worksheet.

Determine the Correlation between Population and Violent Crime

To determine whether there is a correlation between population and the number of violent crimes, use the Correlations task.

1. On the SAS tab, click Tasks.
2. In the Tasks window, select Correlations. The Choose Data dialog box appears.
3 To use the sorted data as your input data source, select **SAS Data in Excel**. In this example, the location is `SASApp:SASDATA.SORTED_CRIME_DATA` (SASDATA.SORTED_CRIME_DATA!A1:H21).

4 For the location of the results, select **New worksheet**. By default, the name of the new worksheet is Correlations. Click **OK**. The Correlations task appears.

5 In the **Data** panel, assign Population to the **Analysis variables** role and assign Violent crime to the **Correlate with** role.

6 In the **Results** panel, select the **Create a scatter plot for each correlation pair** check box.

 Click **Run**. The results open in the Preview dialog box.

7 In the Preview dialog box, select the Scatter Plot Matrix and click **Insert Selected Items**.
The scatter plot matrix appears in the new Correlations worksheet.
Determine the Number of Violent Crimes by Year

To determine the number of violent crimes by year, create a bar chart.

1. On the SAS tab, click Tasks.

2. In the Tasks window, select Bar Chart Wizard. The Choose Data dialog box appears.

3. To use the sorted data as your input data source, select SAS Data in Excel. In this example, the location is SASApp:SASDATA.SORTED_CRIME_DATA (SASDATA.SORTED_CRIME_DATA!A1:H21).

4. For the location of the results, select New worksheet. By default, the name of the new worksheet is Bar Chart Wizard. Rename this worksheet Bar Chart.

 Click OK. The Bar Chart Wizard appears.

5. In the Verify Data step, verify that SORTED_CRIME_DATA is the input data source, and then click Next.

6. In the Assign variables to roles step, select Violent crime from the Bar height list, and then click Next.

7. In the Specify appearance step, click Axis Labels. The Axis Labels dialog box appears. In the Bar height field, change the label to Total Number of Offenses.
Click **OK**.

8 In the Specify appearance step, select the **Use reference lines** check box, and then click **Next**.

9 In the Provide a title and footnote step, enter **Number of Violent Crimes by Year** as the title of the graph. Change the footnote to **Updated \(\%\text{TRIM}(\%\text{QSYSFUNC(DATE(),NLDATE20.)})\) at \(\%\text{TRIM}(\%\text{SYSFUNC(TIME(),TIMEAMPM12.)})\).**
Click Finish.

When the Preview dialog box appears, click Insert All. All of the results that were generated by the Bar Chart Wizard appear in the new Bar Chart worksheet.
Determine the Number of Violent Crimes by Year

Number of Violent Crimes by Year

Total Number of Offenses

Year

Updated August 05, 2014 at 1:25:42 PM
Send Results to a Microsoft PowerPoint Presentation

Your manager wants to present your findings in an upcoming management meeting, so she asks you to incorporate the line plot and bar chart in a PowerPoint presentation. Using the SAS add-in, you can send SAS content from an Excel worksheet to a PowerPoint presentation.

To send the line plot and bar chart from an Excel worksheet to a PowerPoint presentation:

1. On the SAS tab, click Manage Content. The Manage Content window appears.

2. Select the check boxes for Line Plot and Bar Chart Wizard.

Click Send to. The Send to Microsoft Office dialog box appears.

3. Select the Send to Microsoft PowerPoint check box. By default, the results are sent to a new PowerPoint presentation and all of the results are included in the same presentation.
Click **OK**.

If Microsoft PowerPoint is not already running, PowerPoint opens and includes the results in a new presentation. If PowerPoint is already running, the results are added to a new presentation. Each result appears on a new slide.

Note: If the Preview dialog box appears, click **Insert All**.
In Microsoft Excel, click **Close** in the Manage Content window and save your Excel worksheet.

Refresh Results in the PowerPoint Presentation

The data source for the Line Plot task and the Bar Chart Wizard is saved to a permanent location on the SAS server. Now, this data source is accessible from both Excel and PowerPoint. Therefore, you can refresh the results of the Line Plot task and
Bar Chart Wizard in PowerPoint to reflect any changes that were made to the data. You can also modify these tasks to change your visual output.

To modify the results of the Line Plot task in PowerPoint:

1. If ActiveX is the graph format for your results, then you must use the graph settings that are generated by SAS to update the visual output in PowerPoint.

To determine the format of your results:

 a. In PowerPoint, select the line plot, and on the SAS tab, click Properties. The Line Plot Properties dialog box appears.

 b. Click the Appearance tab.

 c. If the graph format is ActiveX, select the Use graph settings generated by SAS check box.

 Click OK.

2. On the SAS tab, click Modify. The Line Plot task appears. In the selection pane, select Data.

3. In the Data panel, assign the Violent Crime column to the Vertical (Right) role.
Click **Run**.

The updated results appear in the PowerPoint presentation.
Total Criminal Offenses over Time

Updated: August 05, 2014 at 01:36:31 PM

Click to add notes
About the Tasks That You Will Perform

For this example, you need to update an informational pamphlet for a local university. This pamphlet was last updated in 2012, and you need to update the college tuition to reflect the 2013–2014 prices.

After completing this example, you will know how to perform these tasks:

- edit a data source that is available on the SAS server
- refresh the SAS content in an existing Microsoft Word document
Access to the Input Data Source

Before you can analyze the data in Microsoft Word, you must copy the necessary data to your SAS server. For more information, see “Access to Samples and Input Data Sources” on page ix.

When this copy operation completes, the CollegeDemo and College_Cost data sets should be available from the SASApp:SASApp - SASDATA directory.

Save the College Sample to a Local Directory

In this example, you use the current College sample as your starting point. Open the College.docx in Microsoft Word, and save this file to a local directory.

Edit the Tuition Costs in Microsoft Excel

You cannot open data sources in Microsoft Word. However, you can open and edit SAS data sources in Microsoft Excel.

To edit the College_Cost data set:

1. Open Microsoft Excel.
2. On the SAS tab, click SAS Data. The View SAS Data dialog box appears.
3. Click Browse. The Open Data Source dialog box appears.
4 Navigate to the library where you saved the sample data and select _COLLEGE_COST. The path to this data set is SASApp:SASApp - SASDATA._COLLEGE_COST.

Click Open. The _College_Cost data set is now selected in the View SAS Data dialog box.

5 In the View SAS Data dialog box, select Worksheet as the view.

6 For the location, select New worksheet and enter COLLEGE_COST as the name of the new worksheet.

TIP If you are opening a new workbook, select New workbook.
Click **OK**. The _College_Cost data set opens in Excel.

7 To edit the data source, select the cell that contains the 8,640 value.

8 On the **SAS** tab, click **Begin Edit** in the **External Data** group. In the message that appears, click **Switch to Edit Mode** to confirm that you want to begin Edit mode.

 The data source opens in Edit mode and is locked to you. Other users at your site cannot edit this data source while you have it in Edit mode.

9 In the data source, update the costs for out-of-state tuition.

 - Change the value of Our Tuition (out of state) to **22,320**.
 - Change the value of Average Tuition (out of state) to **38,230**.

 Note: Do not press Enter after you enter the last value in the table. Pressing Enter could move you to a blank cell in the Excel worksheet. If a blank cell is selected, then the commit functionality is unavailable. You must select a value in the data source to commit your changes to the SAS server.

10 On the **SAS** tab, click **Commit** to save these changes. Committing your changes updates the existing data source on the server.
11 To exit Edit mode, click **End Edit**. The data set is unlocked, so it is now available to other users at your site.

Refresh the Tuition Data in the Pamphlet

Now that the data source has been updated to include the 2014–2015 data, you can refresh the comparison bar chart in the College.docx document.

1. Open your local copy of the College.docx document.

2. Select the bar chart, and on the **SAS** tab, click **Refresh**.
Chapter 5 / Editing and Refreshing SAS Content in Microsoft Excel and Microsoft Word

CCSU has a proud tradition of excellence. Students who graduate from CCSU are sought by top companies from around the world.

Demographics:

Student Population by Continent

- Europe: 4%
- Asia: 6%
- Africa: 12%
- North America: 69%
- South America: 10%

Costs:

The in-state and out-of-state tuitions for CCSU are less than the national average.

Comparison of CCSU Tuition and the Average College Tuition

- In-State Tuition: $8,540
- Out-of-State Tuition: $12,320

Faculty and Staff:

Our culture of excellence attracts the most qualified and dedicated faculty and staff in the world. Award-winning experts in every field provide you with the best education possible. With guidance from our faculty and staff, you perform cutting-edge research and develop the newest technologies in CCSU labs. You also develop the skills you need after college.
TIP You can also refresh this content by right-clicking on the bar chart and selecting Refresh from the pop-up menu.

After the bar chart is refreshed, the bars for out-of-state tuition show a significant increase. Now you can edit the text below the bar chart to show the new out-of-state tuition for CCSU.
The final result should appear similar to the following display:

CCSU has a proud tradition of excellence. Students who graduate from CCSU are sought by top companies from around the world.

Demographics:

Student Population by Continent

Courses:

CCSU is primarily an engineering college, but we also have top-rated medical, law, and art programs. Many CEOs of Fortune 500 companies as well as ground-breaking scientists have walked our halls. Trust us, the next leaders will be taught at CCSU.

Costs:

The in-state and out-of-state tuitions for CCSU are less than the national average.

Comparison of CCSU Tuition and the Average College Tuition

In-State Tuition: $8,840
Out-of-State Tuition: $22,320

Faculty and Staff:

Our culture of excellence attracts the most qualified and dedicated faculty and staff in the world. Award-winning experts in every field provide you with the best education possible. With guidance from our faculty and staff, you perform cutting-edge research and develop the newest technologies in CCSU labs. You also develop the skills you need after college.
Recommended Reading

- the online Help for the SAS Add-In for Microsoft Office
- “Administering the SAS Add-In for Microsoft Office” in the SAS Intelligence Platform: Desktop Application Administration Guide
- SAS offers instructor-led training and self-paced e-learning courses to help you get started with the SAS add-in. You also learn how the SAS add-in works with other SAS products and how to run stored processes in the SAS add-in. For more information about the courses that are available, see Find a Course: Learning Paths.

For a complete list of SAS publications, go to sas.com/store/books. If you have questions about which titles you need, please contact a SAS Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-0025
Fax: 1-919-677-4444
Email: sasbook@sas.com
Web address: sas.com/store/books
add-in
a program that adds optional commands and features to other programs or applications.

metadata
descriptive data about data that is stored and managed in a database, in order to facilitate access to captured and archived data for further use.

metadata configuration file
a file that enables users to specify which SAS metadata server they want to connect to by default. The connection to the metadata server enables users to access and run stored processes and to access SAS data sources on remote computers.

metadata repository
a collection of related metadata objects, such as the metadata for a set of tables and columns that are maintained by an application.

metadata server
a server that provides metadata management services to one or more client applications.

SAS data source
a data file that contains SAS data.

SAS Enterprise Guide
a software application with a point-and-click interface that gives users access to the functionality of many components of SAS software. Interactive dialog boxes guide users through data analysis tasks and reporting tasks, and users can easily export
the results of those tasks to other Windows applications or servers. SAS Enterprise Guide provides access not only to SAS data files, but also to data that is in a wide variety of other software vendors' formats and in other operating system formats.

SAS library
one or more files that are defined, recognized, and accessible by SAS, and that are referenced and stored as a unit. Each file is a member of the library.

SAS Stored Process
a SAS program that is stored on a server and defined in metadata, and which can be executed by client applications. Short form: stored process.

SAS task
a logical process that is executed by a SAS session. A task can be a procedure, a DATA step, a window, or a supervisor process.

SAS variable
a column in a SAS data set or in a SAS data view. The data values for each variable describe a single characteristic for all observations (rows).

stored process
See SAS Stored Process

variable
See SAS variable
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>analyses</td>
</tr>
<tr>
<td>running</td>
</tr>
<tr>
<td>analyzing data</td>
</tr>
<tr>
<td>in Microsoft Excel</td>
</tr>
<tr>
<td>in Microsoft Word</td>
</tr>
<tr>
<td>automatic charts</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>Bar Chart Wizard</td>
</tr>
<tr>
<td>bar charts</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>Canonical Correlation task</td>
</tr>
<tr>
<td>central repository</td>
</tr>
<tr>
<td>saving results to</td>
</tr>
<tr>
<td>columns</td>
</tr>
<tr>
<td>removing from data sources</td>
</tr>
<tr>
<td>Correlations task</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>data analysis</td>
</tr>
<tr>
<td>in Microsoft Excel</td>
</tr>
<tr>
<td>in Microsoft Word</td>
</tr>
<tr>
<td>data sources</td>
</tr>
<tr>
<td>accessing</td>
</tr>
<tr>
<td>copying</td>
</tr>
<tr>
<td>creating</td>
</tr>
<tr>
<td>editing</td>
</tr>
<tr>
<td>filtering</td>
</tr>
<tr>
<td>removing columns</td>
</tr>
<tr>
<td>dropping columns</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>editing SAS content</td>
</tr>
<tr>
<td>in Microsoft Word</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>FBI Crime Data sample</td>
</tr>
<tr>
<td>Federal Reserve rate</td>
</tr>
<tr>
<td>calculating</td>
</tr>
<tr>
<td>plotting over time</td>
</tr>
<tr>
<td>recalculating</td>
</tr>
</tbody>
</table>
filters 44, 46

H

historical data 19

I

impact analysis 3
input data 2
adding SAS content to Excel workbooks 8
adding SAS content to Word documents 38
editing and refreshing SAS content in Word 99
sending SAS content from Excel to PowerPoint 72

L

line plots 19, 29, 77
linear regression analysis 14
List Data task 48

M

Microsoft Excel 3
adding SAS content to workbooks 8
additional functionality 3
data analysis in 9, 14, 17, 84
record limitations 4
sending SAS content to PowerPoint 71
Microsoft Outlook 1
Microsoft PowerPoint refreshing results 94
sending results to 92
sending SAS content from Excel to 71
Microsoft Word
adding SAS content to documents 37
data analysis in 37
editing and refreshing SAS content 99
refreshing results 103

N

naming objects 42, 45, 48

O

object names 42, 45, 48
OLAP Viewer 4

P

predicted rate values 19
previewing results 84
properties 12
Q
Quick Start tools 4
quick statistics 4

R
record limitations
Microsoft Excel 4
refreshing results 3, 94
in Microsoft PowerPoint 94
in Microsoft Word 103
refreshing SAS content
in Microsoft Word 99
reports 3, 48
specifying contents of 58
results
adding to Summary Statistics worksheet 14
applying a style 12, 13, 52
previewing 84
properties 12
saving to a central repository 3
sending to Microsoft PowerPoint 92
sending to other Microsoft Office applications 3

S
SAS Add-In for Microsoft Office 1

benefits 2
how to use 5
SAS content
adding to Microsoft Excel workbooks 8
adding to Microsoft Word documents 37
editing and refreshing in Word 99
sending from Excel to PowerPoint 71
SAS Enterprise Guide 3
SAS Folders 3
SAS Stored Processes 3
SAS Studio 2
SAS tab 2, 5
SAS tasks 2
SAS Web Report Studio 3
sending results 3, 92
sending SAS content 71
Sort Data task 38, 40, 45, 47, 73
object name for 42, 45, 48
Style Manager 53
styles
adding to summary statistics results 12
applying same style to all future results 13
applying to results 12, 13, 52
summary statistics 9
adding a style to results 12
adding results to worksheet 14
task gallery 4

Visual Basic code 23, 58
Visual Basic Editor 62
Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore for additional books and resources.