
SAS® AppDev Studio™ 4.4
Eclipse Plug-ins
User’s Guide

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc 2013. SAS® AppDev Studio™ 4.4 Eclipse Plug-ins: User's Guide.
Cary, NC: SAS Institute Inc.

SAS® AppDev Studio™ 4.4 Eclipse Plug-ins: User's Guide

Copyright © 2013, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hardcopy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book:Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

U.S. Government License Rights; Restricted Rights: Use, duplication, or disclosure of this software and related documentation by the U.S.
government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer Software-
Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

Electronic book 1, December 2013

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For
more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at support.sas.com/
publishing or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

http://support.sas.com/publishing
http://support.sas.com/publishing

Contents

What’s New . vii

Chapter 1 • Installing AppDev Studio . 1
Installation Prerequisites . 1
Installation and Post-Installation of SAS AppDev Studio . 2
Accessibility Features of AppDev Studio . 4

Chapter 2 • Overview of AppDev Studio 4.4 . 5
The SAS AppDev Studio 4.4 Eclipse Plug-ins . 5
New Features . 5
Migrating Applications to AppDev Studio 4.4 . 6

Chapter 3 • Projects, Profiles, and Templates . 7
SAS Web Application Projects . 7
Minimize the Number of Open Projects . 8
Server Profiles . 8
Templates . 9
Template Descriptions . 10

Chapter 4 • Walk-Through for Web Infrastructure Platform Templates 13
Introduction . 13
Part I: Create the Project and the Application Metadata . 14
Part II: Add the JDBC TableView Template . 18
Part III: Add a Welcome Page and Run the Application . 21
Add a ReportViewer Servlet Template to the Project . 23
Add a SAS Stored Process Servlet Template to the Project . 24
Input and Output Parameters . 28

Chapter 5 • Walk-Through for Data-Driven Project Creation . 31
Create an Information Map Fixed Portlet from Data . 31
The Portlet Editor . 36

Chapter 6 • Template and Testing Details . 37
Files Added by the Metadata Creation Template . 37
Copying the Application Metadata . 39
Files Added by the Stored Process Java Client Template . 39
Files Added by the Stored Process Servlet Template . 41
Tomcat Configuration Details . 42
Deployment and Authentication . 43

Chapter 7 • Exporting Projects . 45
Exporting Java and SAS Java Projects as a Set of JAR Files . 45
Exporting a SAS Web Application Project as a WAR File . 46
Exporting a Project Using a Deployment Descriptor File . 47

Chapter 8 • Managing the JAR Files in a Project . 49
The SAS Repository . 49
Opening the SAS Repository Properties Editor . 50
Identifying Dependent JAR Files . 51

Removing JAR Files from the Classpath . 52
Changing the Order of JAR Files in the Classpath . 53
Adding New JAR Files to the Classpath . 54
Adding Dependent JAR Files . 55
Specifying the Current Versions of JAR Files . 55
Specifying Other JAR File Versions . 55
Removing Version Restrictions . 56
Reporting the Classpath JAR Files . 56
Reporting JAR File Relationships . 57
Finding a Class in a JAR File . 58
Changing Default Classes for SAS Java Projects . 59

Chapter 9 • Using the SAS Editor Extensions . 61
Introduction to SAS Editor Extensions . 61
Accessing SAS Component API Documentation . 62
Adding Missing Import Statements . 63
Attaching a SAS Model to a Viewer . 64
SAS Snippets . 67

Appendix 1 • Creating a SAS Web Application That Does Not Use the Web
Infrastructure Platform . 71

Index . 77

vi Contents

What’s New

About This Book

This book has been updated to cover the first maintenance release for AppDev Studio
4.4. Significant differences between the initial release of AppDev Studio 4.4 and the first
maintenance release for AppDev Studio 4.4 are noted.

vii

viii What’s New

Chapter 1

Installing AppDev Studio

Installation Prerequisites . 1
Supported Versions of SAS Software . 1
Install Eclipse 4.2.2 . 1
Java Platform Requirements . 2

Installation and Post-Installation of SAS AppDev Studio . 2
Installation Instructions . 2
Post-Installation Configuration . 3
Eclipse Memory Settings . 3

Accessibility Features of AppDev Studio . 4

Installation Prerequisites

Supported Versions of SAS Software
To work correctly, a SAS AppDev Studio 4.4 project must match the maintenance level
of the SAS 9.4 installation on which it is run. You need to apply a maintenance update to
SAS AppDev Studio only if you are developing SAS projects for SAS 9.4 installations
that have also had maintenance applied. The first maintenance release for SAS AppDev
Studio 4.4 requires the first maintenance release for SAS 9.4.

Install Eclipse 4.2.2
You must have Eclipse 4.2.2 installed before installing AppDev Studio 4.4. The AppDev
Studio installation updates the Eclipse environment, and without a compatible version of
Eclipse installed, you cannot install AppDev Studio.

Install Eclipse by following these steps:

1. Create a working directory for Eclipse 4.2.2 (for example, C:\Eclipse422).

2. Download Eclipse 4.2.2. The supported release of Eclipse can be found on the SAS
Third-party Downloads page located at http://support.sas.com/
resources/thirdpartysupport/v94/othersw.html#eclipse.

3. Extract the Eclipse archive to C:\Eclipse422. You should now have an eclipse
directory inside your working directory (for example, C:
\Eclipse422\eclipse).

1

http://support.sas.com/resources/thirdpartysupport/v94/othersw.html#eclipse
http://support.sas.com/resources/thirdpartysupport/v94/othersw.html#eclipse

Java Platform Requirements
The SAS AppDev Studio 4.4 development bundle requires Java 2 Standard Edition
(J2SE) 1.7.0_15 or higher for application and web application development, and
execution of applications at run time. Note that AppDev Studio 4.4 has only been tested
with the Oracle JRE.

For supported web browsers and application servers, see the Third-Party Software for
SAS 9.4 information at http://support.sas.com/resources/
thirdpartysupport/v94/index.html.

Although the Eclipse IDE for Java EE Developers version 4.2.2 requires Java 6 at a
minimum, SAS AppDev Studio 4.4 was tested with Java 7, and that version is
recommended. See also http://www.eclipse.org/downloads/moreinfo/
jre.php.

Installation and Post-Installation of SAS AppDev
Studio

Installation Instructions
The SAS Deployment Wizard provides two ways to install AppDev Studio.

The first is to install all the software that you need for development on a single machine.
This plan installs and runs all three tiers on the same machine. This includes a scaled-
down Business Intelligence (BI) server, a middle tier, and the AppDev Studio Eclipse
Plug-ins. This type of installation is needed when the necessary servers, such as an
Enterprise Business Intelligence (EBI) environment, are not available elsewhere.
Running all three tiers on one machine is computationally intensive, so plan accordingly.
With this plan you can also interact with existing remote tiers, which AppDev Studio
makes easy using profiles. To select this type of installation, use the installation plan
AppDev Studio, one machine.

The second way is to install only the AppDev Studio Eclipse Plug-ins. This installation
assumes that the necessary servers already exist. To select this type of installation, use
the plan AppDev Studio, three machine, and install only the AppDev Studio Eclipse
Plug-ins client.

Follow these steps to begin a guided installation of AppDev Studio:

1. Start the SAS Deployment Wizard, select Install SAS Software, and click Next.

2. Select Perform a Planned Deployment and Install SAS Software.

a. If you are installing all three tiers using the one machine plan, also select
Configure SAS Software.

b. If you are installing only the AppDev Studio Eclipse Plug-ins using the three
machine plan, clear the Configure SAS Software check box.

3. Click Next.

4. Follow the on-screen instructions for installing the software.

2 Chapter 1 • Installing AppDev Studio

http://support.sas.com/resources/thirdpartysupport/v94/index.html
http://support.sas.com/resources/thirdpartysupport/v94/index.html
http://www.eclipse.org/downloads/moreinfo/jre.php
http://www.eclipse.org/downloads/moreinfo/jre.php

Post-Installation Configuration
Before you start AppDev Studio, you must connect it to an Eclipse installation and then
configure it.

1. Connect AppDev Studio to an Eclipse installation by following these steps:

a. Start the SAS AppDev Studio Eclipse Configuration Tool (Start ð All
Programs ð SAS ð SAS AppDev Studio 4.4 Eclipse Configuration Tool).

b. In the Configuration Tool, select Eclipse ð Search and specify the top level of
an Eclipse installation that you want to connect to AppDev Studio.

The search is recursive, and a search of C:\Eclipse422\ will find the Eclipse
installed at C:\Eclipse422\eclipse. If you have multiple Eclipse
installations under one directory, point to the containing directory to find all the
Eclipse installations under that directory.

c. When the search is complete, select from the main Configuration Tool window
the Eclipse installation that you want to connect to AppDev Studio, and then
select Eclipse ð Connect. The connection process modifies the Eclipse
installation to run AppDev Studio and can take several minutes.

d. Exit the AppDev Studio Eclipse Configuration Tool.

2. Perform the New Workspace setup for each Eclipse workspace that you want to use.

When you initially launch AppDev Studio within an empty Eclipse workspace, the
New Workspace Setup cheat sheet starts and guides you through the following
processes:

• creating compatible Java runtimes

• specifying Eclipse compiler options

• setting the correct server run time for web application development

• creating a BI Server Profile

• creating a connection profile for the BI server

• configuring a Tomcat server for testing

To start this cheat sheet, launch the Eclipse attached to AppDev Studio. If the New
Workspace Setup cheat sheet is not automatically displayed, select Help ð Cheat
Sheets, and then expand SAS AppDev Studio and choose New Workspace Setup.

Eclipse Memory Settings
Because of a memory intensive Java EE task in the Eclipse Web Tools Platform, if you
like to have several SAS Web Application projects open in your workspace, you should
specify the maximum heap size to be at least 768 MB. On rare occasions this task can be
triggered simultaneously on multiple worker threads in Eclipse. When this happens,
Eclipse can run out of memory if the heap is not large enough, causing Eclipse to
become unstable.

To change the maximum heap size, modify the -Xmx setting in the eclipse.ini file
for the Eclipse installation to which SAS AppDev Studio is connected. For example:

-Xmx768m

Installation and Post-Installation of SAS AppDev Studio 3

See Also
“Minimize the Number of Open Projects” on page 8

Accessibility Features of AppDev Studio
SAS AppDev Studio Eclipse 4.4 Plug-ins includes accessibility and compatibility
features that improve the usability of the product for users with disabilities. These
features are related to accessibility standards for electronic information technology that
were adopted by the U.S. Government under Section 508 of the U.S. Rehabilitation Act
of 1973, as amended. However, portions of the AppDev Studio interface are
implemented using Java controls, and do not always comply with Section 508
guidelines.

Notable exceptions include:

• In some cases, screen-reading technology is unable to read text, read field labels in
the correct order, or read only the text that is currently visible.

• The color of the text in the Help window of the AppDev Studio Configuration Tool
cannot be changed.

• The portlet editor does not scroll vertically via keyboard controls.

If you have questions or concerns about the accessibility of SAS products, send e-mail to
accessibility@sas.com.

4 Chapter 1 • Installing AppDev Studio

Chapter 2

Overview of AppDev Studio 4.4

The SAS AppDev Studio 4.4 Eclipse Plug-ins . 5

New Features . 5

Migrating Applications to AppDev Studio 4.4 . 6

The SAS AppDev Studio 4.4 Eclipse Plug-ins
The SAS AppDev Studio 4.4 Eclipse Plug-ins support SAS application developers who
use the open-source Eclipse IDE or a third-party IDE based on the Eclipse platform.
Templates are provided that assist with the development of applications and web
applications, including portlets, SAS Stored Processes, web-based reporting, and OLAP
solutions. AppDev Studio 4.4 also enhances the standard Eclipse Java editor by
integrating the SAS component API documentation into the Eclipse Help system.

AppDev Studio 4.4 creates SAS web applications only for SAS 9.4, and those projects
are now automatically configured to work with SAS 9.4 and the SAS Web Infrastructure
Platform.

New Features
The first maintenance for SAS AppDev Studio 4.4 contains the following new features:

• a new command for configuring a Tomcat server to use for testing SAS web
applications.

• new versions of the SAS Java Components and SAS Web Infrastructure Platform
facets.

5

Migrating Applications to AppDev Studio 4.4
AppDev Studio 4.4 cannot automatically migrate projects from previous versions. There
are a few manual steps that you must perform. See the SAS AppDev Studio 4.4 Eclipse
Plug-ins Migration Guide, Second Edition on the AppDev Studio Developer's Site
(support.sas.com/rnd/appdev/) for information.

6 Chapter 2 • Overview of AppDev Studio 4.4

http://support.sas.com/rnd/appdev/index.html

Chapter 3

Projects, Profiles, and Templates

SAS Web Application Projects . 7

Minimize the Number of Open Projects . 8

Server Profiles . 8
Introduction . 8
BI Server Profiles . 9
Metadata Server Connection Profiles . 9

Templates . 9

Template Descriptions . 10
SAS DataBean . 10
SAS Information Delivery Portal Portlets . 10
SAS Foundation Services Support . 10
SAS Web Application Examples . 11
SAS Web Infrastructure Platform Support . 11
SAS Stored Process . 12

SAS Web Application Projects

SAS AppDev Studio web application development is as flexible as you need it to be.
You can add to a project your code and third-party classes or tag libraries such as
Apache Struts or JavaServer Faces. You can also add a JAR file of Java utility classes to
a web application's \WEB-INF\lib directory.

SAS Web Application Projects also support the SAS Java Components and the SAS
Web Infrastructure Platform, which includes features such as the Logon Manager,
themes, and SAS Platform Services. This support is achieved by adding to the project
static content, Eclipse Web Tools Platform facets (www.eclipse.org/webtools/),
and JAR files from the SAS Versioned Jar Repository.

The static content can include configuration information, such as declarations in
web.xml, other configuration files, and also file resources that are served by the web
application.

Facets are a feature of the Web Tools Platform, and define functionality that can be
added to a project. Two facets are added to every SAS Web Application Project: the
“SAS Java Components” facet and the “SAS Web Infrastructure Platform” facet. (The
“SAS Java Components” facet is the SAS 9.4 equivalent of the “SAS Web Module with
WIK” facet.) Facets are versioned, and the 9.4.0.0000 version of the SAS Java

7

http://www.eclipse.org/webtools/

Components and SAS Web Infrastructure Platform facets corresponds to the initial
release of SAS 9.4. AppDev Studio 4.4 for the first maintenance of SAS 9.4 uses version
9.4.1.0000 facets. You can view the facets of a SAS Web Application project by opening
the project’s Properties and selecting Project Facets.

In AppDev Studio 4.4, the SAS Web Application Project wizard always adds both facets
to a new SAS Web Application project. Neither facet can be removed from the project.
This means the SAS Web Application Project wizard cannot be used to create a SAS
Web Application project if you do not want to include the “SAS Web Infrastructure
Platform” facet. For a process to create a SAS Web Application project with only the
“SAS Java Components” facet see “Creating a SAS Web Application That Does Not
Use the Web Infrastructure Platform” on page 71.

The SAS Versioned Jar Repository is attached to the project and adds the JAR files
needed to support the two included facets. The JAR files added to the project by the SAS
Versioned Jar Repository are also included in the application’s \WEB-INF\lib\
directory. You can view these included JAR files by opening the project’s SAS
Repository. See “Opening the SAS Repository Properties Editor” on page 50.

In addition to the SAS Repository, there is also a SAS Tooling library included in the
build path of the project. This library includes a JAR file that provides classes that are
needed at only build time, such as the annotation classes. Because these classes are not
needed at run time, this JAR file is not included when the project is deployed or exported
to a WAR file.

Minimize the Number of Open Projects
Because of the resources devoted to each open project, you should minimize the number
of projects that you have open at one time. The fewer projects that you have open, the
more responsive the development environment will be.

To open an existing project, right-click the project in the Project Explorer, and select
Open Project. Open projects are indicated with an open folder icon.

To close an existing project, right-click the project and select Close Project.

Server Profiles

Introduction
To avoid repeatedly entering host names, port numbers, and other settings for the
numerous servers in a SAS BI Server installation, AppDev Studio 4.4 provides server
profiles that you can define and then use to simplify development against a specific BI
installation. There are two types of server profiles used by AppDev Studio 4.4: the BI
Server Profile, and the Metadata Server Connection Profile.

A BI Server Profile contains only enough information to uniquely identify a BI Server
installation. The profile enables AppDev Studio 4.4 to communicate with an installation,
and acquire additional information from it. Some tasks in AppDev Studio 4.4, such as
adding template content to a project, let you select the BI Server Profile for the BI Server

8 Chapter 3 • Projects, Profiles, and Templates

installation that you want to target. When you do this the settings needed to complete the
task are obtained from the BI Server Profile, avoiding the need for manual entry.

A Metadata Server Connection Profile is used to log in to the SAS Metadata Server for a
particular BI Server installation. The Connection Profile contains credentials for the
login and which BI Server Profile to use to connect to the associated Metadata Server.
Because both profiles provide information and connection to required servers, you
should create these profiles before starting a project.

BI Server Profiles
A BI Server Profile contains information about a particular BI Server installation.

To create a new BI Server Profile, use the “Create a SAS BI Server Profile” cheat sheet:

1. From Eclipse, select Help ð Cheat Sheets.

2. Expand SAS AppDev Studio, select Create a SAS BI Server Profile, and then
click OK.

If the “Create a SAS BI Server Profile” cheat sheet has already been run, reset it by
right-clicking the cheat sheet name and selecting Restart all tasks.

Metadata Server Connection Profiles
Connection Profiles help automate logging in to a SAS Metadata Server by managing
the relationship between user credentials and SAS BI Server profile. You can connect
via one Connection Profile at a time.

To create a new Connection Profile, use the “Create a Connection Profile” cheat sheet:

1. From Eclipse, select Help ð Cheat Sheets.

2. Expand SAS AppDev Studio, select Create a Connection Profile, and then click
OK.

Templates
The SAS templates consist of code that helps you rapidly develop SAS Web
Applications or implement a particular feature. You can add these templates to a project
when it is created, or add them to an existing project later.

The SAS Web Application Examples templates provide you with code and resources in
various states of completion. The amount of work needed to make the example
functional depends on the template. Some templates create examples that are ready to
run using only the information provided when you add the template.

Although this User's Guide focuses on SAS Web Applications created in AppDev Studio
4.4 or migrated from a previous version, non-Web application projects (SAS Java
Projects and Eclipse Web Tools Dynamic Web projects) are also supported in AppDev
Studio 4.4.

If you add a SAS Web Application Examples template to an Eclipse Dynamic Web
project, the project is converted to a SAS Web Application Project.

Templates 9

Template Descriptions
The SAS AppDev Studio 4.4 templates by category.

SAS DataBean
SAS JDBC Databean Class

creates a JDBC Java data class that provides access to a data table.

SAS Information Delivery Portal Portlets
DisplayURL Portlet

displays the contents of an HTML page. The URL of the page is specified at run
time.

Editable Portlet
displays the contents of a string. The string is specified at run time.

Information Map Fixed Portlet
displays the contents of an Information Map. The Information Map is specified at
design time and displays the map at run time.

Information Map Runtime Portlet
displays a list of Information Maps defined on your server and displays the selected
map.

JSP Portlet
displays the output of a single JSP that is contained in your project.

Remote Portlet
displays the contents of a remote page inside a frame. The URL of the remote page is
specified at design time.

Stored Process List Portlet
displays a list of SAS Stored Processes and executes the selected stored processes.
The list is specified at design time.

Stored Process Single Portlet
displays the results of executing a single SAS Stored Process. The stored process is
specified at design time.

SAS Foundation Services Support
Context Listener For Local Services

creates a ServletContextListener class for deploying and destroying local SAS
Foundation Services.

JAAS Login Configuration File
creates a login configuration file for JAAS authentication using a SAS Metadata
Server.

Log4J Logging Configuration
adds a simple Log4J logging configuration file to the web application.

10 Chapter 3 • Projects, Profiles, and Templates

SAS Web Application Examples
All the SAS Web Application Examples templates, listed below, use the SAS Web
Infrastructure Platform (SAS WIP). For each template listed there is a corresponding
template available in the AppDev Studio interface that uses the legacy SAS Foundation
Services (SAS FS).

Information Map Default Servlet (uses SAS WIP)
creates a Default Information Map based on the Model 2 (MVC) Web Application
Architecture. Both a JSP page and a Java file containing the servlet's class are
created.

Information Map OLAPTableView Servlet (uses SAS WIP)
creates an Information Map OLAPTableView example based on the Model 2 (MVC)
Web Application Architecture for use with OLAP data. Both a JSP page containing
OLAPTableView custom tags and a Java file containing the servlet's class are
created.

Information Map TableView Servlet (uses SAS WIP)
creates an Information Map TableView example based on the Model 2 (MVC) Web
Application Architecture for use with relational data. Both a JSP page containing
TableView custom tags and a Java file containing the servlet's class are created.

JDBC Default Servlet (uses SAS WIP)
creates a Default JDBC example based on the Model 2 (MVC) Web Application
Architecture. Both a JSP page and a Java file containing the servlet's class are
created.

JDBC TableView Servlet (uses SAS WIP)
creates a JDBC TableView example based on the Model 2 (MVC) web application
architecture. Both a JSP page containing TableView custom tags and a Java file
containing the servlet's class are created.

Report Viewer Servlet (uses SAS Web Report Viewer and SAS WIP)
creates a report viewer example that uses a servlet to access relational and OLAP
data. The selected report is viewed in SAS Web Report Viewer. A Java file
containing the servlet's class is created.

SAS Stored Process Servlet (uses SAS WIP)
creates a stored process example that uses a servlet to display the output of a stored
process.

SAS Web Infrastructure Platform Support
Examples Welcome Page

adds a JSP page that lists the SAS Web Applications Examples added to the project.

SAS Web Infrastructure Platform Applications Metadata Creation
creates support files for creating and deploying Application metadata that is required
by the SAS Web Infrastructure Platform.

Log4J Logging Configuration
adds a simple Log4J logging configuration file to the web application.

Template Descriptions 11

SAS Stored Process
Java Client for executing a SAS Stored Process

creates a simple Java client that executes a SAS Stored Process and writes the results
to a file.

12 Chapter 3 • Projects, Profiles, and Templates

Chapter 4

Walk-Through for Web
Infrastructure Platform Templates

Introduction . 13

Part I: Create the Project and the Application Metadata . 14
Create a SAS Web Application Project . 14
Add the Application Metadata Creation Template . 16
Run the Launch File and Create the Application Metadata 17

Part II: Add the JDBC TableView Template . 18

Part III: Add a Welcome Page and Run the Application . 21
Add a Welcome Page Template . 21
Run the Application . 22

Add a ReportViewer Servlet Template to the Project . 23
Add the ReportViewer Servlet Template . 23
Restart the Server and Run the Application . 23

Add a SAS Stored Process Servlet Template to the Project 24
Add the SAS Stored Process Servlet Template . 24
Replace a Value in the Servlet Code . 26
Restart the Server and Run the Application . 26
Change a Stored Process Input Parameter . 27

Input and Output Parameters . 28
Input Parameters . 28
Output Parameters . 29

Introduction
The following steps guide you through creating and running three of the available Web
Infrastructure Platform templates. Many of the templates are similar, and a knowledge of
one template transfers to the others. On-screen help is available for every part of every
template. You should complete the entire walk-through to become familiar with the
AppDev Studio interface and the template requirements.

This walk-through creates a SAS Web Application Project and then builds upon itself,
incrementally adding three templates to the project. Because the templates use the same
Tomcat Web server, no changes to the server parameters are necessary.

This walk-through assumes the following:

13

• a Tomcat Web server was installed and configured according to the cheat sheet
“Configure a Tomcat Server for Testing” (part of the “New Workspace Setup” cheat
sheet)

• a SAS BI Server Profile exists for the servers that you are developing for

• a Metadata Server Connection Profile exists for the server that you are developing
for

• a data table, a Web Report Studio report, and a stored process are available on the
SAS Metadata Server. You can use any data source of the appropriate type when you
build the example, but this walk-through uses the sashelp.class table, a report
based on that table, and the stored process “Sample: Multiple Output Formats.”

This walk-through adds the following templates to the project in this order:

1. JDBC TableView Servlet (uses SAS WIP)

2. ReportViewer Servlet (uses SAS Web Report Viewer and SAS WIP)

3. SAS Stored Process Servlet (uses SAS WIP)

Part I: Create the Project and the Application
Metadata

Create a SAS Web Application Project
Create the project to which you will add the templates.

1. Connect to a SAS Metadata Server.

Although not necessary to create a new project, connecting to a metadata server as
the first step in this walk-through ensures that you have defined a BI Server Profile
and Metadata Server Connection Profile. For help with setting up the profiles, see
“Server Profiles” on page 8.

14 Chapter 4 • Walk-Through for Web Infrastructure Platform Templates

2. Select File ð New ð Other.

3. Expand SAS AppDev Studio.

4. Select SAS Web Application Project, and click Next.

5. For the project name, enter MyProject, and click Next. In the next section you add
the Metadata Creation template.

The project name is used as the context name, and cannot contain spaces.

Part I: Create the Project and the Application Metadata 15

Add the Application Metadata Creation Template
The SAS Web Infrastructure Application Metadata Creation template adds to a project
the files that enable you to create, delete, and copy the metadata needed to communicate
with the Web Infrastructure Platform Logon Manager. Because integration with the SAS
Web Infrastructure Platform requires this application metadata, this template should be
the first that you add to a project.

1. Select the Add Template Content check box.

2. Expand the following folders:

• SAS Java Web Application

• SAS Web Infrastructure Platform Support

3. Select SAS Web Infrastructure Platform Application Metadata Creation, and
click Next.

4. Select the BI Server Profile that matches the BI installation that you plan to develop
for.

The BI Server Profile that is selected by default is the one associated with the
metadata connection profile that you used to connect to the metadata server.

5. For the Port, enter 8081. This port should match the port used for the Tomcat Web
server.

16 Chapter 4 • Walk-Through for Web Infrastructure Platform Templates

6. Click Finish, and then close the Application.xml file.

Although the project is created and the Create Metadata template has been added to the
project, you must still create the application metadata needed to communicate with the
SAS Web Infrastructure Platform.

Run the Launch File and Create the Application Metadata
When you added the Create Metadata template, an Ant launch configuration file named
MyProject Create Metadata.launch was added to the project. The application
metadata identifying the web application to the Web Infrastructure Platform Logon
Manager is created by executing the launch file (located in \metadata\).

Metadata files created during the execution of this launch file appear in
\metadata\temp\. For information about the files added to the project as a result of
adding this template and creating the metadata, see “Files Added by the Metadata
Creation Template” on page 37.

1. Ensure that the SAS Metadata Server is running in the BI installation whose SAS BI
Server Profile was selected earlier.

2. Select Window ð Show View ð Console to ensure that the Console is visible.

3. Expand the project's metadata folder.

4. Right-click the MyProject Create Metadata file, and select Run as ð MyProject
Create Metadata.

Verify that BUILD SUCCESSFUL appears at the end of the output logged to the
Console.

Part I: Create the Project and the Application Metadata 17

Part II: Add the JDBC TableView Template
1. Select File ð New ð Other.

2. Expand SAS AppDev Studio.

3. Select Add Template Content to Project, and click Next.

4. Expand SAS Java Web Application and SAS Web Application Examples.

5. Select JDBC TableView Servlet (uses SAS WIP), and click Next.

6. Click Next to accept the Template Configuration Parameters.

7. Accept the BI Server Profile by clicking Next. The BI Server that you plan to
develop for should already be selected.

8. Enter the user name and password for the selected server.

18 Chapter 4 • Walk-Through for Web Infrastructure Platform Templates

9. Click Test Connection.

If you do not receive the message “Connection test succeeded,” ensure that the BI
Server Profile is correct and the BI Server is running on the expected port.

In the future, when you want to provide a path to your data, click Driver Properties
and define the librefs property.

10. Click Next.

11. For the Query, enter select * from sashelp.class.

12. Click Submit Query to test the query and display the resulting column names.

Part II: Add the JDBC TableView Template 19

13. Click Next.

14. Accept the Servlet Class Parameters by clicking Next.

15. Click Finish to accept the Servlet Deployment Descriptor Parameters and add the
JDBC TableView Servlet template to the project.

20 Chapter 4 • Walk-Through for Web Infrastructure Platform Templates

The JSP and Java files for the servlet are opened. Close both files.

Part III: Add a Welcome Page and Run the
Application

Add a Welcome Page Template
To help make testing as easy as possible, the Welcome Page template defines a starting
point in the web application that is suitable for integration with the SAS Web
Infrastructure Platform. The Welcome Page template works in conjunction with the web
application example templates that add data about the example to \WEB-INF
\sas_examples.xml.

The Welcome Page template adds a JSP file (default name sas_examples.jsp) to the
project, and appends the filename to the welcome-file-list declaration in \WebContent
\WEB-INF\web.xml.

At run time, after successfully logging on to the SAS Web Infrastructure Platform Logon
Manager, this JSP is displayed provided that it is the first resource in the welcome-file-
list that exists in the web application. When the Welcome Page is displayed, a link is
available for each SAS web application template added to the project.

If other resources in the welcome-file-list exist in the web application, you might need to
move the sas_examples.jsp entry to the top of the list to ensure that it is executed
immediately after logon. Because the Examples Welcome Page is not a production entry
point, you can move it to the top of the list when you want to use its features and move it
down or remove it when you want a different welcome file served.

Add a Welcome Page template by following these steps:

1. From Eclipse, select File ð New ð Other

2. Select Add Template Content to Project, and click Next.

3. For Project, select MyProject.

4. Expand SAS Java Web Application and then SAS Web Infrastructure Platform
Support.

5. Select Examples Welcome Page, and then click Next, and then Finish.

Part III: Add a Welcome Page and Run the Application 21

Run the Application
1. From the Servers View, right-click the server and select Add and Remove.

2. Select MyProject and add it to the list of Configured projects.

3. Click Finish.

4. Right-click the server and select Publish.

The application is copied to the server. Wait until the status of the server and project
is Synchronized before proceeding.

The first time an application is published, over 100 megabytes of static content and
JAR files are copied to the server. Subsequent publishes only copy files that have
changed.

5. From the Servers View, right-click the server and select Start. Wait until the server
State is Started.

Note: A 120 second server time-out for Tomcat is recommended. Adjust the time
according to the speed of your system and the number of web applications that
you are attempting to start.

6. In the Project Explorer, right-click MyProject and select Run As ð Run on Server.

7. Ensure that the correct server is selected and click Finish.

Because the server is already started, the web browser should open to the BI Server
page.

8. Log on to the BI Server.

9. The Welcome Page is displayed.

10. Click the link for the JDBC TableView Example.

22 Chapter 4 • Walk-Through for Web Infrastructure Platform Templates

11. Close the JDBC TableView window and log off.

You should always log off when you are finished testing. Stopping the test server
while still logged in might not completely remove the session.

Add a ReportViewer Servlet Template to the
Project

Add the ReportViewer Servlet Template
This section adds a template to an existing project. Because the template uses the same
Tomcat server, server parameters, and Welcome Page to run the ReportViewer Servlet,
you need to provide only the information collected when adding the template.

1. Select File ð New ð Other.

2. Expand SAS Appdev Studio, select Add Template Content to Project, and click
Next.

3. Expand SAS Java Web Application and SAS Web Application Examples.

4. Select Report Viewer Servlet (uses SAS Web Report Viewer and SAS WIP), and
click Next.

5. Accept the Template Configuration Parameters by clicking Next.

6. Accept the SAS Web Infrastructure Platform Information by clicking Next. The
proper BI Server should already be selected.

7. Accept the Servlet Class Parameters by clicking Next.

8. Accept the Servlet Deployment Descriptor Parameters by clicking Finish.

Restart the Server and Run the Application
1. From the Servers View, stop the server (do no use Restart). Wait until the server

State is Stopped.

For why you should avoid the Restart command, see the “Tomcat Shutdown Issue”
on page 42.

Add a ReportViewer Servlet Template to the Project 23

2. From the Servers View, start the server.

3. In the Project Explorer, right-click MyProject and select Run As ð Run on Server.

4. Ensure that the correct server is selected and click Finish.

5. Log on to the BI server.

6. The Welcome Page is displayed with links for both added templates: the original
JDBC TableView Servlet, and the new ReportViewer Servlet.

7. Click the link for the ReportViewer Servlet.

8. If available, navigate to a report (a file ending with .srx), and select it.

If you are running AppDev Studio 4.4 and have not applied maintenance, see the
AppDev Studio Migration Guide for information about restoring back link behavior.

Add a SAS Stored Process Servlet Template to
the Project

Add the SAS Stored Process Servlet Template
In this section, as you did earlier in the walk-through, you are adding a template to an
existing project. The server is already configured for testing.

1. Select File ð New ð Other.

24 Chapter 4 • Walk-Through for Web Infrastructure Platform Templates

2. Expand SAS Appdev Studio, select Add Template Content to Project, and click
Next.

3. Expand SAS Java Web Application and then SAS Web Application Examples.

4. Select SAS Stored Process Servlet (uses SAS WIP), and click Next.

5. Click Next to accept the Template Configuration Parameters.

6. Accept the BI Server Profile by clicking Next. The BI Server that you plan to
develop for should already be selected.

7. Select a stored process by clicking Change, selecting Sample: Multiple Output
Formats, and then clicking OK.

Click Next.

8. Click Next to accept the Servlet Class Parameters, and then click Next again to
accept the Servlet Deployment Descriptor Parameters.

9. Click Finish.

The StoredProcessWebApp project is now created and the SAS Stored Process
Servlet template is added. leave open the Java file containing the servlet
(StoredProcessDriverServlet.java).

Add a SAS Stored Process Servlet Template to the Project 25

Replace a Value in the Servlet Code
The generated servlet code lacks a value for one of the stored process input parameters.
The default value was not defined in the metadata for the stored process, and therefore
could not be included in the generated code. You must edit the code and provide a valid
value before the servlet can compile and run.

1. Display the Markers view if it is not visible.

Toggle the Markers view by selecting Window ð Show View ð Other ð General
ð Markers.

2. Look in the Markers view under Java Problems for this error:
REPLACE_WITH_ACTUAL_VALUE_FOR_PROMPT__DEBUG.

If the error is not in the Markers view, ensure that automatic building is enabled
(Project ð Build Automatically).

3. Double-click the error in the Markers view to go to the error in the Java file.

4. Replace the problem value with “log”, including the quotation marks.

5. Save the file.

The error disappears, assuming that automatic building is enabled.

For more information about input parameters, including how to see what input
parameter values and data types are valid in the code, see “Input and Output
Parameters” on page 28.

Restart the Server and Run the Application
1. Stop and then start the server from the Servers View (do not use Restart). Wait until

the server State is Stopped.

For why you should avoid the Restart command, see the “Tomcat Shutdown Issue”
on page 42.

2. Right-click the project and select Run As ð Run on Server.

3. Ensure that the correct server is selected and click Finish.

4. Log in.

5. The Welcome Page is displayed with all three templates listed.

26 Chapter 4 • Walk-Through for Web Infrastructure Platform Templates

6. Click the Stored Process Servlet. The output is HTML, the default for this stored
process.

Change a Stored Process Input Parameter
One of the advantages of using a stored process is that you can use input parameters in
the Java code to change the behavior of the servlet. For example, to change the output
type of the “Sample: Multiple Output Formats” stored process used in this walk-through
to PDF or XML, follow these steps:

1. In the project, open the folders Java Resources and then servlets. Open
StoredProcessDriverServlet.java.

2. Search for _ODSDEST_VALUE =, and then set that variable to PDF or XML.

3. Save the file.

4. Stop and then start the server (do not use Restart), and then run the application by
right-clicking the project and selecting Run As ð Run on Server.

For why you should avoid using the Restart command, see the “Tomcat Shutdown
Issue” on page 42.

5. On the Welcome Page, click the Stored Process Servlet. The output is a PDF (or
XML).

Add a SAS Stored Process Servlet Template to the Project 27

You can also change the data set used by the servlet by changing the
DATASET_VALUE.

Note that the input parameters changed in this walk-through are specific to the “Sample:
Multiple Output Formats” stored process. Other stored processes will have different
input parameters.

To see how drill-down functionality works, add another SAS Stored Process Servlet
template to the project, and use the European Demographic Data stored process.

Input and Output Parameters

Input Parameters
Input parameters enable you to pass values to a stored process. The default value of an
input parameter, if it is defined, is in the metadata for the stored process.

If a default value is defined for an input parameter, and the data type of the value is text
or numeric (integer or floating-point), the input parameter is set to the default value.

If there is no default value defined for an input parameter, or if the type of the input
parameter is not text or numeric, then the input parameter is set to
REPLACE_WITH_ACTUAL_VALUE_FOR_PROMPT_YYY, where YYY is the
name of the input parameter. This fabricated text causes a compiler error that is listed in
the Eclipse Markers view. To build the project, replace the text with a valid value for
that input parameter.

Note that the input parameter values are declared as class instance variables. When these
particular input parameter declarations appear within a servlet, the values should be
specified as constants that will be used for all requests to the servlet. If you want to
update the servlet code to obtain input parameter values from request parameters, do not
to store the input parameter values in these class instance variables because there will be
collisions if there are concurrent requests to the servlet. Instead, use local variables to
hold request parameter values.

Input parameters are represented as prompts in SAS Management Console. To examine
the metadata for an input parameter, including its type and default value, follow these
steps while using SAS Management Console:

1. Right-click the stored process and select Properties.

2. Change to the Parameters tab.

3. Select a prompt (input parameter) and click Edit.

28 Chapter 4 • Walk-Through for Web Infrastructure Platform Templates

4. Change to the Prompt Type and Values tab.

For more information about stored processes and input parameters, see the following
resources:

• the comments in the generated code (StoredProcessDriver.java or
StoredProcessDriverServlet.java).

• the SAS Stored Processes: Developer's Guide available on the SAS Integration
Technologies documentation page at http://support.sas.com/
documentation/onlinedoc/inttech/, in particular Appendix 3, “Formatting
Prompt Values and Generating Macro Variables from Prompts”.

• the SAS Foundation Services Javadoc contained in the SAS BI API Documentation
on the SAS AppDev Studio Developer’s Site at http://
support.sas.com/rnd/appdev/. In particular, examine the package summary
for com.sas.services.storedprocess.

Output Parameters
SAS Stored Processes can return results to a client via output parameters. Output
parameters are defined in the metadata for a stored process using SAS Management
Console. When a stored process returns output parameters, you can retrieve the values
from the StoredProcessFacade with the getOutputParametersWithValues()
method. The values are returned in a java.util.List.

An example of retrieving the output parameter values from the StoredProcessFacade and
writing the results to the output file can be found in the main driver class of the Stored
Process Java Client template.

An example of retrieving the output parameter values from the StoredProcessFacade and
writing the results to the browser can be found in the main driver servlet class of the
Stored Process Servlet template.

In both examples, you can modify the processing of the output parameter results as
appropriate to the SAS Stored Process executed in the example.

For a more detailed explanation of output parameters, see “Using Output Parameters” in
the SAS Stored Processes Developer’s Guide available on the SAS Integration
Technologies documentation page at http://support.sas.com/
documentation/onlinedoc/inttech/.

Input and Output Parameters 29

http://support.sas.com/documentation/onlinedoc/inttech/
http://support.sas.com/documentation/onlinedoc/inttech/
http://support.sas.com/rnd/appdev/
http://support.sas.com/rnd/appdev/
http://support.sas.com/documentation/onlinedoc/inttech/
http://support.sas.com/documentation/onlinedoc/inttech/

30 Chapter 4 • Walk-Through for Web Infrastructure Platform Templates

Chapter 5

Walk-Through for Data-Driven
Project Creation

Create an Information Map Fixed Portlet from Data . 31
Introduction . 31
Switch to the SAS Metadata Perspective and Create the Project 32
Deploy the Portlet . 34
View the Portlet in the SAS Information Delivery Portal . 35

The Portlet Editor . 36

Create an Information Map Fixed Portlet from
Data

Introduction
This walk-through explains project creation from the SAS Metadata perspective. The
SAS Metadata perspective functions as both a metadata explorer and as a starting point
for data-driven development. You can create projects from tables, information maps, and
stored processes. From those data sources, you can create SAS Web Application projects
or SAS Java Projects. The type of template that you can add to a project is determined
by the type of data that you select from the SAS Metadata perspective.

31

This walk-through assumes the following:

• you have access to a SAS Information Delivery Portal.

• you have access to an Information Map on the Metadata server.

• you have Write access to the portal deployment directory (for example, \Lev1\Web
\Applications\SASPortlets4.4\Deployed)..

• a Metadata Server Connection Profile exists for the server that you are developing
against.

Switch to the SAS Metadata Perspective and Create the Project
1. Connect to the SAS Metadata Server if you are not already.

2. Switch to the SAS Metadata perspective. Select Window ð Open Perspective ð
Other, and then choose SAS Metadata.

3. Navigate to an Information Map. Right-click it and select New SAS Java Project.

This example uses an Information Map based on the sashelp.class data set.

32 Chapter 5 • Walk-Through for Data-Driven Project Creation

4. Name the project fixedPortlet, and click Next.

5. Click Next to accept the selected template: SAS Information Delivery Portal
Information Map Fixed Portlet.

The template list is determined by the type of data that you selected from the
Metadata perspective.

6. Click Finish to accept the Information Map Fixed Portlet configuration and create
the project.

Create an Information Map Fixed Portlet from Data 33

Deploy the Portlet
To deploy the portlet to the SAS Information Delivery Portal, create a par (portlet
archive) file and copy it to the deployment directory. The par file contains all generated
classes and static content.

1. Switch to the Java perspective.

2. Close the portlet.xml file.

For information about the portlet.xml editor, see “The Portlet Editor” on page
36.

3. Open the project directory, right-click fixedPortletParBuild.xml, and select
Build and Copy Par.

This XML file was created when you added the Fixed Portlet template, and follows
the pattern <projectName>ParBuild.xml. You can specify additional content
to include in the par file by editing this file.

4. Navigate to or enter the path for the deployed portal directory: \Lev1\Web
\Applications\SASPortlets4.4\Deployed, and click OK.

The par file is created, appears in the file list in Eclipse, and is copied to the
\Deployed directory. The Par filename is created with the pattern
<projectName>.par. In this case, the Par file is named fixedPortlet.par.

34 Chapter 5 • Walk-Through for Data-Driven Project Creation

View the Portlet in the SAS Information Delivery Portal
1. Navigate to your SAS Information Delivery Portal. For example:

BIServer.place.com:8080/SASPortal

2. Select Customize ð Edit Page ð Edit Page Content.

3. Click Add Portlets.

4. For the Portlet type select fixedPortlet.

5. For the Name, enter fixedPortlet.

6. Click Add, Done, and then OK to confirm your choices and return to the portal
Home.

7. The portlet is displayed in the SAS Information Delivery Portal.

Create an Information Map Fixed Portlet from Data 35

The Portlet Editor
The portlet editor is a graphical interface for editing the portlet.xml file. You can
open the portlet editor by double-clicking a portlet.xml file.

Using the portlet editor, you can specify several portlet options, and add parameters and
actions. Actions are callbacks that the portal executes depending on the situation. For
example, when a portlet is displayed the default action is executed. When you create an
action, the portlet editor creates a stub and adds it to the portlet.xml file. For
information about portlets and actions, see Developing Portlets for the SAS Information
Delivery Portal at http://support.sas.com/documentation/onlinedoc/
portal/.

36 Chapter 5 • Walk-Through for Data-Driven Project Creation

http://support.sas.com/documentation/onlinedoc/portal/index.html
http://support.sas.com/documentation/onlinedoc/portal/index.html

Chapter 6

Template and Testing Details

Files Added by the Metadata Creation Template . 37
Location of Application Metadata . 37
The Launch Files . 38
Application.xml . 38
build.xml . 38
destination_omr.properties . 38
omr.properties . 39

Copying the Application Metadata . 39

Files Added by the Stored Process Java Client Template . 39
Introduction . 39
StoredProcessDriver.java . 39
StoredProcessConnection.java . 40
StoredProcessFacade.java . 40
StoredProcessDriver.properties . 40
jaas.config . 40
launchParameters.txt . 40

Files Added by the Stored Process Servlet Template . 41
Introduction . 41
StoredProcessDriverServlet.java . 41
StoredProcessConnection.java . 41
StoredProcessFacade.java . 41

Tomcat Configuration Details . 42
Tomcat Support . 42
Configuring a Tomcat Server . 42
Tomcat Shutdown Issue . 42

Deployment and Authentication . 43

Files Added by the Metadata Creation Template

Location of Application Metadata
When you add the SAS Web Infrastructure Platform Metadata Creation template to a
project, and then you use that template to create metadata, files are added to the project.
These metadata files are stored in the \metadata folder or one of its subdirectories.

37

The Launch Files
When you add the Metadata Creation template to a project, three Ant configuration files
(.launch) are added to the project. Their names indicate the task that they perform
when executed:

• ProjectName Copy Metadata.launch

See “Copying the Application Metadata” on page 39.

• ProjectName Create Metadata.launch

For instructions on how to do this, see “Run the Launch File and Create the
Application Metadata” on page 17 in the walk-through.

• ProjectName Delete Metadata.launch

Application.xml
This file contains values that are used in the application metadata. For example, the
name of the application is stored in the Name attribute of the Application element, and
the Protocol, Host, Port, and Service attributes of the ApplicationUri element are
combined to form the URL that the SAS Web Infrastructure Platform’s Logon Manager
returns to the web application after a successful login: <Protocol>://
<Host>:<Port><Service>. The slash that follows the Port in the URL is part of the
Service value.

You can edit the information in Application.xml, if necessary, but each time you
run the metadata creation operation, the metadata for the application is replaced if it
already existed.

The template sets the value for the Service attribute of the ApplicationUri element using
the current value of the Context Root for the project. This value can also be found in
project's properties, on the Web Project Settings page. The Service value must match the
name of the project.

The file is eventually transformed into the required deployment files and then those files
are used to deploy the metadata.

build.xml
This file is an Ant build file that supports the launch file operations.

destination_omr.properties
This file contains properties that specify the destination metadata server when copying
the application metadata. The values in this file are placeholders that must be manually
entered once a destination metadata server has been chosen. This file is not overwritten
by repeated additions of the metadata template.

The copy.can.replace.metadata property controls whether existing metadata in
the destination SAS Metadata Server is deleted before the copy. If false (the default),
then the copy is not performed if metadata already exists in the destination metadata
server for that application.

38 Chapter 6 • Template and Testing Details

omr.properties
This file contains properties that specify the destination metadata server when creating
and deleting the application metadata, and the source metadata server when copying the
application metadata. The values in this file are determined by the SAS BI Server Profile
that you selected when adding the template.

Copying the Application Metadata
When moving to a production environment, copy the application metadata from the SAS
Metadata Server where it was created to a destination metadata server by following these
steps:

1. Enter the information for the destination metadata server in \metadata
\destination_omr.properties.

The copy.can.replace.metadata property controls whether existing metadata
in the destination SAS Metadata Server is deleted before the copy. If false (the
default), then the copy is not performed if metadata already exists in the destination
metadata server for that application.

2. Right-click the projectName Copy Metadata.launch file, and select Run As ð
projectName Copy Metadata.launch.

3. Verify that BUILD SUCCESSFUL appears at the end of the output logged to the
Console.

The copy operation extracts application metadata directly from the source metadata
server and deploys it to the destination metadata server. No values in
Application.xml or in the files derived from Application.xml when the
application metadata was created are accessed. Consequently, changes made to the
metadata using the SAS Management Console are included in the copy operation.

Files Added by the Stored Process Java Client
Template

Introduction
When you add the “Java client for executing a SAS Stored Process” template to a SAS
Java Project, the following files are added to the source folder for the project.

StoredProcessDriver.java
This class is an example of a Java console application client for executing a SAS Stored
Process and writing the stored process results (and optionally the SAS Log) to a file. The
default name of the class is StoredProcessDriver, but the actual name is derived from the
class name for the client that was entered in the wizard.

Files Added by the Stored Process Java Client Template 39

StoredProcessConnection.java
A StoredProcessConnection contains the information needed to use SAS Foundation
Services, a SAS Metadata repository, and the SAS Stored Process Service for executing
SAS Stored Processes. The class initializes and connects to SAS Foundation Services in
preparation for executing SAS stored processes, and binds a StoredProcessFacade with
the StoredProcessDriver.

SAS does not support customer implementations or extension of this class. The
StoredProcessConnection generated for a SAS Java Project cannot be used in a SAS
Web Application Project.

StoredProcessFacade.java
A StoredProcessFacade represents a SAS Stored Process and the results of its execution
after the stored process has been executed. The StoredProcessFacade class wraps two
interfaces from the SAS Stored Process Service:
com.sas.services.storedprocess.StoredProcess2Interface and
com.sas.services.storedprocess.Execution2Interface.

This class can supply input parameters for the SAS Stored Process. Output parameter
results or streaming results can be retrieved after the stored process is executed. The
StoredProcessFacade provides other API methods for common operations, including the
ability to access the underlying StoredProcess2Interface and Execution2Interface
objects.

For more information, see the SAS Foundation Services Javadoc contained in the SAS
BI API Documentation on the SAS AppDev Studio Developer’s Site (http://
support.sas.com/rnd/appdev/), in particular the package summary for
com.sas.services.storedprocess.

SAS does not support customer implementations or extension of this class. The
StoredProcessFacade generated for a SAS Java Project cannot be used in a SAS Web
Application Project.

StoredProcessDriver.properties
This file contains information about the SAS Metadata Server, and specifies log and
output filenames for the results of executing the SAS Stored Process. These values can
be changed so that the generated client can use a different SAS Metadata Server. The
default name of this file is StoredProcessDriver, but the actual name is derived from the
class name for the client that was entered in the wizard.

jaas.config
This is the JAAS configuration file that is required by the Local Platform Services that
are used in the Java application. Although the comment at the top of the file might claim
the file is for a SAS Web Application, the file is also used with SAS Java Applications.

launchParameters.txt
This file provides an example of the Java System property that is needed to specify the
JAAS configuration file that the Local Platform Services require. This Java System

40 Chapter 6 • Template and Testing Details

http://support.sas.com/rnd/appdev/index.html
http://support.sas.com/rnd/appdev/index.html

property must be included in the command line or launch configuration used to run the
stored process Java application.

Files Added by the Stored Process Servlet
Template

Introduction
When you add the SAS Stored Process Servlet template to a SAS Web Application
Project, Java files are added to the source folder for the project.

StoredProcessDriverServlet.java
The StoredProcessDriverServlet is an example of a servlet implementation for executing
a SAS Stored Process, displaying the results in the browser, and optionally writing the
contents of the SAS Log to the ServletContext. The default Example Base Name for a
SAS Stored Process servlet is StoredProcessDriver. The actual name of the class is
derived from the Example Base Name that was entered in the wizard.

StoredProcessConnection.java
A StoredProcessConnection contains the information needed to use SAS Foundation
Services, a SAS Metadata repository, and the SAS Stored Process Service for executing
SAS Stored Processes. The class binds a StoredProcessFacade with the
StoredProcessDriverServlet.

SAS does not support customer implementations or extension of this class. The
StoredProcessConnection generated for a SAS Web Application Project cannot be used
in a SAS Java Project.

StoredProcessFacade.java
A StoredProcessFacade represents a SAS Stored Process and the results of its execution
after the stored process has been executed. The StoredProcessFacade class wraps two
interfaces from the SAS Stored Process Service:
com.sas.services.storedprocess.StoredProcess2Interface and
com.sas.services.storedprocess.Execution2Interface.

This class can supply input parameters for the SAS Stored Process. Output parameter
results or streaming results can be retrieved after the stored process is executed. The
StoredProcessFacade provides other API methods for common operations, including the
ability to access the underlying StoredProcess2Interface and Execution2Interface
objects.

For more information, see the SAS Foundation Services Javadoc contained in the SAS
BI API Documentation on the SAS AppDev Studio Developer’s Site (http://
support.sas.com/rnd/appdev/), in particular the package summary for
com.sas.services.storedprocess.

SAS does not support customer implementations or extension of this class. The
StoredProcessFacade generated for a SAS Web Application Project cannot be used in a
SAS Java Project.

Files Added by the Stored Process Servlet Template 41

http://support.sas.com/rnd/appdev/index.html
http://support.sas.com/rnd/appdev/index.html

Tomcat Configuration Details

Tomcat Support
SAS AppDev Studio 4.4 continues to support Tomcat as a servlet container for testing
SAS web applications. But because Tomcat is not officially supported by SAS 9.4,
Tomcat is recommended only for initial functional testing.

Final acceptance testing should be done with an installed SAS Web Application Server.
Because the SAS Web Application Server is based on a version of the VMware vFabric
tc Server that is using Tomcat 7, only Tomcat 7 is supported by SAS AppDev Studio
when testing. For compatibility, Tomcat 7.0.30 or later is recommended.

Configuring a Tomcat Server
If you have multiple SAS 9.4 BI installations that you want to test against, you can use
the Configure for SAS AppDev Studio Use menu command on the pop-up menu for
Tomcat 7 servers in the Servers view. The command can add, update, or remove the
configuration changes required for a Tomcat 7 server to run against the BI installation
identified by the chosen SAS BI Server Profile. To configure a Tomcat 7 server, follow
these steps:

1. In the Servers view, right-click the Tomcat 7 server that you want to configure and
select Configure for SAS AppDev Studio Use.

2. In the dialog box, select the BI Server Profile that you want the server to run against,
or check the Remove check box if you want to remove prior configuration changes.

The OK button is enabled only when a BI Server Profile is selected.

3. Click OK.

If you configure additional Tomcat 7 servers, you need to update the ports that they use
to avoid conflicts. You should also lengthen the start-up time-out from the default of 45
seconds as this can be insufficient time to start even a single SAS web application on
some systems. A time-out of at least 120 seconds is recommended. The actual time-out
value that you need depend on your hardware and how many SAS web applications you
are attempting to start.

Enabling Java security is neither required nor recommended because of performance
issues, and is not supported.

Tomcat Shutdown Issue
Tomcat can fail to shutdown. The problem is that when Tomcat is stopped, it waits
indefinitely for all deployed web applications to fully clean up before exiting. There is a
known issue with stopping deployed SAS Web Application projects while the Web
Infrastructure Platform middle tier remains running, preventing the SAS Web
Application project from fully cleaning up. When Tomcat fails to shutdown within the
stop time-out, a dialog box asks if you want to terminate the process. Terminating
Tomcat from this dialog box is the only way stop the server in this situation.

42 Chapter 6 • Template and Testing Details

The Restart command does not handle the time-out issue well, and leaves the Tomcat
process in a permanent “stopping” state without ever displaying the dialog box that asks
you if you want to terminate the server. Further, a new Tomcat process is launched while
the old Tomcat process is running. The new process runs normally because the old
process was able to complete enough of the shutdown to free the ports that it was using.
However, the old process continues to run and occupy nearly the same amount of
memory that it was using during normal operation. The only way to stop an old Tomcat
process is to either restart Eclipse or manually kill the old Tomcat process.

Instead of using the Restart command from the Servers tab or when you confirm a
restart when using Run As ð Run on Server, you should separately Stop and then Start
the server.

Although some servers might offer you the ability to omit restarting, when a class on the
server changes, you should stop and then start the server so that the updated files are
picked up by the server. Doing this also avoids potential memory leaks.

Deployment and Authentication
The SAS Web Infrastructure Platform facet manages both the Web Infrastructure
Platform Configuration and the support JAR files for a SAS web application. Handling
both enables the facet to keep the configuration features synchronized with the JAR files
that support those features.

The SAS Web Infrastructure Platform configuration consists of static files found in
\WEB-INF\spring-config, context-param declarations, and filter and servlet
declarations and mappings. There is nothing in the configuration that binds the web
application to a specific SAS BI installation. This means that the web application can be
deployed, unchanged, to any SAS 9.4 BI installation, provided that the application
metadata for the web application and any resources the web application depends on are
present in that BI installation.

Deployment and Authentication 43

44 Chapter 6 • Template and Testing Details

Chapter 7

Exporting Projects

Exporting Java and SAS Java Projects as a Set of JAR Files 45

Exporting a SAS Web Application Project as a WAR File 46

Exporting a Project Using a Deployment Descriptor File . 47

Exporting Java and SAS Java Projects as a Set of
JAR Files

The only projects that can be exported as a JAR file or set of JAR files are Java and SAS
Java Projects that have a class with a public static void main(String[]).

To export a SAS Java Project, follow these steps:

1. Select File ð Export.

2. Select SAS Java Project as the export destination, and then click Next.

3. Select the project to deploy.

All of the projects available in the current workspace are listed. Invalid projects are
indicated when selected.

4. Choose the resources to include in the output JAR file.

Compiled code is not included in the tree. Items that are on the project source path
are checked by default.

5. Select the Include Source Code check box if you want the project source code to be
included in the exported JAR file.

6. Specify the Deployment directory.

The JAR file containing the project code and other necessary files will be placed in
this directory.

7. Specify the Jar Name and then click Next.

8. Select the Use SAS Repository check box if you want to create a JAR file that runs
against a copy of the SAS Versioned Jar Repository that is already on the target
machine.

If you do not deploy against a SAS Versioned Jar Repository, then all the required
JAR files from the project and any dependencies from the SAS Versioned Jar

45

Repository are copied into the deployment directory. You can then copy all the JAR
files to a deployment location if necessary.

If you do deploy against a SAS Versioned Jar Repository, the project contents, a
picklist called SASRepositoryConfig, and a script (in batch and shell versions)
are copied to the deployment directory. The scripts use as their base name the name
of the exported JAR filename. You must either edit the script and specify the
location of the SAS Versioned Jar Repository on the target machine, or pass the
location as a command-line argument. For example:

exportedJarName.sh repositoryLocation

The script executes the application using the SAS launcher to load the JAR file
dependencies from the target machine's SAS Versioned Jar Repository.

9. Select the Main class that starts your application. The main class must reside in your
project.

10. Click Next.

11. Select the Save Deployment Descriptor in Project check box if you want to capture
the current export settings.

If you choose this option, specify the Descriptor Location, relative to the project.
The filename must end in .depdesc. For more information, see “Exporting a
Project Using a Deployment Descriptor File” on page 47.

12. In the Manifest Location field, specify the path to the manifest file relative to the
project.

The manifest file can be in any directory and with any filename. However, when
added to the exported JAR file, the manifest information is placed in the file
META-INF\MANIFEST.MF.

If the specified manifest file already exists, the export overwrites any existing
properties in the file that conflict with the properties needed to run the application
properly. The overwriting occurs at the level of individual properties; the entire file
is not overwritten.

13. Click Next and review the export settings, and then click Finish.

The project is exported to the specified deployment directory. Depending on the options
that you chose, you might need to take additional configuration steps to run the project.

If the SAS Java project requires a JAAS configuration file, such as one that executes a
Stored Process, then the JAAS configuration file must be manually copied to the
deployment directory. In addition, the Java command in the startup batch script must be
updated to include the Java System property shown in the launchParameters.txt
file. Ensure the value of the property is modified to reference the copied JAAS
configuration file.

Exporting a SAS Web Application Project as a
WAR File

To deploy a SAS Web Application Project to a server outside of Eclipse, you must
create a WAR file for the web application contained in the project. This is accomplished
using Eclipse's Export feature. Perform the following steps to create the WAR file:

46 Chapter 7 • Exporting Projects

1. Right-click the SAS Web Application project and select Export ð Web ð WAR
file.

2. Specify the Destination for the WAR file.

3. Select a target server run time, or clear the Optimize for specific server runtime
check box.

4. Click Finish.

The WAR file is copied to C:\SAS\Config\Lev1\Web\WebAppServer
\SASServer1_1\sas_webapps.

The resulting WAR file can be deployed to a SAS Web Application Server in any BI
Server installation that matches the version of the SAS facets that were used in the SAS
Web Application project. The only requirement is that the application metadata for the
web application and any resources the web application depends on are present in that BI
Server installation. The connection information in the application metadata (the settings
specified in the ApplicationUri element of the project's Application.xml) must
match the location of the web application deployment.

Additional information about web application deployment is available on the SAS
AppDev Studio Developers Site at http://support.sas.com/rnd/appdev/.

Exporting a Project Using a Deployment
Descriptor File

Deployment descriptor files contain the export settings for a project. You can save a
descriptor file when you export a project. On subsequent exports, you can use the
descriptor file to bypass the Export dialog box. You can have multiple descriptor files
per project. Descriptor files must end with .depdesc.

To use a descriptor file to bypass the Export dialog box, expand the project in the
Package Explorer or Navigator, right-click the descriptor file, and select Export SAS
Project. The project is exported using the settings in the descriptor file.

To use a descriptor file to populate the Export dialog box with the settings in the file,
right-click the file and select Open SAS Export.

To inspect or change the settings in a descriptor file, you can open the file as XML by
double-clicking it, and editing values as needed. Unless otherwise specified, the first
descriptor file listed is used to populate the Export dialog box.

Exporting a Project Using a Deployment Descriptor File 47

http://support.sas.com/rnd/appdev/

48 Chapter 7 • Exporting Projects

Chapter 8

Managing the JAR Files in a
Project

The SAS Repository . 49

Opening the SAS Repository Properties Editor . 50

Identifying Dependent JAR Files . 51

Removing JAR Files from the Classpath . 52

Changing the Order of JAR Files in the Classpath . 53

Adding New JAR Files to the Classpath . 54

Adding Dependent JAR Files . 55

Specifying the Current Versions of JAR Files . 55

Specifying Other JAR File Versions . 55

Removing Version Restrictions . 56

Reporting the Classpath JAR Files . 56

Reporting JAR File Relationships . 57

Finding a Class in a JAR File . 58

Changing Default Classes for SAS Java Projects . 59

The SAS Repository
There are two pieces to managing the JAR files that a project requires: the SAS
Versioned Jar Repository, and the project's SAS Repository.

The SAS Versioned Jar Repository is a common storage location for all the JAR files
that are supplied by the installed SAS products. This includes some third-party JAR
files. This repository is incrementally updated as SAS products are installed.

A project's SAS Repository is a configurable classpath container that is added to the Java
build path of all SAS projects to provide access to the JAR files in the SAS Versioned
Jar Repository. The SAS Repository determines which SAS JAR files need to be
included in a project’s build path. It can also determine any JAR file dependencies and
automatically include those dependencies in the project’s Java build path. This ability
means that you need to specify only the primary JAR files that a SAS project requires,
the dependencies are handled for you.

49

When necessary, you can bypass the SAS Repository automation and specify exactly
which JAR files, and which versions of each JAR file, to include. This flexibility enables
you to manage JAR file dependencies on a per-project basis without disrupting past
development, and contributes to a smaller distribution footprint.

If you want to add to the project a JAR file that is not available in the SAS Versioned Jar
Repository, open the project properties, select Java Build Path, and use one of the
mechanisms that does not involve editing the SAS Repository on the Libraries tab. You
are responsible for adding any JAR file dependencies.

Opening the SAS Repository Properties Editor
Access to the SAS Repository properties depends on the project type and the current
perspective. When in the Java perspective, all project types (SAS Java projects and SAS
Web Application projects) display the SAS Repository at the root of the project. To
access the Properties for SAS Repository dialog box, follow these steps:

1. Expand the project in the Package Explorer.

2. Right-click SAS Repository and select Properties.

The Properties for SAS Repository dialog box appears.

When in the Java EE perspective, the SAS Repository is located at the top level of SAS
Java Projects, and in \sourceFolder\Libraries\ for SAS Web Applications
projects.

50 Chapter 8 • Configuring a Project’s SAS Repository

You can also access the SAS Repository as a library:

1. Right-click the project and select Properties.

2. Select Java Build Path, the Libraries tab, then SAS Repository, and then click
Edit.

Identifying Dependent JAR Files
To automatically add the dependencies of all checked JAR files to the classpath, select
the Discover dependencies automatically check box. With this option selected, the
classpath is automatically updated if there are changes in the SAS Versioned Jar
Repository that affect the JAR files required by your project.

Identifying Dependent JAR Files 51

If you click the Add Dependencies button, all the JAR file dependencies for the JAR
files that are checked in the Available jars list are added to the Available jars list. This
enables you to specify a version for each of the dependent JAR files, if needed.

If the Discover dependencies automatically check box is not selected, only the checked
JAR files are added to the classpath. To exclude a JAR file from the classpath, uncheck
it. A JAR file that is not checked is not passed to the compiler or run-time engine.

You should use the Discover dependencies automatically option only if you are
comfortable with JAR files being automatically added to the classpath, knowing that
updates to the SAS Versioned Jar Repository might change which JAR files are required
for your project.

For a SAS Web Application project, the Discover dependencies automatically option
is unchecked by default. Using this option is not recommended for SAS Web
Applications because the JAR files in the project must be compatible with the static
content provided by the SAS Web Infrastructure Platform. The necessary JAR files are
specified internally.

Removing JAR Files from the Classpath
To remove one or more JAR files from your project's classpath, follow these steps:

1. Expand the project in the Package Explorer.

2. Right-click SAS Repository and select Properties.

The Properties for SAS Repository dialog box appears.

3. Select the JAR file or files to remove and then click the Remove button.

Note that using the Organize SAS Imports action adds a removed JAR file to the
classpath (see “Using the Organize SAS Imports Action” on page 64). In contrast,
when you uncheck a JAR file in the Available jars list (see “Identifying Dependent JAR
Files” on page 51), the Organize SAS Imports command does not add the unchecked
JAR file back to the classpath.

52 Chapter 8 • Configuring a Project’s SAS Repository

Changing the Order of JAR Files in the Classpath
The order of the JAR files in the Available jars list determines the order that the JAR
files appear in the classpath. The higher a JAR file is listed in the interface, the closer to
the front of the classpath it appears.

To change the order of the JAR files, follow these steps:

1. Expand the project in the Package Explorer.

2. Right-click SAS Repository and select Properties.

The Properties for SAS Repository dialog box appears.

3. Select Classpath Order.

4. Select a JAR file in the Available jars list and click the up or down arrow.

Changing the Order of JAR Files in the Classpath 53

Adding New JAR Files to the Classpath
To add new JAR files to the classpath, follow these steps:

1. Expand the project in the Package Explorer.

2. Right-click SAS Repository and select Properties.

The Properties for SAS Repository dialog box appears.

3. Click Add.

A dialog box appears that lists all the JAR files that are available in the SAS
Versioned Jar Repository.

4. Select one or more JAR files and click OK.

To narrow the list of available JAR files, enter a substring in the text field at the top
of the dialog box. Use the regular expression characters provided.

A second dialog box might appear listing JAR files that are required by the JAR files
you explicitly selected. Click Yes to add those JAR files, or No to add only the JAR
files that you explicitly selected.

54 Chapter 8 • Configuring a Project’s SAS Repository

Adding Dependent JAR Files
The Add Dependencies button determines whether there are missing JAR files that the
project's current JAR files require. This is useful when the Discover dependencies
automatically is not selected, and you need to find missing JAR files, or Discover
dependencies automatically is selected but you need to find a dependency so that you
can override the version. Follow these steps to identify dependent JAR files:

1. Expand the project in the Package Explorer.

2. Right-click SAS Repository and select Properties.

The Properties for SAS Repository dialog box appears.

3. Click Add Dependencies.

If a missing JAR file is detected, the latest version of the JAR file in the repository is
appended to the list of selected JAR files.

Specifying the Current Versions of JAR Files
Specifying the current version of a JAR file (as opposed to the most recent) is useful for
removing any ambiguity about which version of a JAR file is specified on the classpath.
To specify that the current version of a JAR file should always be used, and you do not
want to use a new version when it becomes available, follow these steps:

1. Expand the project in the Package Explorer.

2. Right-click SAS Repository and select Properties.

The Properties for SAS Repository dialog box appears.

3. Select the JAR file or files and click Make Versions Exact.

For each selected JAR file, the Match Rule is changed to Exact, and the Version is
changed to the version of the JAR file currently in use.

Specifying Other JAR File Versions
You can control which JAR files get used with varying degrees of specificity. Eclipse
JAR file versions follow the pattern
Major_version.Minor_version.Micro_version.tag, where tag represents
characters used to differentiate versions. If more than one version of a JAR file that
matches your specifications is found in the repository, the latest version is used. You can
have only one version of a JAR file in your classpath.

To specify a version of a JAR file that is not the latest version, follow these steps:

1. Expand the project in the Package Explorer.

Specifying Other JAR File Versions 55

2. Right-click SAS Repository and select Properties.

The Properties for SAS Repository dialog box appears.

3. Select the JAR file or files to which you want to apply a versioning rule.

4. Select a Match Rule, as follows:

• Latest - The highest version of the JAR file.

• At Least - The highest version of the JAR file that is at least the version selected
in the Version list.

• Exact - The JAR file specified in the Version list. No higher or lower version can
be substituted. Only for an Exact match is the tag of the version tested.

• Up To - The highest version of the JAR file up to and including the version in
the Version list.

• Latest Within Major Version - The JAR file with the highest version but with
the same major version specified in the Version list.

• Latest Within Minor Version - The JAR file with the highest version but with
the same major and minor versions specified in the Version list.

• Latest Within Micro Version - The JAR file with the highest version but with
the same major and minor and micro versions specified in the Version list.

5. Select the Version.

If the currently selected Match Rule requires version information, select or enter the
version number in the Version combo box, which is populated with all of the version
numbers that are currently available in the SAS Versioned Jar Repository. Note that
the JAR files themselves might have their own version requirements for dependent
JAR files.

Removing Version Restrictions
To remove version restrictions on a JAR file and get the latest version, follow these
steps:

1. Expand the project in the Package Explorer.

2. Right-click SAS Repository and select Properties.

The Properties for SAS Repository dialog box appears.

3. Select the JAR file and click Remove Version Restrictions.

The Match Rule is changed to Latest, and the Version is cleared.

Reporting the Classpath JAR Files
To generate a report of all the JAR files that will be used on the classpath, including the
reason that a specific version of a JAR file version was included, follow these steps:

56 Chapter 8 • Configuring a Project’s SAS Repository

1. Expand the project in the Package Explorer.

2. Right-click SAS Repository and select Properties.

The Properties for SAS Repository dialog box appears.

3. Click Report.

Reporting JAR File Relationships
To generate a report showing the relationship between the JAR files in the project's SAS
Repository, and which JAR files are missing or have constraints that cannot be satisfied,
follow these steps:

1. Expand the project in the Package Explorer.

2. Right-click SAS Repository and select Properties.

The Properties for SAS Repository dialog box appears.

3. Click Jar Relationships.

The resulting report can include the following sections:

• Resolved jars – lists the name and version of each JAR file that was included and
also the names of dependent JAR files that the included JAR file requires.

• Missing jars – lists JAR files that are required by the JAR files that are currently
checked in the Available Jars list, but are not currently included. The JAR file IDs
are listed, along with the name of the JAR file that directly requested them.

• Unresolved jars – Displays the version request string and the likely error.

Reporting JAR File Relationships 57

Finding a Class in a JAR File
To find a class in your project's JAR files, and then add that JAR file to the SAS
Repository and the classpath, follow these steps:

1. Expand the project in the Package Explorer.

2. Right-click SAS Repository and select Properties.

The Properties for SAS Repository dialog box appears.

3. Click Find Jar.

4. Enter the local name of a class (not the package).

The search is case insensitive and returns all classes in the project's SAS Repository
that contain the search string.

5. Select the class that you want from the list.

If the Add Jar button is enabled, then the JAR file is not in the project's SAS
Repository. Click Add Jar to add it.

If the Add Jar button is dimmed, then the JAR file is already in the project's SAS
Repository.

58 Chapter 8 • Configuring a Project’s SAS Repository

Changing Default Classes for SAS Java Projects
By default, the classpath for a new SAS Java Project includes sas.swing.remote,
sas.graph.bip, and all their dependent JAR files. To change the default classes that
are added to a SAS Java project, follow these steps:

1. Select Window ð Preferences.

2. Expand SAS AppDev Studio, and select SAS Project dependencies.

3. Change the included JAR files just as you would for a project.

4. Click OK.

New projects will use the new default JAR files. Existing projects are not affected.

Changing Default Classes for SAS Java Projects 59

60 Chapter 8 • Configuring a Project’s SAS Repository

Chapter 9

Using the SAS Editor Extensions

Introduction to SAS Editor Extensions . 61

Accessing SAS Component API Documentation . 62
Introduction . 62
Eclipse Help System . 62
Context-Sensitive Javadoc in an Eclipse Window (F1) . 62
Context-Sensitive Javadoc in an External Browser (Shift+F2) 62
Configuring External Javadoc for Use within Eclipse . 62

Adding Missing Import Statements . 63
Introduction . 63
Using a SAS Import from Repository Quick Fix . 63
Using the Organize SAS Imports Action . 64

Attaching a SAS Model to a Viewer . 64
Overview of Model/Viewer Connections . 64
Using the SAS Model/Viewer Connection Quick Assist . 65

SAS Snippets . 67
Snippets Introduction . 67
Displaying the SAS Snippets . 67
Inserting a SAS Snippet . 67

Introduction to SAS Editor Extensions
The SAS AppDev Studio 4.4 Eclipse plug-ins add the following functionality to the
default Eclipse setup:

• access to the SAS API documentation from code

• identification and addition of missing import statements

• assistance with model/view attachments

• SAS snippets

61

Accessing SAS Component API Documentation

Introduction
You can access the SAS Component API Javadoc from within Eclipse via the following:

• the Eclipse Help system

• context-sensitive Help in an Eclipse window (F1)

• context-sensitive Help in an external browser (Shift+F2)

Eclipse Help System
To browse the SAS Component API documentation, follow these steps:

1. Select Help ð Help Contents.

2. Expand SAS Components Guide.

3. Expand Reference.

Context-Sensitive Javadoc in an Eclipse Window (F1)
To view the Javadoc for a class in an Eclipse window, place the text insertion point on a
class name in the source code and press F1. A Help view appears in the workbench. The
first link in the Help view is a link to the Javadoc, if Javadoc is available for the class.

The link in the Help view is context sensitive, and changes if you reposition the insertion
point to a different class.

Context-Sensitive Javadoc in an External Browser (Shift+F2)
If the class is on the build path of the project, you can view the Javadoc for the class in
an external browser by placing the insertion point on the class name in the source code
and then pressing Shift+F2.

Configuring External Javadoc for Use within Eclipse
To specify more current documentation for a JAR file, or to add a reference to Javadoc
for a third-party JAR file, follow these steps:

1. Open a project that uses the JAR file.

2. In the Package Explorer, expand SAS Repository.

3. Right-click on the JAR file with which you want to associate Javadoc and select
Properties.

4. Select Javadoc Location and then specify the location.

Javadoc for SAS Components is not displayed when you position your mouse pointer
over a class name or method call in the source code because the Javadoc for tooltips is
generated from source code, and the SAS source code is not distributed.

62 Chapter 9 • Using the SAS Editor Extensions

Adding Missing Import Statements

Introduction
When you declare or use a class that is in the classpath but is not yet imported into your
Java program, Eclipse provides a Quick Fix that can add an import statement for that
class to the top of the source file. Eclipse also provides an Organize Imports action that
can add the necessary imports for a given source file. However, neither the Eclipse
Quick Fix nor the Organize Imports action are aware of the SAS Versioned Jar
Repository.

If you are using content from the SAS Versioned Jar Repository, use the SAS Import
from Repository Quick Fix and the Organize SAS Imports action because both are aware
of the SAS Versioned Jar Repository.

Using a SAS Import from Repository Quick Fix
A SAS Import from Repository Quick Fix is displayed when there is a compilation
error because a class used in the code cannot be resolved in the current source file.

If you accept the Quick Fix, the SAS Import from Repository Quick Fix adds the
following items:

• the JAR file containing the class to the project classpath

• an import statement for the class to the current file.

If the name of the class (excluding the package) is included on the current project
classpath, Eclipse provides a Quick Fix for each of the candidate class names. If there
are additional candidate class names in the latest versions of one or more JAR files in the
SAS Versioned Jar Repository, Quick Fixes are also provided for those class names.

To use one of the SAS Import from Repository Quick Fixes (marked with a SAS icon),
double-click the Quick Fix or select the Quick Fix and press Enter. If you use a SAS
Import from Repository Quick Fix and the Build Automatically option is enabled, the
entire project is rebuilt because the classpath has changed.

Adding Missing Import Statements 63

Using the Organize SAS Imports Action
In cases where there are multiple unknown types used in a source file, the Organize SAS
Imports action can guide you through the process of resolving all of the unknown classes
(both classes from the SAS Versioned Jar Repository and other classes) in the current
source file. If you add any new JAR files to the project dependencies, the project must
be rebuilt.

A Java file that cannot be found in a class exists in one of two states:

• the class is currently on the project classpath, but it has not been imported into the
Java file. In this case, an import statement is added to the file and a build of that
particular file is required.

• the class is not currently on the project classpath. In this case, the classpath must be
modified to include the required jar file or files, and an import statement must be
added to the file. A full build of the project is required because of the change to the
classpath.

To start the Organize SAS Imports action, right-click in a Java file in the Java editor and
select Source ð Organize SAS Imports.

Attaching a SAS Model to a Viewer

Overview of Model/Viewer Connections

Introduction
SAS AppDev Studio 4.4 does not support attaching models to viewers using drag-and-
drop, but there is an editor Quick Assist that facilitates model/viewer connections.

Note that the Quick Assist cannot determine whether you have already attached a model
to a viewer. You can run the Quick Assist multiple times on the same viewer
instantiation, each time attaching it to a different model. To determine which attachment
is in effect, you must examine the code and identify the last attachment called.

Enabling the Quick Assist Icons
Eclipse uses a lightbulb icon in the editor gutter to notify you when a Quick Assist is
available. By default, the Quick Assist icons are not displayed. To enable the Quick
Assist icons, follow these steps:

1. Select Window ð Preferences.

2. Expand Java.

3. Select the Editor item.

4. Select the Light bulb for quick assists check box.

Supported Viewers for Model/Viewer Connection Quick Assist
The Connection Quick Assist supports viewers that have a setModel method that takes
as an argument one of the following types:

• javax.swing.ComboBoxModel

64 Chapter 9 • Using the SAS Editor Extensions

• javax.swing.ListModel

• com.sas.table.StaticRowTemplateTableInterface

• com.sas.table.StaticTableInterface

• javax.swing.table.TableModel

• javax.swing.tree.TreeModel

Using the SAS Model/Viewer Connection Quick Assist
To use the SAS Model/Viewer Connection Quick Assist, follow these steps:

1. Place the cursor on a statement that contains a variable instantiation of a viewer type
(for example, javax.swing.JList). The Quick Assist will not function if you
place the cursor on a static method.

2. Press Ctrl+1.

From the list of Quick Assist choices, select Hook up model.

You can also access the connection Quick Assist by right-clicking and selecting
Source ð Add SAS Attachments.

3. Specify how you want to create and link a model to the viewer:

• Use existing field

• Create new field

If you selected Use existing field:

a. Select the field to use.

Only the models declared as fields that are within the same scope as the cursor
location and match the available model type(s) are listed. If there are no available
fields, the Use existing field option is disabled.

b. Click Finish to generate the code that creates the model and attaches it to the
viewer.

If you selected Create new field:

a. Select the model to attach to the viewer from the Choose a class to declare list.

When you expand an available class, the child nodes represent the classes in the
current classpath that extend or implement the expanded class.

b. Enter the Model variable name.

This variable name is used in the declaration in the source file. The variable is
declared in the top-most enclosing class.

Attaching a SAS Model to a Viewer 65

A default variable name is supplied, based on the currently selected class. If you
modify this name, it will not change when you select a different class.

c. Click Finish to add an initialization method to the source file with statements
that instantiate the appropriate type for this variable (multiple fields are written
with the same initialization method).

A secondary dialog box appears, giving you the opportunity to name and adjust
other creation options for the new class before the initialization method is
created.

66 Chapter 9 • Using the SAS Editor Extensions

SAS Snippets

Snippets Introduction
Snippets are pieces of code that perform some action for you. Typically, they enable you
to configure a piece of code and then insert it, saving you from a lot of typing. Snippets
can also perform actions for you, like searching a SAS Metadata server. Snippets are a
robust form of the Eclipse Editor snippets.

Displaying the SAS Snippets
To display the SAS snippets, follow these steps:

1. Select Window ð Show View ð Other.

2. Expand General.

3. Select Snippets and then click OK.

4. Inside the Snippets tab, click SAS Snippets.

Inserting a SAS Snippet
To insert a snippet, follow these steps:

1. Place your cursor inside a non-static method body where you want to insert the
snippet.

2. Double click on the snippet that you want to insert (or right-click and select Insert).

3. Configure the variables used in the snippet.

Variables in the snippet are either declared at the top of the snippet, or are replaced
by variables that already exist in the code.

SAS Snippets 67

The Initialization Code field for each variable defines how the variable is assigned.
The Initialization Code can be set one of three ways:

• An illegal value that will not compile so that you are forced to fix it (for example,
ENTER_HOST_NAME_HERE).

• Arbitrary text that you enter.

You can enter any text, method call, or other complex expression for the
Initialization Code. If entering a string, include the appropriate quotation marks
and escape characters.

• A variable from your code.

The list of values is populated with all of the variables in scope that are
compatible with this variable type. If you select one of these variables, the
declaration at the top of the snippet is removed and the variable that you have
selected is used throughout the snippet.

68 Chapter 9 • Using the SAS Editor Extensions

4. Choose whether to Surround generated code with try/finally. This option encloses
the generated code in a try/finally block. This is useful if you want to handle
the declared exceptions in the current method.

5. Click Insert.

The snippet code is added at the cursor location and the necessary import statements
are added to the top of your source file. Inserted type references are fully qualified if
they would conflict with an existing import.

SAS Snippets 69

70 Chapter 9 • Using the SAS Editor Extensions

Appendix 1

Creating a SAS Web Application
That Does Not Use the Web
Infrastructure Platform

Introduction
In AppDev Studio 4.4, a standard SAS Web Application Project contains both the “SAS
Java Components” facet and the “SAS Web Infrastructure Platform” facet. The SAS
Web Application Project wizard always adds both facets when creating a new SAS Web
Application Project. Once added, neither SAS facet can be removed from the project.
Consequently, the SAS Web Application Project wizard cannot be used to create a SAS
Web Application Project that does not include the “SAS Web Infrastructure Platform”
facet.

However, you can create a SAS Web Application Project without the Web Infrastructure
Platform facet. Such a project deploys Local Services using "Local Platform Services,"
which is in all SAS 9.4 BI Server installations. You can choose a different Local
Services deployment if you have one available.

Note that because the project does not use the Web Infrastructure Platform, it cannot
integrate with the Logon Manager application.

Create a Dynamic Web Project
Create a new SAS Web Application Project that contains only the SAS Java
Components facet by following these steps:

1. From Eclipse, select File ð New ð Project.

2. Expand the Web folder.

3. Select Dynamic Web Project and click Next.

4. Specify a project name.

This name is used as the context name. The name must not contain spaces.

5. Select the Target Runtime to match the server that you plan to use.

The default target run time is ADS Apache Tomcat v7.0.

6. For the Dynamic Web Module version, select 2.4.

7. For the Configuration, click Modify, select SAS 9.4m1 Java Components
Configuration, and then click OK.

For AppDev Studio 4.4 that has not had a maintenance update applied, select SAS
9.4 Java Components Configuration.

71

Add a Context Listener
The last step in creating a SAS Web Application Project that does not use the Web
Infrastructure Platform is to add a context listener that deploys the Local Services.

However, if you are using one of the SAS Java Web Application example templates
provided with AppDev Studio 4.4, a Local Services context listener is automatically
added to the project on a successful build. In such a case, you must add a context listener
only if you are changing which BI Server Profile or Local Services deployment the
project is using.

To add or update the context listener, follow these steps:

1. From Eclipse, select File ð New ð Other.

2. Expand the SAS AppDev Studio folder.

3. Select Add Template Content to Project, and then click Next.

4. For the Project, select the host project that was created earlier.

5. Expand the SAS Java Web Application and then SAS Foundation Services
Support folders.

6. Select Context Listener For Local Services.

7. Click Next.

8. Click Next to accept the default Template Configuration Parameters.

9. Select the BI Server Profile for the BI installation that you want to target. If you want
to change the Local Services deployment from the current or default "Local Platform
Services," ensure the SAS Metadata Server in the BI installation is running.

a. Click Advanced.

b. In the Local Services Deployment section, select Other.

c. Click Browse and select the service deployment.

d. Click OK.

10. If the SAS Metadata Server for the BI installation is running, you can click Test
Configuration to verify that the service deployment can be read from the metadata
server.

11. Click Finish.

Adding a Stored Process Servlet to a Foundation Services
Application

Before starting this process, ensure that if a Metadata Server Connection profile is
currently open, it targets the BI installation whose metadata server contains the stored
process that you want to add. If it does not, you must disconnect that Connection profile
before starting this process. Switching Connection profiles (and hence, metadata server
connections) within the wizard is not currently supported.

To add a Stored Process Servlet, follow these steps:

1. From Eclipse, select File ð New ð Other.

2. Expand the SAS AppDev Studio folder.

72 Appendix 1 • Creating a SAS Web Application That Does Not Use the Web Infrastructure Platform

3. Select Add Template Content to Project, and then click Next.

4. For the Project, select the host project that was created earlier.

5. Expand the SAS Java Web Application and then SAS Web Application Examples
folders.

6. Select SAS Stored Process Servlet (uses SAS FS).

7. Click Next.

8. Click Next to accept the default Template Configuration Parameters.

9. Select the BI Server Profile for the BI installation that contains the stored process
that you want to add.

If you want to change the Local Services deployment from the current or default
"Local Platform Services," ensure the SAS Metadata Server in the BI installation is
running.

a. Click Advanced.

b. In the Local Services Deployment section, select Other.

c. Click Browse and select the service deployment.

d. Click OK.

10. If the SAS Metadata Server for the BI installation is running, you can click Test
Configuration to verify that the service deployment can be read from the metadata
server.

11. If you do not have an open metadata connection, click the "Connection profile"
Change button and log on before selecting a stored process.

Choose a stored process by clicking Change, selecting the stored process, and then
clicking OK.

Click Next.

Creating a SAS Web Application That Does Not Use the Web Infrastructure Platform 73

Note: If the Connection profile displays “Invalid connection,” the currently open
metadata connection is to a different BI installation than the one targeted by the
BI Server profile. Because changing the metadata connection in the wizard is not
supported, you must click Cancel, disconnect from the metadata server, and then
restart this process.

12. Click Next to accept the Servlet Class Parameters, and then click Next again to
accept the Servlet Deployment Descriptor Parameters.

13. Click Finish.

The StoredProcessWebApp project is now created and the SAS Stored Process
Servlet template is added. leave open the Java file containing the servlet
(StoredProcessDriverServlet.java).

Replace Required Values in the Servlet Code
The generated servlet code might lack a value for one or more of the stored process input
parameters. This occurs when a default value was not defined for the parameter in the
metadata for the stored process, and therefore could not be included in the generated
code. You must edit the code and provide valid values before the servlet can compile
and run.

1. Display the Markers view if it is not visible.

Toggle the Markers view by selecting Window ð Show View ð Other ð General
ð Markers.

74 Appendix 1 • Creating a SAS Web Application That Does Not Use the Web Infrastructure Platform

2. Look in the Markers view under Java Problems for errors that start with
REPLACE_WITH_ACTUAL_VALUE_FOR_PROMPT_.

If the error is not in the Markers view, ensure that automatic building is enabled
(Project ð Build Automatically).

3. Double-click the error in the Markers view to go to the error in the Java file.

4. Replace the problem value with an appropriate constant for that particular input
parameter. The input parameter is indicated in the comment above the declaration
and by the portion of the variable name that precedes “_VALUE”.

5. Save the file.

The error disappears, assuming that automatic building is enabled.

For more information about input parameters, including how to see what input
parameter values and data types are valid in the code, see “Input and Output
Parameters” on page 28.

Restart the Server and Run the Application
1. Stop and then start the server from the Servers View (do not use Restart). Wait until

the server State is Stopped.

For why you should avoid the Restart command, see the “Tomcat Shutdown Issue”
on page 42.

2. Right-click the servlet’s StoredProcessDriverServlet.java file and select
Run As ð Run on Server.

3. Ensure that the correct server is selected and click Finish.

Creating a SAS Web Application That Does Not Use the Web Infrastructure Platform 75

76 Appendix 1 • Creating a SAS Web Application That Does Not Use the Web Infrastructure Platform

Index

A
Accessibility features 4

exceptions 4
API documentation 62
AppDev Studio

new features 5
overview 5

application metadata
copying 39
files 37
launch files 38

Application.xml 38
authentication

and deployment 43

B
BI Server profiles 9
build.xml 38

C
classes

changing default for SAS Java Projects
59

classpath
adding dependent JAR files 55
adding new JAR files 54
changing JAR file order 53
listing JAR files 56
removing JAR files 52

Connection profiles 9

D
dependent JAR files

identifying 51
deployment

and authentication 43
deployment descriptor 47
destination_omr.properties 38

documentation
accessing 62

E
Eclipse

memory settings 3
exporting

SAS Java projects as JAR files 45
SAS web applications as a WAR file 46

I
import statements

adding 63
Organize SAS Imports action 64
Repository Quick Fixes 63

input parameters 27, 28
installation 2

Eclipse 4.2.2 1
post-install 3

J
JAR files

adding dependent 55
adding to classpath 54
changing order on classpath 53
finding a class in 58
identifying dependencies 51
listing classpath JAR files 56
listing relationships 57
removing from classpath 52
removing version restrictions 56
specifying current version 55
specifying version 55

Javadoc 62
configuring with Eclipse 62

77

L
launch files 38

M
memory

Eclipse settings 3
Metadata Server Connection profiles

See Connection profiles
migrating 6
model/viewer connections 64, 65

supported viewers 64

N
new features 5

O
omr.properties 39
Organize SAS Imports action 64
output parameters 29

P
portlet editor 36
post-install 3
projects

opening and closing 8

Q
Quick Assists

enabling 64

R
requirements

Java 2
SAS software 1

S
SAS Repository 49

opening 50
SAS web applications 7
SAS Web applications

creating without Web Infrastructure
Platform 71

snippets 67
StoredProcessConnection.java 40, 41
StoredProcessDriver.java 39
StoredProcessDriver.properties 40
StoredProcessDriverServlet.java 41
StoredProcessFacade.java 40, 41

T
templates 9
Tomcat 42

shutdown issue 42

V
Versioned Jar Repository 49, 71

W
web application projects 7
Web application templates 9

78 Index

	Contents
	What’s New
	About This Book

	Installing AppDev Studio
	Installation Prerequisites
	Supported Versions of SAS Software
	Install Eclipse 4.2.2
	Java Platform Requirements

	Installation and Post-Installation of SAS AppDev Studio
	Installation Instructions
	Post-Installation Configuration
	Eclipse Memory Settings

	Accessibility Features of AppDev Studio

	Overview of AppDev Studio 4.4
	The SAS AppDev Studio 4.4 Eclipse Plug-ins
	New Features
	Migrating Applications to AppDev Studio 4.4

	Projects, Profiles, and Templates
	SAS Web Application Projects
	Minimize the Number of Open Projects
	Server Profiles
	Introduction
	BI Server Profiles
	Metadata Server Connection Profiles

	Templates
	Template Descriptions
	SAS DataBean
	SAS Information Delivery Portal Portlets
	SAS Foundation Services Support
	SAS Web Application Examples
	SAS Web Infrastructure Platform Support
	SAS Stored Process

	Walk-Through for Web Infrastructure Platform Templates
	Introduction
	Part I: Create the Project and the Application Metadata
	Create a SAS Web Application Project
	Add the Application Metadata Creation Template
	Run the Launch File and Create the Application Metadata

	Part II: Add the JDBC TableView Template
	Part III: Add a Welcome Page and Run the Application
	Add a Welcome Page Template
	Run the Application

	Add a ReportViewer Servlet Template to the Project
	Add the ReportViewer Servlet Template
	Restart the Server and Run the Application

	Add a SAS Stored Process Servlet Template to the Project
	Add the SAS Stored Process Servlet Template
	Replace a Value in the Servlet Code
	Restart the Server and Run the Application
	Change a Stored Process Input Parameter

	Input and Output Parameters
	Input Parameters
	Output Parameters

	Walk-Through for Data-Driven Project Creation
	Create an Information Map Fixed Portlet from Data
	Introduction
	Switch to the SAS Metadata Perspective and Create the Project
	Deploy the Portlet
	View the Portlet in the SAS Information Delivery Portal

	The Portlet Editor

	Template and Testing Details
	Files Added by the Metadata Creation Template
	Location of Application Metadata
	The Launch Files
	Application.xml
	build.xml
	destination_omr.properties
	omr.properties

	Copying the Application Metadata
	Files Added by the Stored Process Java Client Template
	Introduction
	StoredProcessDriver.java
	StoredProcessConnection.java
	StoredProcessFacade.java
	StoredProcessDriver.properties
	jaas.config
	launchParameters.txt

	Files Added by the Stored Process Servlet Template
	Introduction
	StoredProcessDriverServlet.java
	StoredProcessConnection.java
	StoredProcessFacade.java

	Tomcat Configuration Details
	Tomcat Support
	Configuring a Tomcat Server
	Tomcat Shutdown Issue

	Deployment and Authentication

	Exporting Projects
	Exporting Java and SAS Java Projects as a Set of JAR Files
	Exporting a SAS Web Application Project as a WAR File
	Exporting a Project Using a Deployment Descriptor File

	Managing the JAR Files in a Project
	The SAS Repository
	Opening the SAS Repository Properties Editor
	Identifying Dependent JAR Files
	Removing JAR Files from the Classpath
	Changing the Order of JAR Files in the Classpath
	Adding New JAR Files to the Classpath
	Adding Dependent JAR Files
	Specifying the Current Versions of JAR Files
	Specifying Other JAR File Versions
	Removing Version Restrictions
	Reporting the Classpath JAR Files
	Reporting JAR File Relationships
	Finding a Class in a JAR File
	Changing Default Classes for SAS Java Projects

	Using the SAS Editor Extensions
	Introduction to SAS Editor Extensions
	Accessing SAS Component API Documentation
	Introduction
	Eclipse Help System
	Context-Sensitive Javadoc in an Eclipse Window (F1)
	Context-Sensitive Javadoc in an External Browser (Shift+F2)
	Configuring External Javadoc for Use within Eclipse

	Adding Missing Import Statements
	Introduction
	Using a SAS Import from Repository Quick Fix
	Using the Organize SAS Imports Action

	Attaching a SAS Model to a Viewer
	Overview of Model/Viewer Connections
	Using the SAS Model/Viewer Connection Quick Assist

	SAS Snippets
	Snippets Introduction
	Displaying the SAS Snippets
	Inserting a SAS Snippet

	Creating a SAS Web Application That Does Not Use the Web Infrastructure
Platform
	Index

