
SAS/ACCESS® 9.3 Interface
to SYSTEM 2000®

Reference

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2011. SAS/ACCESS® 9.3 Interface to SYSTEM 2000®:
Reference. Cary, NC: SAS Institute Inc.

SAS/ACCESS® 9.3 Interface to SYSTEM 2000®: Reference

Copyright © 2011, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private
expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication or disclosure of the Software by the
United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR
227.7202-3(a) and DFAR 227.7202-4 and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19
(DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be affixed to
the Software or documentation. The Government's rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513-2414.

July 2015

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Contents
Chapter 1 • The SAS/ACCESS Interface to SYSTEM 2000 . 1

Overview of the SAS/ACCESS Interface to SYSTEM 2000 . 1
Example Data in This Document . 2

Chapter 2 • SYSTEM 2000 Software . 5
Overview of SYSTEM 2000 . 5
SYSTEM 2000 Databases . 6
SYSTEM 2000 Item Types . 12
SYSTEM 2000 Indexing . 14
Selecting a Subset of Data . 14
Sorting Output . 15
SYSTEM 2000 Passwords . 15
SYSTEM 2000 Execution Environments . 16
SYSTEM 2000 Database Files . 16

Chapter 3 • SAS/ACCESS Descriptor Files . 19
Overview of SAS/ACCESS Descriptor Files . 19
Defining SAS/ACCESS Descriptor Files . 19
Creating Descriptor Files . 20

Chapter 4 • SYSTEM 2000 Data in SAS Programs . 23
Using SYSTEM 2000 Data in SAS . 23
Reviewing Variables . 24
Printing Data . 25
Charting Data . 26
Calculating Statistics . 27
Selecting and Combining Data with the SQL Procedure . 30
Updating SAS Data Files with SYSTEM 2000 Data . 35
Performance Considerations . 38

Chapter 5 • Browsing and Updating SYSTEM 2000 Data . 41
Browsing and Updating SYSTEM 2000 Data Directly from SAS 41
Browsing and Updating with SAS/FSP . 42
Browsing and Updating with the SQL Procedure . 49
Using the APPEND Procedure . 52
Browsing and Updating with the QUEST Procedure . 56

Chapter 6 • Creating and Loading SYSTEM 2000 Databases . 59
DBLOAD Procedure in SAS and SYSTEM 2000 . 59
Selecting a Processing Mode for Loading Data . 66

Chapter 7 • SAS/ACCESS 9 for SYSTEM 2000: Reference . 67
ACCESS Procedure in SAS and SYSTEM 2000 . 68
ACCESS Procedure Statements . 70
ACCESS Procedure Syntax . 70
The PROC ACCESS Statement . 71
where-clause in SYSTEM 2000 . 72
ordering-clause in SYSTEM 2000 . 77
Creating and Using View Descriptors Efficiently . 78
PROC ACCESS Data Conversions . 78
Dictionary . 79

Chapter 8 • DBLOAD Procedure Reference . 91
DBLOAD Procedure and SYSTEM 2000 . 91
Creating Customized View Descriptors . 92
Default SYSTEM 2000 Item Types . 92
Allocating the Database Files . 93
Adding Disjoint Schema Records . 94
Loading One SYSTEM 2000 Database from Another . 94
DBLOAD Procedure Options Syntax . 94
Dictionary . 95

Chapter 9 • QUEST Procedure Reference . 105
QUEST Procedure in SAS with SYSTEM 2000 . 105
Statements in PROC QUEST . 106
SYSTEM 2000 Statements and the QUEST Procedure . 106
Single-User Mode . 108
Multi-User Mode . 109
Dictionary . 110

Appendix 1 • Topics for Database Administrators . 113
SYSTEM 2000 and the SAS/ACCESS Interface . 113
Changing a SYSTEM 2000 Database Password . 116
Changing a Database Definition . 116
Data Security . 117
Enabling the Rollback Log . 118
Locking Record Levels . 119
Maximizing SYSTEM 2000 Performance . 120

Appendix 2 • Advanced Topics for Users . 121
Overriding Options . 121
Using Multiple View Descriptors . 122
Deleting Data Records . 122
Inserting Data Records . 123
BY Key . 123
Missing Values (Nulls) . 126
WHERE Clauses in SAS and where-clauses in SYSTEM 2000 127
Specifying Selection Criteria . 133
Connecting Strings to Order Conditions . 133
Stored Strings in SYSTEM 2000 . 136

Appendix 3 • Example Programs . 137
Using the Example Programs . 137
SYSTEM 2000 Database Definition for Database EMPLOYEE 137
Access Descriptors . 139
View Descriptors . 141
SAS Data Files . 152

Recommended Reading . 157
Glossary . 159
Index . 181

iv Contents

Chapter 1

The SAS/ACCESS Interface to
SYSTEM 2000

Overview of the SAS/ACCESS Interface to SYSTEM 2000 . 1

Example Data in This Document . 2

Overview of the SAS/ACCESS Interface to
SYSTEM 2000

SAS/ACCESS software provides an interface between SAS and SYSTEM 2000
database management software. With the SAS/ACCESS interface, you can do the
following:

• create SAS/ACCESS descriptor files by using the ACCESS procedure.

• directly access data in SYSTEM 2000 databases from within a SAS program by
using the descriptor files created with the ACCESS procedure.

• extract SYSTEM 2000 data and place it in a SAS data file by using the ACCESS
procedure or the DATA step.

• load data into a SYSTEM 2000 database by using the DBLOAD procedure.

• update data in SYSTEM 2000 databases by using the SQL procedure, SAS/FSP
software, or the APPEND procedure. The SQL procedure can also be used to join
SAS data files, PROC SQL views, and SAS/ACCESS view descriptors.

• directly access data in SYSTEM 2000 databases by using the QUEST procedure
with SYSTEM 2000 statements.

The SAS/ACCESS interface consists of the following:

• the interface view engine, which enables you to use SYSTEM 2000 data in SAS
programs in the same way that you use SAS data. You can print, plot, and chart the
data described by the descriptor files, use the descriptor files to create other SAS data
files, and so on.

• the ACCESS procedure, which enables you to describe SYSTEM 2000 data to SAS
and store the description in SAS/ACCESS descriptor files.

• the DBLOAD procedure, which enables you to create and load SYSTEM 2000
databases using data from SAS data sets.

• the QUEST procedure, which enables you to access SYSTEM 2000 and issue
SYSTEM 2000 statements from SAS.

1

You might need to combine data from several SYSTEM 2000 databases or from external
databases, such as DB2 or SAS 6 and later SAS data sets. Such combinations are not
only possible but easy to do. SAS can distinguish between SAS data files, SAS/ACCESS
descriptor files, and other types of SAS files, and the software uses the appropriate
access method.

The following figure illustrates the relationships of a SYSTEM 2000 database, access
descriptors, and view descriptors.

Example Data in This Document
This document uses the SYSTEM 2000 database Employee and several SAS data files to
show you how to use the SAS/ACCESS interface to SYSTEM 2000. This database and
the SAS data files MyData.Classes, V6.Birthdy, and MyData.CorPhon were created for a
company's employee information. The data file Trans.Banking (used in the example for
the DBLOAD procedure) was created for banking transactions. All the data is fictitious.
The database is used to show how the interface treats SYSTEM 2000 data. It should not
be used as an example for you to follow in designing databases for any purpose.

2 Chapter 1 • The SAS/ACCESS Interface to SYSTEM 2000

See Appendix 3, “Example Programs,” on page 137 for more information about the
example data used in this documentation.

The SAS jobs to create the SAS data files are on your installation media; see your on-
site SAS support personnel to create the SAS data files. The database Employee is on the
SYSTEM 2000 installation media; see your Database Administrator to ensure that the
data is available and in its original state.

You create the access descriptor MyLib.Employe and the view descriptors Vlib.EmpPos
and Vlib.EmpSkil. See SAS/ACCESS Descriptor Files on page 19. You need to create
the other view descriptors in this document on your own, using the definitions shown in
Appendix 3, “Example Programs,” on page 137.

Example Data in This Document 3

4 Chapter 1 • The SAS/ACCESS Interface to SYSTEM 2000

Chapter 2

SYSTEM 2000 Software

Overview of SYSTEM 2000 . 5

SYSTEM 2000 Databases . 6
Overview of Database Definition . 6
Database Names . 7
Labeling Data . 7
Grouping Schema Items . 8
Grouping Schema Records . 8
Logical Entries . 10
Mapping Data between SAS and SYSTEM 2000 . 11
Null Data (Missing Values) . 12

SYSTEM 2000 Item Types . 12
Overview of Item Types . 12
Numeric Item Types . 13
Date Item Types . 13
Character Item Types . 13

SYSTEM 2000 Indexing . 14

Selecting a Subset of Data . 14

Sorting Output . 15

SYSTEM 2000 Passwords . 15

SYSTEM 2000 Execution Environments . 16

SYSTEM 2000 Database Files . 16

Overview of SYSTEM 2000
Note: This section focuses on terms and basic concepts that help you use the

SAS/ACCESS interface to SYSTEM 2000. Experienced users of SYSTEM 2000
might want to proceed to Chapter 3, “SAS/ACCESS Descriptor Files,” on page 19.

SYSTEM 2000 is hierarchical database management software from SAS for mainframe
computer systems that run under the z/OS operating environment. Using SYSTEM 2000,
you can define the types of data to be stored in a database and the relationships in the
data. You can also load the database and retrieve and update the data. The software's
hierarchical database structure provides the following:

• efficient data storage by reducing the amount of redundant data

5

• indexing capabilities for fast and efficient retrievals

• data qualification and sorting capabilities

• complete data security through the use of passwords

• Multi-User and single-user execution environments

• a complete set of diagnostic messages

• optional transaction journaling

• rollback recovery from system crashes or other failures

SYSTEM 2000 Databases

Overview of Database Definition
A SYSTEM 2000 database is hierarchical because you can store and access data
according to organized relationships in groups of associated data. When a SYSTEM
2000 database is created, a plan called a database definition is devised, in which the
following happens:

• the database has an assigned name

• the data to be stored is labeled

• the data is arranged into groups

• relationships are established among the groups of data

Usually, a database is organized according to the types of data and the way you want to
use the data. To create descriptor files for the SAS/ACCESS interface, you must
understand and be familiar with the contents of the database and its organization in order
to retrieve and update information accurately and efficiently. The output below shows an
excerpt of the database definition for Employee, which is the output from a DESCRIBE
statement in SYSTEM 2000. (For a complete listing of the database definition for
Employee, see Appendix 3, “Example Programs,” on page 137.)

6 Chapter 2 • SYSTEM 2000 Software

Output 2.1 Database Definition for the Database Employee

 SYSTEM RELEASE NUMBER 12.1
 DATA BASE NAME IS EMPLOYEE
 DEFINITION NUMBER 2
 DATA BASE CYCLE NUMBER 25
 1* EMPLOYEE NUMBER (INTEGER NUMBER 9999)
 2* LAST NAME (CHAR X(10) WITH FEW FUTURE OCCURRENCES)
 3* FORENAME (NON-KEY CHAR X(20))
 .
 .
 .
 16* ZIP CODE (CHAR X(5) WITH FEW FUTURE OCCURRENCES)
 100* POSITION WITHIN COMPANY (RECORD)
 101* POSITION TITLE (NON-KEY CHAR X(10) IN 100)
 102* DEPARTMENT (CHAR X(14) IN 100 WITH SOME FUTURE OCCURRENCES)
 103* MANAGER (CHAR XXX IN 100 WITH FEW FUTURE OCCURRENCES)
 104* POSITION TYPE (CHAR X(12) IN 100 WITH SOME FUTURE OCCURRENCES)
 105* START DATE (DATE IN 100)
 106* END DATE (NON-KEY DATE IN 100)
 110* SALARY WITHIN POSITION (RECORD IN 100)
 111* PAY RATE (MONEY $9999.99 IN 110)
 112* PAY SCHEDULE (CHAR X(7) IN 110)
 113* EFFECTIVE DATE (DATE IN 110)
 114* CURRENT DEDUCTION (NON-KEY MONEY $9999.99 IN 110)
 .
 .
 .
 400* EDUCATIONAL BACKGROUND (RECORD)
 410* EDUCATION (RECORD IN 400)
 411* SCHOOL (CHAR X(15) IN 410)
 412* DEGREE/CERTIFICATE (CHAR X(7) IN 410 WITH FEW FUTURE OCCUR
 RENCES)
 413* DATE COMPLETED (DATE IN 410)
 414* MAJOR FIELD (NON-KEY CHAR X(16) IN 410)
 415* MINOR FIELD (NON-KEY CHAR X(12) IN 410)

Database Names
The database name is a unique name, from 1 to 16 characters in length, that is assigned
to a specific SYSTEM 2000 database definition. Each database also has one or more
passwords associated with it.

To create descriptor files for the SAS/ACCESS interface, you must know the name and
password for the SYSTEM 2000 database that you want to access.

Labeling Data
A database definition consists of schema items and schema records, which describe a
blueprint for the type of data to be stored. For example, in the database definition for
Employee, EMPLOYEE NUMBER is a schema item and POSITION WITHIN
COMPANY is a schema record.

A schema item names and defines the characteristics of a group of values. A schema
item has a name, a type, and a picture (length). Each value stored in a SYSTEM 2000
database corresponds to a schema item. For example, the following schema item
describes the numbers used as employee identification numbers. The four 9s indicate
that each employee number can contain a maximum of four digits.

SYSTEM 2000 Databases 7

 1* EMPLOYEE NUMBER (INTEGER NUMBER 9999)

A schema record groups associated schema items. Schema records are explained in
“Grouping Schema Items” on page 8.

Schema items and schema records are referred to as schema components, and each is
identified by a component number and a component name, as shown in the following
figure. (A component number can also be referred to as a C-number, such as C101.)

Figure 2.1 Schema Components

To access data stored in a SYSTEM 2000 database, you must specify either the
component number or the component name. Both are unique in the database definition to
avoid ambiguity. Each line in a database definition begins with the component number
and the component name.

When you create descriptor files for SYSTEM 2000 databases, PROC ACCESS creates
corresponding SAS variable names from the SYSTEM 2000 schema item names. You
can then use the variable names in SAS procedures.

Grouping Schema Items
In a SYSTEM 2000 database, associated schema items are grouped by schema records.
That is, different schema records store different groups of data, and a schema item
belongs to only one schema record. Grouping associated schema items into schema
records is similar to planning a form. A form is usually divided into sections with one
section for each set of related data.

For example, look at the database definition for Employee in Output 2.1 on page 7.
Schema items C1 through C16 contain personal information about each employee. These
items are grouped into one record, the ENTRY or C0 record. (The component number
and name for the ENTRY record is not listed in a database definition unless it has been
renamed.) The schema items C101 through C106, which contain information about an
employee's position, are grouped in schema record C100, POSITION WITHIN
COMPANY.

Grouping Schema Records
Schema record relationships are established by arranging the schema records into levels.
Each schema record is placed at a specific level, which creates a hierarchical structure.

These levels are achieved by ranking schema items with values that occur only one time
per employee (such as an employee's name and address) at a higher level than schema
items with multiple values (such as an employee's job titles and salaries). That is,
schema items having a one-to-many relationship with other schema items rank higher in
the database hierarchy than the other schema items.

8 Chapter 2 • SYSTEM 2000 Software

Look at the database definition for Employee shown in Figure 2.2 on page 9. Notice
that schema items are indented under their parent schema record, and schema records are
indented farther to the right. This reflects the relationships among the records:

• Schema items C1 through C16 store values that occur only one time per employee
and are grouped as the top level of the database in the ENTRY record or at level 0.

• The ENTRY record (C1 to C16) has a one-to-many relationship with the POSITION
WITHIN COMPANY record (C100) because each employee can have more than one
position during their employment, so position title, department, and so on, can have
multiple values. Because positions are associated with specific employees, the
POSITION WITHIN COMPANY record is related to the ENTRY record.
POSITION WITHIN COMPANY is below level 0. It is at level 1.

• Positions have a one-to-many relationship with salary data because an employee can
have more than one salary in a single position. Salary information is grouped in a
record named SALARY WITHIN POSITION (C110), which is related to the
POSITION WITHIN COMPANY record. SALARY WITHIN POSITION is below
level 1. It is at level 2.

Figure 2.2 Levels in a Database Definition

The next set of terms refers to the relationships between the levels, which are like
relationships in a family.

• A parent is the record immediately preceding a specified record. Each record can
have only one parent, and no record is an orphan, except for the ENTRY record at
level 0.

• An ancestor is a record that exists on the level that precedes a specified record in the
same path. The ENTRY record is an ancestor of all other records in the database.

• A descendant is a record that exists at a lower level than a specified record in a
family. C100 is a descendant of the ENTRY record; C110 is a descendant of the
ENTRY record and C100.

SYSTEM 2000 Databases 9

• Children are the records immediately following a specified record. C100 is a child of
the ENTRY record; C110 is a child of C100.

• A family consists of a record, all its ancestors, and all its descendants.

• The path of a record is a record and all its ancestors. C110, C100, and the ENTRY
record make up a path; C410, C400, and the ENTRY record make up another path.

Schema records are disjoint if their paths are different. When you create a view
descriptor, you cannot include items that are from disjoint schema records. For example,
items from C110 and items from C410 cannot be included in the same view descriptor.

Logical Entries
A database consists of groups of logically related data called logical entries. The
database definition serves as a pattern to create logical entries for the database and to
interpret them. A logical entry contains groups of related data called data records. A data
record is an identifiable set of values that are treated as a unit and associated with a
schema record.

For example, in the database Employee, logical entries contain data about employees; all
data records that pertain to one employee make up a single logical entry. Each logical
entry has a data record for personal data (such as the employee's name, address, and
birthday), and a data record that pertains to the position that the employee holds in the
company (such as title, department, manager, and pertinent dates). If the employee held
several positions in the company, there is a data record for each position.

Using the layout of the database definition, the following figure shows the schema items
with values for one employee. David Reid held two positions: programmer and assistant
programmer. In addition, he has three salary data records for his programmer position.

10 Chapter 2 • SYSTEM 2000 Software

Figure 2.3 Logical Entry

When you use a view descriptor in a SAS program to access a SYSTEM 2000 database,
you must be familiar with the database structure in order to understand how the interface
view engine maps a SYSTEM 2000 logical entry into multiple SAS observations and
back again. This process is explained in the next section.

Mapping Data between SAS and SYSTEM 2000
When you create a view descriptor to access data stored in a SYSTEM 2000 database,
you define one path in the database. For example, using the database Employee, you can
define a view descriptor that includes the items LAST NAME, FORENAME,
POSITION TITLE, and PAY RATE. When you access the data using the view
descriptor, the interface view engine maps the specified path for each logical entry into
multiple observations. The following output shows the logical entry for David Reid
mapped into SAS observations.

Output 2.2 Logical Entry Mapped into SAS Observations

 LASTNAME FORENAME POSITION PAYRATE

 REID DAVID G. ASSISTANT PROGRAMMER $1,000.00
 REID DAVID G. PROGRAMMER $1,100.00
 REID DAVID G. PROGRAMMER $1,200.00
 REID DAVID G. PROGRAMMER $1,300.00

SYSTEM 2000 Databases 11

When browsing SYSTEM 2000 data, such as with the FSVIEW procedure, the results
would be similar to those shown in the previous output. (See Chapter 5, “Browsing and
Updating SYSTEM 2000 Data,” on page 41 for more information.)

Null Data (Missing Values)
A logical entry does not need data at every level of the database definition. A logical
entry can contain nulls, that is, missing values or empty records.

• A null item is a schema item that has no value in the data record. For example, in the
logical entry shown in Figure 2.3 on page 11, because David Reid still works for the
company, he does not have a value for the schema item END DATE for his
programmer position. Therefore, that item is a null item.

• A null record is a data record that consists entirely of null items. A null record can
occur when there is data for a given data record but no data for its parent record. For
example, position information exists but an employee has not been hired yet; there is
data at level 1 but the ENTRY record is a null record. Another example is when
salary information exists, but position information has not been entered; there is data
at level 0 and level 2, but a null record exists at level 1. In both examples, the null
record must be present in the database because a parent record must exist for all
records except the ENTRY record.

• A control node is a schema record that contains no schema items. A control node
serves as a control record for descendant records. Look at the database definition for
Employee in Appendix 3, “Example Programs,” on page 137, and you see that
schema record 400 is a control node.

Note: In SAS, nulls are referred to as missing values. SYSTEM 2000 and SAS handle
nulls (missing values) differently. However, the interface view engine takes care of
the differences in a predictable, useful way. See “Missing Values (Nulls)” on page
126 for a discussion of the differences.

SYSTEM 2000 Item Types

Overview of Item Types
Every schema item in a SYSTEM 2000 database has a specified item type. You can
specify numeric item types, a date item type, and character item types. The item type
tells the software how the values for that item are to be stored and displayed. The way
you store the values determines how you can use them. For example, values consisting
exclusively of digits can be stored in a way that is suitable for computation.

How the values are stored and displayed is also determined by the picture (or length)
assigned to an item. For example, a picture for decimal numbers indicates how many
digits can be stored and where the decimal point is placed when the values are displayed
or used in computation.

When you create a view descriptor, in addition to assigning SAS variable names from
the schema item names, PROC ACCESS assigns SAS formats, informats, and lengths
using the item's picture. See “PROC ACCESS Data Conversions” on page 78 for the
default SAS variable formats and informats for each SYSTEM 2000 item type.

12 Chapter 2 • SYSTEM 2000 Software

Numeric Item Types
A numeric item type's picture indicates the number of places required by the longest
value expected for an item, and is specified by repeated 9s. For example, 9999 or 9(4)
specifies four places. Values for numeric item types cannot exceed their specified
picture, that is, overflow is not allowed for numeric values. The following are numeric
item types:

INTEGER
stores whole numbers.

DECIMAL
stores numbers with a decimal point.

MONEY
stores numbers with a decimal point, but these values include a floating dollar sign
($) at the left of the value and CR at the right of the value (if negative) when
displayed.

REAL
stores fullword (single-precision), floating-point (or FLOAT) numbers. REAL items
do not have a picture. Each REAL value occupies one word (4 bytes) in the database.

DOUBLE
stores double-word (double-precision), floating-point numbers. DOUBLE items do
not have a picture. Each DOUBLE value occupies two words (8 bytes). You can also
use the DOUBLE item type for storing time values.

Note: SYSTEM 2000 does not have a TIME item type. To store time values, use the
DOUBLE item type.

Date Item Types
You can specify date values using the DATE item type. A date does not have an assigned
picture.

DATE
stores calendar dates in a fixed format. If the date format is MM/DD/YYYY (the
default), the value stored must be in the form 07/04/1989 (including the slashes). You
cannot store dates that occurred before the date of origin of the Gregorian calendar,
October 15, 1582.

Character Item Types
A character item type's picture corresponds to the number of places that would
accommodate most of the values for the item, and is specified by repeated Xs. For
example, XXXX or X(4) specifies four places. Values for character item types, except
for the UNDEFINED item type, can exceed their picture (up to a maximum of 250
characters) if the specified picture is at least X(4). CHARACTER and TEXT item types
have overflow capabilities. The following are character item types:

CHARACTER
stores alphanumeric values with trailing, leading, and extra internal blanks removed.
For example, JOHNØØØSMITH is stored and displayed as JOHNØSMITH.

SYSTEM 2000 Item Types 13

TEXT
stores alphanumeric values, but blanks are not removed. For example,
ØØJOHNØØØSMITHØØØ is stored and displayed as ØØJOHNØØØSMITHØØØ.

UNDEFINED
stores binary bit-string data. UNDEFINED items can contain any of the 256
EBCDIC characters, which are treated like TEXT items except that overflow is not
allowed.

Note: When you create a view descriptor, PROC ACCESS assigns default variable
lengths to the corresponding SAS variables by using the pictures of the selected
items. However, because CHARACTER and TEXT item types have overflow
capabilities, there might be values stored in the database that are greater than the
default variable length. When you use the view descriptor to select data stored in the
database, the larger values are not recognized. Therefore, to access values that
exceed their item's picture, you must change the length in the view descriptor
definition to the largest possible value stored in the database, up to a maximum of
200.

Therefore, to access values that exceed their item's picture, you must change the length
in the view descriptor definition to the largest possible value stored in the database, up to
a maximum of 200.

SYSTEM 2000 Indexing
One of the specifications when defining a schema item is whether SYSTEM 2000 is to
create an index of its values. SYSTEM 2000 uses the indexes to access the appropriate
data records quickly and efficiently.

A schema item for which an index is created is a key item, implying that it provides easy
access to data records that contain its values. Therefore, a key item has an associated
index of every distinct value that occurs for the schema item. However, key values do
not have to be unique, and there can be many key items in a database definition, or none.

If a schema item is defined as non-key, its values are not indexed, but the values can be
searched sequentially.

In addition, you can create or delete an index of values by using the CREATE INDEX
and REMOVE INDEX statements in SYSTEM 2000. Using these statements, SYSTEM
2000 automatically changes the specified item to key or non-key. (For information about
these statements, see the SYSTEM 2000 CONTROL Language manual.)

Selecting a Subset of Data
A database would not be very efficient if all logical entries had to be accessed when you
needed data from only some of them. SYSTEM 2000 enables you to specify a where-
clause to identify those parts of the database that are relevant to your query or update.

A where-clause consists of the keyword WHERE (or WH) and one or more specific
conditions that values must meet. Usually, a condition consists of a schema item, an
operator, and a value or a range of values. For example:

 WHERE ACCRUED VACATION EXISTS
 WHERE SEX EQ MALE
 WHERE BIRTHDAY SPANS 01/01/1949 * 12/31/1949

14 Chapter 2 • SYSTEM 2000 Software

 WHERE STREET ADDRESS CONTAINS /RIM ROCK/

You can also combine conditions by using connector operators to form expressions. For
example:

 WHERE SKILL TYPE = COBOL AND
 YEARS OF EXPERIENCE = 4

For the SAS/ACCESS interface to SYSTEM 2000, you can include a SYSTEM 2000
where-clause in a view descriptor to specify selection criteria. In addition to or instead of
a SYSTEM 2000 where-clause, you can specify selection criteria in a SAS program by
using a SAS WHERE clause.

Note: The SYSTEM 2000 where-clause and the WHERE clause in SAS are different.
For example, in a SYSTEM 2000 where-clause, the date format (by default) is
MM/DD/YYYY, and you do not have to include single quotes around character
strings.

For more information, see “where-clause in SYSTEM 2000” on page 72, “WHERE
Clauses in SAS and where-clauses in SYSTEM 2000” on page 127, and “Connecting
Strings to Order Conditions” on page 133.

Sorting Output
In addition to selecting specific data, SYSTEM 2000 enables you to specify the output
order for data through the use of a SYSTEM 2000 ordering-clause, which consists of
sort keys that are separated by commas. A sort key can be a schema item or a schema
record. For each sort key, you can specify whether the output is to be sorted in ascending
or descending order. For example, the output produced by the following ordering-clause
is first sorted by LAST NAME (C2) in ascending order (the default) and then by
YEARS OF EXPERIENCE (C203) in descending order (due to the HIGH specification):

 OB C2, HIGH C203

For the SAS/ACCESS interface to SYSTEM 2000, you can specify data sorting by
including a SYSTEM 2000 ordering-clause when you create a view descriptor. In
addition, you can specify data sorting in a SAS program using a BY clause.

Note: A BY clause in SAS overrides a SYSTEM 2000 ordering-clause stored in a view
descriptor. For more information, see “ordering-clause in SYSTEM 2000” on page
77.

SYSTEM 2000 Passwords
SYSTEM 2000 provides data security with a multi-level password system. Three types
of passwords (consisting of 1 to 4 alphanumeric characters with no blanks) can be
associated with a SYSTEM 2000 database:

• a master password (required)

• secondary passwords

• a DBA password

The holder of the master password has unqualified access to the database. This is the
password under which a database is created. The holder of the master password can also

SYSTEM 2000 Passwords 15

assign multiple secondary passwords with access authorities assigned to individual
database components and a DBA password with access authorities assigned to individual
SYSTEM 2000 statements.

The holder of a secondary password can have retrieval (R), update (U), where-clause
(W), or no access (N) authority for any combination of database components. An
authority is a SYSTEM 2000 code that associates a secondary password with a database
component and determines what type of access to the database the password allows. For
example, the holder of a secondary password can have retrieval and where-clause
authority for all database components but no authority to update them.

The DBA password provides a level of security between the master password and
secondary passwords. This password enables the DBA to administer databases without
being able to access the data stored in them.

For the SAS/ACCESS interface to access SYSTEM 2000 data, you must supply a
SYSTEM 2000 password in both the access descriptor and the view descriptor. The
passwords can be the same or different. However, the password assigned to the view
descriptor must include the data described by the access descriptor. The view descriptor
password can be stored in the view, or you can provide (or override) a view descriptor
password with a SAS data set option.

SYSTEM 2000 Execution Environments
When you access a SYSTEM 2000 database, you can work in either a single-user or a
Multi-User execution environment.

In a single-user environment, you are working with your own copy of SYSTEM 2000
software. You usually have exclusive access to the database. However, the single-user
environment can be configured so that all users can query the database.

In a Multi-User environment, many users can access a database at the same time, with
queries and updates being handled simultaneously by the Multi-User software for all
databases being accessed. The Multi-User environment automatically ensures data
protection during concurrent updates, and it automatically guards a database against
conflicting tasks.

SYSTEM 2000 Database Files
SYSTEM 2000 has eight database files associated with each database. The first six files
are required.

• File 1 - Master Record and Definition Table

• File 2 - Distinct Values Table

• File 3 - Extended Field Table

• File 4 - Multiple Occurrence Table

• File 5 - Hierarchical Table

• File 6 - Data Table

• File 7 - Update Log (optional)

• File 8 - Rollback Log (optional)

16 Chapter 2 • SYSTEM 2000 Software

When you are working in a single-user environment, you must allocate the appropriate
database files in your SAS session before accessing the data. For a Multi-User
environment, the database files can be allocated before the Multi-User software is
initialized or, in Release 12.0 and later of SYSTEM 2000, the files can be dynamically
allocated during execution by using the ALLOC command.

For more information about SYSTEM 2000 terms and concepts, see Appendix 1,
“Topics for Database Administrators,” on page 113 and Appendix 2, “Advanced Topics
for Users,” on page 121.

SYSTEM 2000 Database Files 17

18 Chapter 2 • SYSTEM 2000 Software

Chapter 3

SAS/ACCESS Descriptor Files

Overview of SAS/ACCESS Descriptor Files . 19

Defining SAS/ACCESS Descriptor Files . 19

Creating Descriptor Files . 20

Overview of SAS/ACCESS Descriptor Files
SAS interacts with SYSTEM 2000 through the SAS/ACCESS interface view engine,
which uses SAS/ACCESS descriptor files. These special files describe the
SYSTEM 2000 database and data to SAS.

Defining SAS/ACCESS Descriptor Files
SAS/ACCESS descriptor files are the tools that SAS/ACCESS uses to establish a
connection between SAS and SYSTEM 2000. You use the ACCESS procedure to create
the two types of descriptor files: access (member type ACCESS) and view (member type
VIEW).

An access descriptor contains information about the SYSTEM 2000 database that you
want to use. The information includes the database name, the item names, and their item
types. An access descriptor also contains SAS information, such as the SAS variable
names, formats, and informats. Think of an access descriptor as being a master
descriptor file for one SYSTEM 2000 database because it contains a complete
description of that database. You cannot create a single access descriptor that references
two SYSTEM 2000 databases. An access descriptor is used to create view descriptors.

A view descriptor defines all the data or a subset of the data described by one access
descriptor. View descriptor files are sometimes called SAS views. This documentation
uses view descriptor for these files to distinguish them from views created by the SQL
procedure.

You choose a subset of data by selecting specific items and specifying selection criteria
that the data must meet. For example, you might select the two items LAST NAME and
CITY-STATE, and specify that the value stored in item CITY-STATE must be AUSTIN
TX. Or, your selection criteria might be the date of transaction and customers' names that
begin with W. After you create your view descriptor, you can use it in a SAS program to

19

read data directly from the SYSTEM 2000 database or to extract the data and place it in
a SAS data file. You can also specify a sequence order for the data.

For each access descriptor that you define, you usually have several view descriptors.
Each of these view descriptors contains different subsets of data.

Creating Descriptor Files
Access and view descriptor files are created by using the ACCESS procedure. You can
create these files by using one PROC ACCESS step or multiple separate PROC
ACCESS steps. This section shows how to create descriptor files in one PROC ACCESS
step. Within a step, you can define multiple descriptor files of the same type or of
different types.

Examples for creating the access descriptor MyLib.Employe and the view descriptors
Vlib.EmpPos and Vlib.EmpSkil by executing separate PROC ACCESS steps are
provided in Appendix 3, “Example Programs,” on page 137.

Note: When you execute a separate PROC ACCESS step to create a view descriptor,
you must use the ACCDESC= option to specify an existing access descriptor from
which the view descriptor is created.

The most common way to use the PROC ACCESS statements, especially when using
batch mode, is to create an access descriptor and one or more view descriptors based on
this access descriptor in a single execution of PROC ACCESS. For example, in the
program that follows, first, you create the access descriptor MyLib.Employe. Then, you
create the two view descriptors Vlib.EmpPos and Vlib.EmpSkil. In the section that
immediately follows this example program, each statement is explained in the order in
which it appears in the program.

proc access dbms=s2k;
 create mylib.employe.access;
 database=employee;
 s2kpw=demo mode=multi;
 assign=yes;
 drop c110 c120;
 rename forename=firstnme office_e=phone
 yearsofe=years gender=sex
 degree_c=degree;
 length firstnme=13 lastname=13 c101=16;
 list all;

 create vlib.emppos.view;
 select lastname firstnme position departme manager;
 subset "order by lastname";
 list all;

 create vlib.empskil.view;
 select c2 c3 c201 c203;
 subset "ob skilltyp";
 s2kpw=demo mode=multi;
 list view;
run;

proc access dbms=s2k;
invokes the ACCESS procedure for the SAS/ACCESS interface to SYSTEM 2000.

20 Chapter 3 • SAS/ACCESS Descriptor Files

create mylib.employe.access;
identifies the access descriptor, MyLib.Employe, that you want to create. The libref
MyLib must be associated with the SAS library before you can specify it in the
CREATE statement.

database=employee
indicates that this access descriptor is for the database Employee.

s2kpw=demo mode=multi;
specifies the password DEMO (which is required to access the database definition),
and indicates that the database is in the Multi-User environment.

assign=yes;
generates unique SAS variable names based on the first 8 non-blank characters of the
item names. Variable names and attributes can be changed in this access descriptor
but not in any view descriptors that are created from this access descriptor.

drop c110 c120;
marks the records associated with the C-numbers C110 and C120 as non-display.
Because these C-numbers represent records, all the items in each record are marked
as non-display. Therefore, none of the items in the two records associated with these
numbers appear in any view descriptor created from this access descriptor.

rename forename=firstnme office_e=phone yearsofe=years
gender=sex degree_c=degree;

renames the default SAS variable names associated with the SAS names
FORENAME, OFFICE_E, YEARSOFE, GENDER, and DEGREE_C. You specify
the default SAS variable name on the left side of the equal sign (=) and the new
name on the right side of the equal sign. Because the ASSIGN=YES statement was
specified earlier, any view descriptors created from this access descriptor
automatically use the new SAS variable names.

length firstnme=13 lastname=13 c101=16;
changes the field width for the items associated with FIRSTNME and LASTNAME
to 13 characters and the field width for the item associated with C-number C101 (the
SAS name POSITION) to 16 characters.

list all;
lists the access descriptor's item identifier numbers, C-numbers, SAS variable names,
SAS formats, SAS informats, and SAS variable lengths. The list also includes any
associated information specified in the BYKEY statement. Items that have been
dropped from display (by using the DROP statement) have *NON-DISPLAY* next
to them. The list is written to the SAS log.

create vlib.emppos.view;
writes the access descriptor to the library associated with MyLib and identifies the
view descriptor, Vlib.EmpPos, that you want to create. The libref Vlib must be
associated with a SAS library before you can specify it in this statement.

select lastname firstnme position departme manager;
selects the items associated with the SAS names LASTNAME, FIRSTNME,
POSITION, DEPARTME, and MANAGER for inclusion in the view descriptor. The
SELECT statement is required to create the view unless a RENAME, FORMAT,
INFORMAT, LENGTH, or BYKEY statement is specified.

subset "order by lastname";
specifies that you want SYSTEM 2000 to order (or sort) output data set by last name.
Use SYSTEM 2000 syntax in the SUBSET statement. For more information, see the
SYSTEM 2000 Software: QUEST Language and System-Wide Commands, Version
12, First Edition manual.

Creating Descriptor Files 21

list all;
lists all the available item identifier numbers, C-numbers, SAS variable names, SAS
formats, SAS informats, and SAS variable lengths on which the view descriptor is
based. The list also includes any associated information specified in a BYKEY
statement and selection criteria specified in the view descriptor. Items that have been
dropped from the display have *NON-DISPLAY* next to them. Items that have been
selected for the view have *SELECTED* next to them. The list is written to the SAS
log.

create vlib.empskil.view;
writes the first view descriptor to the library associated with Vlib and identifies the
next view descriptor, Vlib.EmpSkil, that you create in this example.

select c2 c3 c201 c203;
selects the four items associated with the C-numbers C2, C3, C201, and C203 for
inclusion in the view descriptor. The SELECT statement is required to create the
view unless a RENAME, FORMAT, INFORMAT, LENGTH, or BYKEY statement
is specified.

subset "ob skilltyp";
specifies that you want the observations to be sorted by skill type. See“SUBSET
Statement (Optional)” on page 88 for syntax information.

s2kpw=demo mode=multi;
specifies the password required to access the data and indicates the database is in the
Multi-User environment. This information is stored in the view descriptor. To
override this password or to specify a SYSTEM 2000 password for the view
descriptor Vlib.EmpPos that omits the S2KPW statement, you can use the S2KPW
data set option. For more information, see “Overriding Options” on page 121.

list view;
lists the item identifier numbers, the C-numbers, the SAS variable names, the SAS
formats, the SAS informats, and the SAS variable lengths that have been selected for
the view descriptor. The list also includes any associated information specified in a
BYKEY statement and selection criteria specified in the view descriptor. The list is
written to the SAS log.

run;
writes the last view descriptor and runs the program.

22 Chapter 3 • SAS/ACCESS Descriptor Files

Chapter 4

SYSTEM 2000 Data in SAS
Programs

Using SYSTEM 2000 Data in SAS . 23

Reviewing Variables . 24

Printing Data . 25

Charting Data . 26

Calculating Statistics . 27

Selecting and Combining Data with the SQL Procedure . 30
Using the WHERE Clause . 30
Combining Data from Various Sources . 31
Creating New Items with the GROUP BY Clause in PROC SQL 34

Updating SAS Data Files with SYSTEM 2000 Data . 35
Using the UPDATE Statement . 35
Updating Data Files in SAS 7 and Later . 37

Performance Considerations . 38

Using SYSTEM 2000 Data in SAS
One advantage of the SAS/ACCESS interface to SYSTEM 2000 is that it enables SAS
to read and write SYSTEM 2000 data directly, using SAS programs. This section
presents examples of using SYSTEM 2000 data that is described by view descriptors in
SAS programs. For information about the example data, see Appendix 3, “Example
Programs,” on page 137. For information about using view descriptors efficiently in
SAS programs, see “Performance Considerations” on page 38.

Throughout the examples, the SAS terms variableand observation are used in place of
comparable SYSTEM 2000 terms because these examples illustrate using SAS
procedures and the DATA step. The examples also include printing and charting data,
using the SQL procedure to combine data from various sources, and updating a SAS 7
data set with data from SYSTEM 2000. For more information about the SAS language
and procedures used in the examples, see the documents referred to throughout this
section.

23

Reviewing Variables
Suppose that, in your SAS program that you want to use SYSTEM 2000 data that is
described by a view descriptor, but you cannot remember the variable names or formats
and informats. You can get this information by using the CONTENTS or the
DATASETS procedure.

The following example uses PROC DATASETS to give you information about the view
descriptor Vlib.EmpPos, which you created earlier. See Chapter 3, “SAS/ACCESS
Descriptor Files,” on page 19. The following output shows the results.

 proc datasets library=vlib memtype=view;
 contents data=emppos(s2kpw=demo);
 run;

Output 4.1 DATASETS Procedure Results with a View Descriptor

 The SAS System 1

 DATASETS PROCEDURE

 Data Set Name: VLIB.EMPPOS Observations: 887
 Member Type: VIEW Variables: 5
 Engine: SASIOS2K Indexes: 0
 Created: 03NOV89:16:17:59 Observation Length: 53
 Last Modified: 07SEP89:14:15:58 Deleted Observations: 0
 Data Set Type: Compressed: NO
 Label:

 -----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Informat Label

4 DEPARTME Char 14 36 $14. $14. DEPARTMENT
2 FIRSTNME Char 10 10 $10. $10. FORENAME
1 LASTNAME Char 10 0 $10. $10. LAST NAME
5 MANAGER Char 3 50 $3. $3. MANAGER
3 POSITION Char 16 20 $16. $16. POSITION
TITLE

Notice the following in the preceding output:

• Because you cannot change a view descriptor's variable labels when you use PROC
DATASETS, the labels that are generated are the complete SYSTEM 2000 item
names at the time that the view descriptor was created. The labels cannot be
overridden.

• The Created date is the date when the access descriptor for this view descriptor was
created.

• The Last Modified date is the last date the SYSTEM 2000 database was updated.

• The Observations number is the highest number of schema records that occurred in
the database. The number of observations shown here does not correspond to the
number of observations that the view descriptor accesses.

24 Chapter 4 • SYSTEM 2000 Data in SAS Programs

For more information about the DATASETS procedure, see the Base SAS Procedures
Guide.

Printing Data
You can use the PRINT procedure to print SYSTEM 2000 data that is described by view
descriptors in the same way that you use PROC PRINT with SAS data files. See the
output, which shows the first page of output produced by the following program:

 proc print data=vlib.emppos(s2kpw=demo);
 title2 'Subset of EMPLOYEE Database Information';
 run;

Output 4.2 Results of PROC PRINT for SYSTEM 2000 Data

 Subset of EMPLOYEE Database Information 1

 OBS LASTNAME FIRSTNME POSITION DEPARTME MANAGER

 1 PROGRAMMER INFORMATION SY MYJ
 2 AMEER DAVID SR SALES REPRESE MARKETING VPB
 3 AMEER DAVID JR SALES REPRESE MARKETING VPB
 4 BOWMAN HUGH E. EXECUTIVE VICE-P CORPORATION CPW
 5 BROOKS RUBEN R. JR SALES REPRESE MARKETING MAS
 6 BROWN VIRGINA P. MANAGER WESTERN MARKETING OMG
 7 CAHILL JACOB MANAGER SYSTEMS INFORMATION SY JBM
 8 CANADY FRANK A. MANAGER PERSONNE ADMINISTRATION PRK
 9 CHAN TAI SR SALES REPRESE MARKETING TZR
 10 COLLINS LILLIAN MAIL CLERK ADMINISTRATION SQT
 11 FAULKNER CARRIE ANN SECRETARY CORPORATION JBM
 12 FERNANDEZ SOPHIA STANDARDS & PROC INFORMATION SY JLH
 13 FREEMAN LEOPOLD SR SYSTEMS PROGR INFORMATION SY
JLH

When you use PROC PRINT, you might want to use the OBS= option, which enables
you to specify the last observation to be processed. This is especially useful when the
view descriptor describes large amounts of data, or when you just want to see a sample
of the output. The following program uses the OBS= option to print the first five rows
described by the view descriptor Vlib.EmpPos. The results follow the program.

 proc print data=vlib.emppos(s2kpw=demo obs=5);
 title2 'First Five Data Rows Described by VLIB.EMPPOS';
 run;

Printing Data 25

Output 4.3 Results of Using the OBS= Option in PROC PRINT

 First Five Data Rows Described by VLIB.EMPPOS 1

 OBS LASTNAME FIRSTNME POSITION DEPARTME MANAGER

 1 PROGRAMMER INFORMATION SY MYJ
 2 AMEER DAVID SR SALES REPRESE MARKETING VPB
 3 AMEER DAVID JR SALES REPRESE MARKETING VPB
 4 BOWMAN HUGH E. EXECUTIVE VICE-P CORPORATION CPW
 5 BROOKS RUBEN R. JR SALES REPRESE MARKETING
MAS

The FIRSTOBS= option can also be used with view descriptors. However, the
FIRSTOBS= option does not improve performance significantly because each record
must be read and its position calculated.

For more information about the PRINT procedure, see the Base SAS Procedures Guide.
For more information about the OBS= and FIRSTOBS= options, see SAS Data Set
Options: Reference.

Charting Data
You can use the CHART procedure to chart data that is described by view descriptors in
the same way that you use PROC CHART with SAS data files. See the output, which
shows the output produced by the following program, that uses the view descriptor
Vlib.EmpPos to create a vertical bar chart of the number of employees each manager has
had. The number of employees for each manager is represented by the height of the bar.

 proc chart data=vlib.emppos(s2kpw=demo);
 vbar manager;
 title2 'Data Described by VLIB.EMPPOS';
 run;

26 Chapter 4 • SYSTEM 2000 Data in SAS Programs

Output 4.4 Vertical Bar Chart Showing Number of Employees per Manager

 Data Described by VLIB.EMPPOS 1

 Frequency

 8 + **
 | **
 7 + **
 | **
 6 + **
 | **
 5 + ** **
 | ** **
 4 + ** ** ** ** ** **
 | ** ** ** ** ** **
 3 + ** ** ** ** ** ** ** ** ** ** ** **
 | ** ** ** ** ** ** ** ** ** ** ** **
 2 + ** ** ** ** ** ** ** ** ** ** ** ** ** ** **
 | ** ** ** ** ** ** ** ** ** ** ** ** ** ** **
 1 + ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **
 | ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

 A C F G H I J J J J M M O P P R S T V
 F P A V E L B C F L A Y M Q R M Q Z P
 G W C H B P M S H S J G K J T R B

 MANAGER

For more information about the CHART procedure, see the Base SAS Procedures Guide.
If you have SAS/GRAPH software licensed at your site, you can create colored block
charts, plots, and other graphics based on SYSTEM 2000 data. See SAS/GRAPH:
Reference for more information.

Calculating Statistics
The statistical procedures FREQ, MEANS, and RANK can be used with SYSTEM 2000
data.

The following program uses PROC FREQ to calculate the percentage of employees that
have each of the college degrees that exist in the database Employee. This program uses
the view descriptor Vlib.EmpEduc. The output shows the results.

 proc freq data=vlib.empeduc;
 tables degree;
 title2 'Data Described by VLIB.EMPEDUC';
 run;

Calculating Statistics 27

Output 4.5 One-Way Frequency Table for Item DEGREE in View Descriptor Vlib.EmpEduc

 Data Described by VLIB.EMPEDUC 1

 DEGREE/CERTIFICATE

 Cumulative Cumulative
 DEGREE Frequency Percent Frequency Percent

 AA 5 7.9 5 7.9
 BA 12 19.0 17 27.0
 BS 23 36.5 40 63.5
 HIGH SC 6 9.5 46 73.0
 MA 3 4.8 49 77.8
 MBA 1 1.6 50 79.4
 MS 9 14.3 59 93.7
 PHD 4 6.3 63 100.0

 Frequency Missing = 12

For more information about the FREQ procedure, see the Base SAS Procedures Guide.

In a further analysis of employee background, suppose you also want to create some
statistics about skill types of the employees and their years of experience. The view
descriptor Vlib.EmpSkil accesses the values from the database Employee, and the
following program uses PROC MEANS to generate the mean and sum of the years of
experience by skill type. The number of observations (N) and the number of missing
values (NMISS) are also included.

Notice that the BY statement causes the interface view engine to generate a SYSTEM
2000 ordering-clause so that the data is sorted by skill type. The output shows some of
the results produced by this program.

 proc means data=vlib.empskil mean sum n nmiss
 maxdec=0;
 by skilltyp;
 var years;
 title2 'Data Described by VLIB.EMPSKIL';
 run;

28 Chapter 4 • SYSTEM 2000 Data in SAS Programs

Output 4.6 Statistics for Skill Type and Years of Experience

 Data Described by VLIB.EMPSKIL 1

 Analysis Variable : YEARS YEARS OF EXPERIENCE

--------------------------- SKILL TYPE= -----------------------------------

 N Nmiss Mean Sum

 0 6 . .

--------------------------- SKILL TYPE=ACCOUNTING --------------------------

 N Nmiss Mean Sum

 6 0 8 47

---------------------------- SKILL TYPE=ASSEMBLER --------------------------

 N Nmiss Mean Sum

 14 0 10 141

--------------------------- SKILL TYPE=CARTOON ART -------------------------

 N Nmiss Mean Sum

 1 0 1 1

----------------------------- SKILL TYPE=CHINESE ---------------------------

 N Nmiss Mean Sum

 1 0 8 8

------------------------------ SKILL TYPE=COBOL ----------------------------

 N Nmiss Mean Sum

 12 0 7 88

For more information about the MEANS procedure, see the Base SAS Procedures Guide.

You can also use more advanced statistics procedures with SYSTEM 2000 data. The
following program uses PROC RANK with data described by the view descriptor
Vlib.EmpBd to calculate the order of birthdays for a group of employees, and to assign

Calculating Statistics 29

the variable name DATERNK to the new item created by PROC RANK. (The
Vlib.EmpBd view descriptor includes a SYSTEM 2000 where-clause to select only the
employees in the Marketing Department.) The output shows some of the results from
this program.

 proc rank data=vlib.empbd out=mydata.rankexm;
 var birthday;
 ranks daternk;
 run;

 proc print data=mydata.rankexm;
 title2 'Order of Marketing Employee Birthdays';
 run;

Output 4.7 Ranking of Employee Birthdays

 Order of Marketing Employee Birthdays 1

 OBS LASTNAME FIRSTNME BIRTHDAY DATERNK

 1 AMEER DAVID 10OCT51 14.0
 2 BROOKS RUBEN R. 25FEB52 15.0
 3 BROWN VIRGINA P. 24MAY46 9.0
 4 CHAN TAI 04JUL46 10.0
 5 GARRETT OLAN M. 23JAN35 2.0
 6 GIBSON GEORGE J. 23APR46 8.0
 7 GOODSON ALAN F. 21JUN50 13.0
 8 JUAREZ ARMANDO 28MAY47 11.0
 9 LITTLEJOHN FANNIE 17MAY54 17.0
 10 RICHARDSON TRAVIS Z. 30NOV37 4.0
 11 RODRIGUEZ ROMUALDO R 09FEB29 1.0
 12 SCHOLL MADISON A. 19MAR45 7.0
 13 SHROPSHIRE LELAND G. 04SEP49 12.0
 14 SMITH JERRY LEE 13SEP42 5.5
 15 VAN HOTTEN GWENDOLYN 13SEP42 5.5
 16 WAGGONNER MERRILEE D 27APR36 3.0
 17 WILLIAMSON JANICE L. 19MAY52 16.0

For more information about the RANK procedure and other advanced statistics
procedures, see the Base SAS Procedures Guide.

Selecting and Combining Data with the SQL
Procedure

Using the WHERE Clause
Suppose you have two view descriptors, Vlib.EmpPos and Vlib.EmpEduc, that access
employee positions and employee education, respectively. You can use PROC SQL to
combine these files into a single SAS data file. The WHERE clause in SAS specifies that
you want a data file that contains information about employees for whom the value for
their level of education is missing, and who are in the department CORPORATION.

30 Chapter 4 • SYSTEM 2000 Data in SAS Programs

Note: PROC SQL displays the variable labels as stored in the view. However, because
you are referencing a view descriptor, you must use the SAS variable names in the
WHERE clause, not the SYSTEM 2000 item names.

The output shows the results from this example. (Notice that Waterhouse appears twice
in the output. This is because he has two values for schema item C411 SCHOOL, but
neither value has an associated value for C412 DEGREE/CERTIFICATE.)

 proc sql;
 title 'Corporation Positions With No Degrees';
 select emppos.lastname, position, degree, departme
 from vlib.emppos, vlib.empeduc
 where emppos.lastname=empeduc.lastname and
 empeduc.degree is missing and
 emppos.departme='CORPORATION'
 order by lastname;

Output 4.8 Output from SQL Procedure with a WHERE Clause

 Corporation Positions With No Degrees 1

 LAST NAME POSITION TITLE DEGREE/CERTIFICATE DEPARTMENT
 --
 FAULKNER SECRETARY CORPORATION
 KNIGHT SECRETARY CORPORATION
 WATERHOUSE PRESIDENT CORPORATION
 WATERHOUSE PRESIDENT CORPORATION

Combining Data from Various Sources
Suppose that, along with the view descriptors Vlib.EmpPos and Vlib.EmpEduc, you
have the SAS data file MyData.Classes that contains in-house continuing education
classes taken by employees. You can use PROC SQL to join these sources of data to
form a single output table of employee names, their departments, their degrees, and the
in-house classes that they have taken. The output (Data Described by the View
Descriptor Vlib.EmpPos, Data Described by the View Descriptor Vlib.EmpEduc, and
SAS Data File MyData.Classes) shows the results of using PROC PRINT on the data
described by Vlib.EmpPos and Vlib.EmpEduc and in the file MyData.Classes.

 proc print data=vlib.emppos;
 title2 'Data Described by VLIB.EMPPOS';
 run;

 proc print data=vlib.empeduc;
 title2 'Data Described by VLIB.EMPEDUC';
 run;

 proc print data=mydata.classes;
 title2 'SAS Data File MYDATA.CLASSES';
 run;

Note: If you have many PROC SQL views and view descriptors, you might want to
store the PROC SQL views in a separate SAS library from your view descriptors.
They both have the member type VIEW, so you cannot tell a view descriptor from a
PROC SQL view.

Selecting and Combining Data with the SQL Procedure 31

Output 4.9 Data Described by the View Descriptor Vlib.EmpPos

 Data Described by VLIB.EMPPOS 1

 OBS LASTNAME FIRSTNME POSITION DEPARTME MANAGER

 1 PROGRAMMER INFORMATION SY MYJ
 2 AMEER DAVID SR SALES REPRESE MARKETING VPB
 3 AMEER DAVID JR SALES REPRESE MARKETING VPB
 4 BOWMAN HUGH E. EXECUTIVE VICE-P CORPORATION CPW
 5 BROOKS RUBEN R. JR SALES REPRESE MARKETING MAS
 6 BROWN VIRGINA P. MANAGER WESTERN MARKETING OMG
 7 CAHILL JACOB MANAGER SYSTEMS INFORMATION SY JBM
 8 CANADY FRANK A. MANAGER PERSONNE ADMINISTRATION PRK
 9 CHAN TAI SR SALES REPRESE MARKETING TZR
 10 COLLINS LILLIAN MAIL CLERK ADMINISTRATION SQT
 11 FAULKNER CARRIE ANN SECRETARY CORPORATION JBM
 12 FERNANDEZ SOPHIA STANDARDS & PROC INFORMATION SY JLH
 13 FREEMAN LEOPOLD SR SYSTEMS PROGR INFORMATION SY JLH

Output 4.10 Data Described by the View Descriptor Vlib.EmpEduc

 Data Described by VLIB.EMPEDUC 1

 OBS LASTNAME FIRSTNME SEX DEGREE

 1
 2 AMEER DAVID MALE BS
 3 BOWMAN HUGH E. MALE MS
 4 BOWMAN HUGH E. MALE BS
 5 BOWMAN HUGH E. MALE PHD
 6 BROOKS RUBEN R. MALE BS
 7 BROWN VIRGINA P FEMALE BA
 8 CAHILL JACOB MALE BS
 9 CAHILL JACOB MALE BS
 10 CANADY FRANK A. MALE MA
 11 CANADY FRANK A. MALE BS
 12 CHAN TAI MALE PHD
 13 CHAN TAI MALE BA

Output 4.11 SAS Data File MyData.Classes

 SAS Data File MYDATA.CLASSES 1

 OBS LASTNAME FIRSTNME CLASS

 1 AMEER DAVID PRESENTING IDEAS
 2 CANADY FRANK A. PRESENTING IDEAS
 3 GIBSON MOLLY I. SUPERVISOR SKILLS
 4 GIBSON MOLLY I. STRESS MGMT
 5 RICHARDSON TRAVIS Z. SUPERVISOR SKILLS

The following SAS program selects and combines data from these three sources (the two
view descriptors and the SAS data file) to create the view SQL.EDUC. This view
retrieves employee names, their departments, their levels of education, and the in-house
classes that they have taken.

32 Chapter 4 • SYSTEM 2000 Data in SAS Programs

In the following program, the CREATE VIEW statement incorporates a WHERE clause
as part of the SELECT statement. The last SELECT statement retrieves and displays the
PROC SQL view SQL.EDUC. To select all items from the view, an asterisk (*) is used
in place of item names. The order of the items that are displayed matches the order of the
items as they are specified in the first SELECT clause.

The output following the program shows the data described by the SQL.EDUC view.
PROC SQL uses variable labels in the output by default.

 proc sql;
 create view sql.educ as
 select emppos.lastname, emppos.firstnme,
 emppos.departme, empeduc.degree,
 classes.class as course
 from vlib.emppos,
 vlib.empeduc,
 mydata.classes
 where (emppos.lastname=empeduc.lastname
 and emppos.firstnme=empeduc.firstnme)
 and
 (empeduc.lastname=classes.lastname
 and empeduc.firstnme=classes.firstnme)
 order by emppos.lastname, course;

 title 'Data Described by SQL.EDUC';
 select * from sql.educ;

Output 4.12 Data Described by the PROC SQL View SQL.EDUC

 Data Described by SQL.EDUC 1

 LAST NAME FORENAME DEPARTMENT DEGREE/CERTIFICATE
 COURSE
 --
 AMEER DAVID MARKETING BS
 PRESENTING IDEAS

 AMEER DAVID MARKETING BS
 PRESENTING IDEAS

 CANADY FRANK A. ADMINISTRATION MA
 PRESENTING IDEAS

 CANADY FRANK A. ADMINISTRATION BS
 PRESENTING IDEAS

 GIBSON MOLLY I. INFORMATION SY BA
 STRESS MGMT

 GIBSON MOLLY I. INFORMATION SY BA
 SUPERVISOR SKILLS

 RICHARDSON TRAVIS Z. MARKETING BS
 SUPERVISOR SKILLS

The view SQL.EDUC lists entries for employees who have taken in-house classes, their
departments, and their degrees. However, it contains duplicate observations because
some employees have more than one degree and have taken more than one in-house
class. To make the data more readable, you can create the final SAS data file

Selecting and Combining Data with the SQL Procedure 33

MyData.Update by using the SET statement and the special variable FIRST. This
variable identifies which observation is the first in a specific BY group. You need each
employee's name associated only one time with the degrees and in-house education
classes that were taken, regardless of the number of degrees or the number of classes
taken.

The output that follows the program displays the data file MyData.Update that contains
an observation for each unique combination of employee, degree, and in-house class.

 data mydata.update;
 set sql.educ;
 by lastname course;
 if first.lastname then output;
 run;

 proc print;
 title2 'MYDATA.UPDATE Data File';
 run;

Output 4.13 SAS Data File MyData.Update

 MYDATA.UPDATE Data File 1

 OBS LASTNAME FIRSTNME DEPARTME DEGREE COURSE

 1 AMEER DAVID MARKETING BS PRESENTING IDEAS
 2 CANADY FRANK A. ADMINISTRATION MA PRESENTING IDEAS
 3 GIBSON MOLLY I. INFORMATION SY BA STRESS MGMT
 4 RICHARDSON TRAVIS Z. MARKETING BS SUPERVISOR
SKILLS

Creating New Items with the GROUP BY Clause in PROC SQL
It is often useful to create new items with summary or aggregate functions such as AVG
or SUM. You can easily use PROC SQL with data described by a view descriptor to
display output that contains new items.

The following program uses PROC SQL to retrieve and manipulate data from the view
descriptor Vlib.EmpVac. When this query (as a SELECT statement is often called) is
submitted, it calculates and displays the average vacation time (in hours) for each
department. The order of the items displayed matches the order of the items as specified
in the SELECT clause of the query. The output for follows the program shows the results
from using the SELECT statement.

 proc sql;
 title 'Average Vacation Per Department';
 select distinct departme,
 avg(accruedv) label='Avg Vac'
 from vlib.empvac
 where departme is not missing
 group by departme;

34 Chapter 4 • SYSTEM 2000 Data in SAS Programs

Output 4.14 Data Retrieved by a PROC SQL Query

 Average Vacation Per Department

 DEPARTMENT Avg

 ADMINISTRATION 43
 CORPORATION 40.72727
 INFORMATION SY 61.75
 MARKETING 47.61905

For more information about the SQL procedure, see the SAS SQL Procedure User's
Guide.

Updating SAS Data Files with SYSTEM 2000 Data

Using the UPDATE Statement
You can update a SAS data file with SYSTEM 2000 data that is described by a view
descriptor just as you can update a SAS data file by using another data file, that is, by
using an UPDATE statement in a DATA step. In this section, the term transaction data
refers to the new data that is added to the original file. Because the SAS/ACCESS
interface to SYSTEM 2000 uses the SAS 6 compatibility engine, the transaction data is
from a SAS 6 source. However, the original file can be a SAS 6 or later data file.

Suppose you have the SAS 6 data file V6.Birthdy that contains the names and birthdays
of the employees in Marketing. The file is out-of-date, and you want to update it with
data described by Vlib.EmpBd. To perform the update, submit the following program:

 proc sort data=v6.birthdy;
 by lastname;
 run;

 data mydata.newbday;
 update v6.birthdy vlib.empbd;
 by lastname firstnme;
 run;

In this example, when the UPDATE statement references the view descriptor
Vlib.EmpBd and uses a BY statement in the DATA step, the BY statement causes the
interface view engine to automatically generate a SYSTEM 2000 ordering-clause for the
variable LASTNAME. The ordering-clause causes the SYSTEM 2000 data to be
presented to SAS already sorted so that the SYSTEM 2000 DATA can be used to update
the data file MyData.NewBday. The data file V6.Birthdy had to be sorted before the
update because the UPDATE statement needs the data sorted by the BY variable.

The following three outputs show the results of PROC PRINT on the original data file,
the transaction data, and the updated data file.

Updating SAS Data Files with SYSTEM 2000 Data 35

Output 4.15 Data File to Be Updated, V6.Birthdy

 V6.BIRTHDY Data File 1

 OBS LASTNAME FIRSTNME BIRTHDAY

 1 JONES FRANK 22MAY53
 2 MCVADE CURTIS 25DEC54
 3 SMITH VIRGINIA 14NOV49
 4 TURNER BECKY 26APR50

Output 4.16 Data Described by the View Descriptor Vlib.EmpBd

 Data Described by VLIB.EMPBD 1

 OBS LASTNAME FIRSTNME BIRTHDAY

 1 AMEER DAVID 10OCT51
 2 BROOKS RUBEN R. 25FEB52
 3 BROWN VIRGINA P. 24MAY46
 4 CHAN TAI 04JUL46
 5 GARRETT OLAN M. 23JAN35
 6 GIBSON GEORGE J. 23APR46
 7 GOODSON ALAN F. 21JUN50
 8 JUAREZ ARMANDO 28MAY47
 9 LITTLEJOHN FANNIE 17MAY54
 10 RICHARDSON TRAVIS Z. 30NOV37
 11 RODRIGUEZ ROMUALDO R 09FEB29
 12 SCHOLL MADISON A. 19MAR45
 13 SHROPSHIRE LELAND G. 04SEP49
 14 SMITH JERRY LEE 13SEP42
 15 VAN HOTTEN GWENDOLYN 13SEP42
 16 WAGGONNER MERRILEE D 27APR36
 17 WILLIAMSON JANICE L. 19MAY52

36 Chapter 4 • SYSTEM 2000 Data in SAS Programs

Output 4.17 Updated Data File, MyData.NewBday

 MYDATA.NEWBDAY Data File 1

 OBS LASTNAME FIRSTNME BIRTHDAY

 1 AMEER DAVID 10OCT51
 2 BROOKS RUBEN R. 25FEB52
 3 BROWN VIRGINA P. 24MAY46
 4 CHAN TAI 04JUL46
 5 GARRETT OLAN M. 23JAN35
 6 GIBSON GEORGE J. 23APR46
 7 GOODSON ALAN F. 21JUN50
 8 JONES FRANK 22MAY53
 9 JUAREZ ARMANDO 28MAY47
 10 LITTLEJOHN FANNIE 17MAY54
 11 MCVADE CURTIS 25DEC54
 12 RICHARDSON TRAVIS Z. 30NOV37
 13 RODRIGUEZ ROMUALDO R 09FEB29
 14 SCHOLL MADISON A. 19MAR45
 15 SHROPSHIRE LELAND G. 04SEP49
 16 SMITH JERRY LEE 13SEP42
 17 SMITH VIRGINIA 14NOV49
 18 TURNER BECKY 26APR50
 19 VAN HOTTEN GWENDOLYN 13SEP42
 20 WAGGONNER MERRILEE D 27APR36
 21 WILLIAMSON JANICE L. 19MAY52

Updating Data Files in SAS 7 and Later
Beginning with SAS 7, SAS supports different naming conventions than those used in
SAS 6. Therefore, there might be character-length discrepancies between the variables in
an original data file and the transaction data. You have two choices when updating a
SAS 7 and later data file with the data described by a view descriptor:

• let the compatibility engine truncate names that exceed eight characters. The
truncated variables are added to the updated data file as new variables.

• rename the variables in the data file in SAS 7 and later to match the variable names
in the descriptor file.

The following program resolves character-length discrepancies by using the RENAME
option in the UPDATE statement in the DATA step. The SAS 7 data file
V7.Consulting_Birthdays, which contains Consulting names and birthdays, is updated
with data described by Vlib.EmpBd. In this program, the updated SAS data file
NewData.New_Birthdays is a SAS 7 data file stored in the SAS 7 SAS library associated
with the libref NewData. The RENAME= option in the DATA step is used in the
UPDATE statement to rename the variables before the updated data file
NewData.New_Birthdays is created. The two outputs that follow the program show the
results of PROC PRINT on the original data file and the updated data file.

 proc sort data=v7.consulting_birthdays;
 by last_name;
 run;

 data newdata.new_birthdays;
 update v7.consulting_birthdays
 (rename=(last_name=lastname
 first_name=firstnme

Updating SAS Data Files with SYSTEM 2000 Data 37

 birthdate=birthday)) vlib.empbd;
 by lastname firstnme;
 run;

Output 4.18 Data File to Be Updated, V7.Consulting_Birthdays,

 V7.Consulting_Birthdays Data File 1

 obs last_name first_name birthdate

 1 JOHNSON ED 30JAN65
 2 LEWIS THOMAS 25MAY54
 3 SMITH AMANDA 02DEC60
 4 WILSON REBECCA 13APR58

Output 4.19 Updated Data File, V7.New_Birthdays

 V7.NEW_BIRTHDAYS Data File 1

 obs lastname firstnme birthday

 1 AMEER DAVID 10OCT51
 2 BROOKS RUBEN R. 25FEB52
 3 BROWN VIRGINA P. 24MAY46
 4 CHAN TAI 04JUL46
 5 GARRETT OLAN M. 23JAN35
 6 GIBSON GEORGE J. 23APR46
 7 GOODSON ALAN F. 21JUN50
 8 JOHNSON ED 30JAN65
 9 JUAREZ ARMANDO 28MAY47
 10 LEWIS THOMAS 25MAY54
 11 LITTLEJOHN FANNIE 17MAY54
 12 RICHARDSON TRAVIS Z. 30NOV37
 13 RODRIGUEZ ROMUALDO R 09FEB29
 14 SCHOLL MADISON A. 19MAR45
 15 SHROPSHIRE LELAND G. 04SEP49
 16 SMITH AMANDA 02DEC60
 17 SMITH JERRY LEE 13SEP42
 18 VAN HOTTEN GWENDOLYN 13SEP42
 19 WAGGONNER MERRILEE D 27APR36
 20 WILLIAMSON JANICE L. 19MAY52
 21 WILSON REBBECA 13APR58

For more information about the UPDATE statement, see SAS Statements: Reference.

Note: You cannot update a SYSTEM 2000 database directly by using the DATA step,
but you can update a SYSTEM 2000 database by using the following procedures:
APPEND, FSEDIT, FSVIEW, QUEST, and SQL. For more information, see Chapter
5, “Browsing and Updating SYSTEM 2000 Data,” on page 41.

Performance Considerations
Usually, you can treat view descriptors like SAS data files in SAS programs. however,
here are some things that you should consider. There are some circumstances when it is

38 Chapter 4 • SYSTEM 2000 Data in SAS Programs

better to extract SYSTEM 2000 data and place it in a SAS data file rather than to read it
directly:

• If you plan to use the same SYSTEM 2000 data in several procedures over a period
of time, you might improve performance by extracting. SAS data files are organized
to provide optimal performance with PROC and DATA steps. SAS programs using
SAS data files often use less CPU time than when they read SYSTEM 2000 data
directly.

• If you plan to read large amounts of data from a large SYSTEM 2000 database and
the database is being shared by several users (Multi-User mode), direct reading of
the data could adversely affect all users' response time.

• If you are the owner of a database, and you think that reading this data directly
would present a security risk, you might want to extract the data and not distribute
information about either the access descriptor or the view descriptor.

• If you intend to use the data in a specific sorted order several times, it is usually best
to run the SORT procedure on the view descriptor, and use the OUT= option. This is
more efficient than requesting the same order of sorting repeatedly (with an ORDER
BY clause) on the SYSTEM 2000 data. You cannot run PROC SORT on a view
descriptor unless you use the OUT= option in the PROC SORT statement.

• Sorting data can be resource-intensive, whether it is done with PROC SORT, with a
BY statement (that generates an ordering-clause), or with an ordering-clause
included in the view descriptor. You should sort data only when it is needed for your
program.

• If you reference a view descriptor in SAS code and the code includes a BY statement
for a variable that corresponds to an item in the SYSTEM 2000 database, the
interface view engine automatically generates an ordering-clause for that variable.
The ordering-clause sorts the SYSTEM 2000 data before it uses the data in your SAS
program. If the SYSTEM 2000 database is very large, this sorting can affect
performance.

If the view descriptor already has an ordering-clause and you specify a BY statement
in your SAS code, the BY statement overrides the view descriptor's ordering-clause.
When you use a BY statement in SAS code with a view descriptor, it is most
efficient to use a BY variable that is associated with an indexed SYSTEM 2000 item.

• When writing SAS code and referencing a view descriptor, it is more efficient to use
a WHERE statement in the code than it is to use a subsetting IF statement. The
interface view engine passes the WHERE statement as a SYSTEM 2000 where-
clause to the view descriptor, connecting it (using the Boolean operator AND) to any
where-clause included in the view descriptor. (You can further optimize the selection
criteria by using connecting strings. See “Connecting Strings to Order Conditions”
on page 133.) Applying a WHERE clause to the SYSTEM 2000 data might reduce
the number of entries processed, which often improves performance.

For more information, see “Creating and Using View Descriptors Efficiently” on page
78.

Performance Considerations 39

40 Chapter 4 • SYSTEM 2000 Data in SAS Programs

Chapter 5

Browsing and Updating SYSTEM
2000 Data

Browsing and Updating SYSTEM 2000 Data Directly from SAS 41

Browsing and Updating with SAS/FSP . 42
Using SAS/FSP Procedures . 42
FSBROWSE Procedure . 42
FSEDIT Procedure . 43
FSVIEW Procedure . 44
WHERE Clauses in SAS . 45
Inserting and Deleting Data Records . 47

Browsing and Updating with the SQL Procedure . 49

Using the APPEND Procedure . 52
Appending Data Described by SAS/ACCESS View

Descriptors and PROC SQL Views . 52
Appending Data to a SAS Data File . 52
Appending Data to SAS 7 or Later Data Files . 55
Appending SAS Data to a View Descriptor . 56

Browsing and Updating with the QUEST Procedure . 56

Browsing and Updating SYSTEM 2000 Data
Directly from SAS

The SAS/ACCESS interface to SYSTEM 2000 enables you to browse and update
SYSTEM 2000 data directly from a SAS session or program. This section shows you
how to use SAS procedures for browsing data and updating data described by
SAS/ACCESS view descriptors. The examples given here use the database Employee,
and most of the examples use the view descriptor Vlib.Emppos, which you created
earlier. See Chapter 3, “SAS/ACCESS Descriptor Files,” on page 19. For the definition
of the other view descriptors, see Appendix 3, “Example Programs,” on page 137.

Note: Many of the examples used here involve deleting and inserting data. Before
running these examples, check with your database administrator (DBA) to be sure
the data in the database is correct. The data might have been changed by previous
users.

Before you can browse or update SYSTEM 2000 data, you must be able to access the
data by using an appropriate password and authorities. SYSTEM 2000 has various levels
of passwords and authorities that enable you to display or browse data but not update

41

values, or you might be able to update values but not change the definition of the
database. For these examples, the SYSTEM 2000 password DEMO, which is the master
password for the database Employee, is stored in the view descriptors, so that you can
use the SAS procedures used in these examples to update the database. For more
information about SYSTEM 2000 passwords and authorities, see Chapter 2, “SYSTEM
2000 Software,” on page 5 and Appendix 1, “Topics for Database Administrators,” on
page 113.

It is also important, especially for updating data, that you have some understanding of
how SYSTEM 2000 logical entries map into SAS observations. See “Mapping Data
between SAS and SYSTEM 2000” on page 11.

Browsing and Updating with SAS/FSP

Using SAS/FSP Procedures
If your site has SAS/FSP software in addition to SAS/ACCESS software, you can
browse and update SYSTEM 2000 data that is described by a view descriptor from
within a SAS program. You might use one of three SAS/FSP procedures: FSBROWSE,
FSEDIT, and FSVIEW. The FSBROWSE and FSEDIT procedures display one
observation at a time. The FSVIEW procedure displays multiple observations in a
tabular format (similar to the PRINT procedure). PROC FSVIEW enables you to both
browse and update SYSTEM 2000 data, depending on which option you specify.

When browsing SYSTEM 2000 data using the FSVIEW procedure, remember that some
values are repeated for each value of the variable: LASTNAME, FORENAME,
POSITION, and PAYRATE. However, the value DAVID G. REID is stored in the
database only one time. For retrievals, the results are straightforward. When updating
data remember that values at higher levels in the database usually do not exist as often as
they seem to. If you are using PROC FSVIEW and need to make a change in one of the
values. For example, to change Adkins to Atkins, type the new information over one
occurrence of the value that you want to change. With a single update operation, all
matching values are corrected.

If you are using PROC FSEDIT and you want to delete an observation for David Reid
remember that each observation for his positions and salary data also display his last
name and first name. If you delete the observation for Assistant Programmer, the
deletion would not affect the LASTNAME and FORENAME values, but the POSITION
and PAYRATE values would be physically removed.

Note: You cannot use the FSBROWSE, FSEDIT, or FSVIEW procedure with an access
descriptor.

FSBROWSE Procedure
The FSBROWSE procedure enables you to look at SYSTEM 2000 data but not to
change it. To use PROC FSBROWSE, submit the following:

 proc fsbrowse data=vlib.emppos;
 run;

PROC FSBROWSE retrieves one observation at a time from a SYSTEM 2000 database.
FSBROWSE Window shows the first observation of an employee's data described by the
view descriptor Vlib.Emppos. (The view descriptor contains a SYSTEM 2000 ordering-
clause to order the data by last name, which is missing in the first observation. That is,

42 Chapter 5 • Browsing and Updating SYSTEM 2000 Data

an employee has not yet been hired for that position.) To browse each observation, use
the FORWARD or BACKWARD command.

Figure 5.1 FSBROWSE Window

FSEDIT Procedure
The FSEDIT procedure enables you to update SYSTEM 2000 data described by a view
descriptor, if you have been granted the appropriate SYSTEM 2000 update authorities.
For example, in the previous FSBROWSE window, the LASTNAME and FIRSTNME
values are missing in the first observation. You can add values to these items by using
PROC FSEDIT.

 proc fsedit data=vlib.emppos;
 run;

PROC FSEDIT retrieves one observation at a time. To edit data in the window, type your
information. For example, for this observation, type the value 'Adkins' for LASTNAME
and 'Mary' for FIRSTNME.

To end your editing session, issue the END command. To cancel an edit, you must issue
the CANCEL command before you scroll to another observation. After you scroll, the
change is incorporated.

Browsing and Updating with SAS/FSP 43

Figure 5.2 FSEDIT Window

FSVIEW Procedure
The FSVIEW procedure enables you to browse or update SYSTEM 2000 data using a
view descriptor, depending on how you invoke the procedure.

To browse SYSTEM 2000 data in a listing format, submit the following:

 proc fsview data=vlib.emppos;
 run;

Browse mode is the default for PROC FSVIEW. In the FSVIEW window title in Figure
5.3, notice the (B) that follows the view descriptor's name, which indicates browse
mode. Also notice that the name Mary Adkins appears, reflecting the update that you
made by using PROC FSEDIT.

44 Chapter 5 • Browsing and Updating SYSTEM 2000 Data

Figure 5.3 FSVIEW Window

To edit SYSTEM 2000 data in a listing format, you must add the MODIFY option to the
PROC FSVIEW statement, as follows:

 proc fsview data=vlib.emppos modify;
 run;

The same window as shown in FSBROWSE window appears, except the window title
NOW contains an (E), which indicates edit mode. For information about editing data
using the FSVIEW procedure, see SAS/FSP 9.3 Procedures Guide.

Note: The CANCEL command does not work in the FSVIEW window.

WHERE Clauses in SAS
You can use a WHERE statement with the SAS/FSP procedure statements to specify
conditions that subset the retrieved SYSTEM 2000 data. After you have invoked one of
the SAS/FSP procedures, you can use a WHERE command to subset retrieved SYSTEM
2000 data.

It is more efficient to use a WHERE clause rather than a subsetting IF statement. The
interface view engine translates a WHERE clause into SYSTEM 2000 conditions and
passes the conditions to SYSTEM 2000 software, connecting them by default using a
Boolean AND, to any SYSTEM 2000 where-clause included in the view descriptor. A
where-clause in SYSTEM 2000 can reference items contained in a view descriptor and
items contained in the access descriptor that the view descriptor is based on. Unlike a
where-clause in SYSTEM 2000 that is stored in a view descriptor, a WHERE clause in
SAS is restricted to items contained in the view descriptor.

Whether using a WHERE clause in SAS or a where-clause in SYSTEM 2000, specifying
selection criteria works essentially like filters. That is, more data goes into the clauses
than comes out. Using the SAS/ACCESS interface, you can pass data through more than
one filter. Each filter does part of the subsetting. This is called successive filtering.

Browsing and Updating with SAS/FSP 45

Sometimes, the interface view engine cannot translate all the WHERE clause conditions
in SAS into SYSTEM 2000 conditions. In such cases, the engine subsets what it can. As
partially filtered records are passed back to SAS, SAS automatically re-applies the entire
WHERE clause as a second filter. This is called post-processing. For more information,
see“WHERE Clauses in SAS” on page 45 and “where-clause in SYSTEM 2000” on
page 72.

In some SAS procedures, such as PROC FSEDIT, you can continue to apply more filters
by using the WHERE command on the command line in SAS. Each time you enter
another WHERE clause, the process of combining and filtering conditions is repeated.
The interface engine decides what conditions it can handle, connects them by default to
the prior conditions by using the Boolean operator AND, sends them to SYSTEM 2000
for the first (sometimes only) filtering, and then tells SAS to do any final filtering as
required. For more information, see “WHERE Clauses in SAS” on page 45 and “where-
clause in SYSTEM 2000” on page 72.

In the following example, the subset of retrieved employee data comes from the
Corporation Department, that is, the executives. Figure 5.4 shows the FSEDIT window
after you submit the following program. Notice that the word (Subset) appears in the
window title to indicate that the data that is retrieved is a subset of the data that is
described by the view descriptor. Eleven observations that have the value
CORPORATION for DEPARTME are retrieved for editing.

 proc fsedit data=vlib.emppos;
 where departme='CORPORATION';
 run;

Figure 5.4 FSEDIT Window — WHERE Clause

If you subset the data from within the procedure with the following command,

 where departme='CORPORATION'

the results would be identical except that the window title would show WHERE ...,
instead of (Subset), to indicate that a filter had been applied.

46 Chapter 5 • Browsing and Updating SYSTEM 2000 Data

Although these examples have shown how to use a WHERE clause with PROC FSEDIT,
you can also use WHERE clauses with PROC FSBROWSE and PROC FSVIEW. For
more information about the WHERE statement in SAS, see SAS 9.3 Statements:
Reference and SAS Language Reference: Concepts . For more information about the
WHERE command in SAS/FSP procedures, see the SAS/FSP 9.3 Procedures Guide

Inserting and Deleting Data Records
When you insert or delete data in a SYSTEM 2000 database by using a SAS/FSP
procedure, be aware that the updates have the potential of affecting more than one data
record in the database.

If you insert a new observation, it can cause more than one SYSTEM 2000 data record
to be inserted based on how many levels the new observation represents and on a
comparison between the data being inserted and the data in the last observation read, if
any. During an insert, levels having data that is different from the prior observation, if
any, cause a data record to be inserted. Based on how many fields you change, one or
more records are inserted at the levels that have changed. If your application inserts
records in a random fashion (for example, you want to add a position record for one
employee while looking at the data for another employee) you should specify a BYKEY
in your view descriptor. For more information about inserting data records and using a
BYKEY to resolve ambiguous inserts, see Appendix 2, “Advanced Topics for Users,” on
page 121.

If you delete an observation, the results are not obvious to you and might be difficult to
predict. The interface view engine must handle deletes carefully to ensure that the data
that you request to be deleted does not adversely affect another user of the database.
When you issue the DELETE command, you can expect one of the following results:

• At the very least, the items in the lowest-level record of your view descriptor are set
to null (missing).

• At the very most, all the data records in the observation are physically removed from
the database.

• Between those two results, the interface view engine makes a case-by-case decision
on each record in the view. If the record has descendants, it is not affected. If the
record has no descendants, it is physically removed.

The following example shows how to edit the SYSTEM 2000 data by deleting an
observation, which is described by Vlib.Emppos. If you have been granted update
authority, you can use the PROC FSEDIT statement, scroll forward to the observation
that you want to delete, and issue the DELETE command from the command line, as
shown in Figure 5.5.

Browsing and Updating with SAS/FSP 47

Figure 5.5 FSEDIT Window — DELETE Command

The DELETE command processes the deletion and displays a message as shown in
Figure 5.6. The observation that you deleted is no longer available for processing.

Figure 5.6 FSEDIT Window — Observation Deleted

48 Chapter 5 • Browsing and Updating SYSTEM 2000 Data

Even though it looks as if the entire observation is removed from the database, the
records are not physically removed because the POSITION WITHIN COMPANY record
has descendant records that would be affected by removal. The interface view engine
sets the values for the lowest-level items (POSITION, DEPARTME, and MANAGER)
to missing; the values for LASTNAME and FORENAME are not affected because they
are at level 0 and have descendant records. Also, values for other items in the
POSITION WITHIN COMPANY record are not affected.

For more information about using the SAS/FSP procedures, see the SAS/FSP Procedures
Guide.

Browsing and Updating with the SQL Procedure
The SQL procedure in SAS enables you to retrieve and update data from SYSTEM 2000
databases. You must have update authority in order to edit SYSTEM 2000 data. To
retrieve and browse SYSTEM 2000 data, specify a view descriptor by using a SELECT
statement in PROC SQL. To update the data, you can specify view descriptors in the
INSERT, DELETE, and UPDATE statements in PROC SQL. The following is a
summary of these PROC SQL statements:

DELETE
deletes values from a SYSTEM 2000 database.

INSERT
inserts values in a SYSTEM 2000 database.

SELECT
retrieves and displays data from SYSTEM 2000 databases. A SELECT statement is
usually referred to as a query because it queries the database for information.

UPDATE
updates values in a SYSTEM 2000 database.

The query in the following program retrieves and displays values in the SYSTEM 2000
database Employee. These values are described by the view descriptor Vlib.Emppos, if
the previous updates using the SAS/FSP procedures have occurred (that is, you added
the values Mary and Adkins to the programmer position.) Notice that PROC SQL prints
the variable labels instead of the SAS variable names, and the data is displayed in the
SAS output window. Notice also that the SELECT statement executes without using a
RUN statement. PROC SQL executes when you submit it and displays output data
automatically, without your having to use the PRINT procedure. The following output
displays the results.

 proc sql;
 title 'SYSTEM 2000 Data Output Using
 a SELECT Statement';
 select *
 /* Asterisk indicates 'select all items' */
 from vlib.emppos;

Browsing and Updating with the SQL Procedure 49

Output 5.1 SYSTEM 2000 Data Output Using a PROC SQL Query

 SYSTEM 2000 Data Output Using a SELECT Statement

 LAST NAME FORENAME POSITION TITLE DEPARTMENT MANAGER

 ADKINS MARY PROGRAMMER INFORMATION SY MYJ
 AMEER DAVID JR SALES REPRESE MARKETING VPB
 AMEER DAVID SR SALES REPRESE MARKETING VPB
 BOWMAN HUGH E. EXECUTIVE VICE-P CORPORATION CPW
 BROOKS RUBEN R. JR SALES REPRESE MARKETING MAS
 BROWN VIRGINA P. MANAGER WESTERN MARKETING OMG
 CAHILL JACOB MANAGER SYSTEMS INFORMATION SY JBM
 CANADY FRANK A. MANAGER PERSONNE ADMINISTRATION PRK
 CHAN TAI SR SALES REPRESE MARKETING TZR
 COLLINS LILLIAN MAIL CLERK ADMINISTRATION SQT
 FAULKNER CARRIE ANN SECRETARY CORPORATION JBM

As in the SAS/FSP procedures, you can specify a WHERE clause in the SELECT
statement to subset the observations that you want to display. The following program
requests data about employees who are technical writers. Notice that the PROC SQL
statement is not repeated in this query because you do not need to repeat the PROC SQL
statement unless you use another SAS procedure or DATA step between PROC SQL
statements. Because you are referencing a view descriptor, you use the SAS names for
items in the WHERE clause. The following output shows the data about the one
employee who is a technical writer.

 title 'SYSTEM 2000 Data Output Subset by a
 WHERE Clause';
 select *
 from vlib.emppos
 where position='TECHNICAL WRITER';

Output 5.2 SYSTEM 2000 Data Output Subset by a WHERE Clause

 SYSTEM 2000 Data Output Subset by a WHERE Clause

 LAST NAME FORENAME POSITION TITLE DEPARTMENT MANAGER

 GIBSON MOLLY I. TECHNICAL WRITER INFORMATION SY JC

You can use the UPDATE statement to update SYSTEM 2000 data. Remember that
when you reference a view descriptor in a PROC SQL statement, you are not updating
the view descriptor. You are updating the SYSTEM 2000 data described by the view
descriptor. Therefore, if Mary Adkins, whose name you previously added to the unfilled
programmer position, decided to change her position from programmer to technical
writer, you could update the information about her position title and manager by using
the following program. The following output displays the results.

 update vlib.emppos
 set position='TECHNICAL WRITER'
 where lastname='ADKINS';
 update vlib.emppos
 set manager='JC'
 where lastname='ADKINS';

50 Chapter 5 • Browsing and Updating SYSTEM 2000 Data

 title 'Updated VLIB.EMPPOS View Descriptor';
 select *
 from vlib.emppos;

Output 5.3 Updated Vlib.Emppos View Descriptor

 Updated VLIB.EMPPOS View Descriptor 1

 LAST NAME FORENAME POSITION TITLE DEPARTMENT MANAGER

 ADKINS MARY TECHNICAL WRITER INFORMATION SY JC
 AMEER DAVID SR SALES REPRESE MARKETING VPB
 AMEER DAVID JR SALES REPRESE MARKETING VPB
 BOWMAN HUGH E. EXECUTIVE VICE-P CORPORATION CPW
 BROOKS RUBEN R. JR SALES REPRESE MARKETING MAS
 BROWN VIRGINA P. MANAGER WESTERN MARKETING OMG
 CAHILL JACOB MANAGER SYSTEMS INFORMATION SY JBM
 CANADY FRANK A. MANAGER PERSONNE ADMINISTRATION PRK
 CHAN TAI SR SALES REPRESE MARKETING TZR
 COLLINS LILLIAN MAIL CLERK ADMINISTRATION SQT
 FAULKNER CARRIE ANN SECRETARY CORPORATION JBM

You can use the INSERT statement to add values to a SYSTEM 2000 database or the
DELETE statement to remove values as described by a view descriptor. In the following
program, the values described by the view descriptor Vlib.Emppos for the employee
whose last name is Adkins are deleted from the database Employee. The following
output displays the results.

 delete from vlib.emppos
 where lastname='ADKINS';

 title 'Data Deleted from SYSTEM 2000 EMPLOYEE
 Database';
 select *
 from vlib.emppos;

Output 5.4 Vlib.Emppos Data with an Observation Deleted

 Data Deleted from SYSTEM 2000 EMPLOYEE Database 1

 LAST NAME FORENAME POSITION TITLE DEPARTMENT MANAGER

 ADKINS MARY
 AMEER DAVID SR SALES REPRESE MARKETING VPB
 AMEER DAVID JR SALES REPRESE MARKETING VPB
 BOWMAN HUGH E. EXECUTIVE VICE-P CORPORATION CPW
 BROOKS RUBEN R. JR SALES REPRESE MARKETING MAS
 BROWN VIRGINA P. MANAGER WESTERN MARKETING OMG
 CAHILL JACOB MANAGER SYSTEMS INFORMATION SY JBM
 CANADY FRANK A. MANAGER PERSONNE ADMINISTRATION PRK
 CHAN TAI SR SALES REPRESE MARKETING TZR
 COLLINS LILLIAN MAIL CLERK ADMINISTRATION SQT
 FAULKNER CARRIE ANN SECRETARY CORPORATION JBM

Browsing and Updating with the SQL Procedure 51

CAUTION:
You must use the WHERE clause in the DELETE statement. If you omit the
WHERE clause from a DELETE statement in PROC SQL, you delete all the data in
the database accessed by the view descriptor.

For more information about the SQL procedure in SAS, see the Base SAS Procedures
Guide.

Using the APPEND Procedure

Appending Data Described by SAS/ACCESS View Descriptors and
PROC SQL Views

You can use the APPEND procedure to append data that is described by SAS/ACCESS
view descriptors and PROC SQL views to SAS data files. You can also update the data
described by a view descriptor by appending to it the data from another SAS data set.

For an append operation to be successful, the variables in the BASE= (target) data set
and the variables in the DATA= (source) data set must match, or you must use the
FORCE= option to concatenate the data sets. The FORCE= option causes PROC
APPEND to drop the extra variables and issues a warning..

You can append the data described by a view descriptor to a SAS 6 or later data file and
vice versa. For variables that use the longer naming conventions in SAS 7 and later or
for variables that otherwise do not match, use the RENAME= data set option in PROC
APPEND to rename the variables.

Appending Data to a SAS Data File
In the following example, two managers have kept separate employee telephone lists.
The Marketing manager kept records in the SYSTEM 2000 database Employee, which is
described by the view descriptor Vlib.EmpPhon. The Corporation manager kept records
for the executive telephone list in the SAS 6 SAS data file MyData.CorPhon. The two
sources must be combined to create a telephone list of employees in both departments.

The data that is described by the view descriptor Vlib.EmpPhon and the data in the SAS
data file MyData.CorPhon are displayed in the two outputs following the example.

 proc print data=vlib.empphon;
 title 'Marketing Phone List';
 run;

 proc print data=mydata.corphon;
 title 'Corporation Phone List';
 run;

52 Chapter 5 • Browsing and Updating SYSTEM 2000 Data

Output 5.5 Data Described by Vlib.EmpPhon

 Marketing Phone List 1

 OBS LASTNAME FIRSTNME PHONE

 1 AMEER DAVID 545 XT495
 2 BROOKS RUBEN R. 581 XT347
 3 BROWN VIRGINA P. 218 XT258
 4 CHAN TAI 292 XT331
 5 GARRETT OLAN M. 212 XT208
 6 GIBSON GEORGE J. 327 XT703
 7 GOODSON ALAN F. 323 XT512
 8 JUAREZ ARMANDO 506 XT987
 9 LITTLEJOHN FANNIE 219 XT653
 10 RICHARDSON TRAVIS Z. 243 XT325
 11 RODRIGUEZ ROMUALDO R 243 XT874
 12 SCHOLL MADISON A. 318 XT419
 13 SHROPSHIRE LELAND G. 327 XT616
 14 SMITH JERRY LEE 327 XT169
 15 VAN HOTTEN GWENDOLYN 212 XT311
 16 WAGGONNER MERRILEE D 244 XT914
 17 WILLIAMSON JANICE L. 218 XT802

Output 5.6 Data in MyData.CorPhon

 Corporation Phone List 1

 OBS LASTNAME FIRSTNME PHONE

 1 BOWMAN HUGH E. 109 XT901
 2 FAULKNER CARRIE ANN 132 XT417
 3 GARRETT OLAN M. 212 XT208
 4 KNAPP PATRICE R. 222 XT 12
 5 KNIGHT ALTHEA 213 XT218
 6 MILLSAP JOEL B. 131 XT224
 7 MUELLER PATSY 223 XT822
 8 NATHANIEL DARRYL 118 XT544
 9 SALAZAR YOLANDA 111 XT169
 10 WATERHOUSE CLIFTON P. 101 XT109

To combine the data described by these two sources, use PROC APPEND, as shown in
the following program. The following output displays the data in the updated data file
MyData.CorPhon. Notice that the combined data is sorted by last name. Also, because
PROC PRINT was used to display the data, the variable names are used (for example,
FIRSTNME), not the variable labels, which are the item names (for example,
FORENAME).

 proc append base=mydata.corphon data=vlib.empphon;
 run;

 proc sort data=mydata.corphon;
 by lastname;

 proc print data=mydata.corphon;
 title 'Corporation and Marketing Phone List';

Using the APPEND Procedure 53

 run;

Output 5.7 Appended Data

 Corporation and Marketing Phone List 1

 OBS LASTNAME FIRSTNME PHONE

 1 AMEER DAVID 545 XT495
 2 BOWMAN HUGH E. 109 XT901
 3 BROOKS RUBEN R. 581 XT347
 4 BROWN VIRGINA P. 218 XT258
 5 CHAN TAI 292 XT331
 6 FAULKNER CARRIE ANN 132 XT417
 7 GARRETT OLAN M. 212 XT208
 8 GARRETT OLAN M. 212 XT208
 9 GIBSON GEORGE J. 327 XT703
 10 GOODSON ALAN F. 323 XT512
 11 JUAREZ ARMANDO 506 XT987
 12 KNAPP PATRICE R. 222 XT 12
 13 KNIGHT ALTHEA 213 XT218
 14 LITTLEJOHN FANNIE 219 XT653
 15 MILLSAP JOEL B. 131 XT224
 16 MUELLER PATSY 223 XT822
 17 NATHANIEL DARRYL 118 XT544
 18 RICHARDSON TRAVIS Z. 243 XT325
 19 RODRIGUEZ ROMUALDO R 243 XT874
 20 SALAZAR YOLANDA 111 XT169
 21 SCHOLL MADISON A. 318 XT419
 22 SHROPSHIRE LELAND G. 327 XT616
 23 SMITH JERRY LEE 327 XT169
 24 VANHOTTEN GWENDOLYN 212 XT311
 25 WAGGONNER MERRILEE D 244 XT914
 26 WATERHOUSE CLIFTON P. 101 XT109
 27 WILLIAMSON JANICE L. 218 XT802

PROC APPEND also accepts a WHERE= data set option or a WHERE statement to
subset the observations from the DATA= data set that is added to the BASE= data set, as
shown in the following program. (It is assumed that the data file MyData.CorPhon is in
its original state before executing PROC APPEND in the preceding program.) The
following output displays the results.

proc append base=mydata.corphon
 data=vlib.empphon(where=(lastname='AMEER'));
run;

proc print data=mydata.corphon;
 title2 'Appended Data with a WHERE= Data Set Option';
run;

54 Chapter 5 • Browsing and Updating SYSTEM 2000 Data

Output 5.8 Appended Data with a WHERE= Data Set Option

 Appended Data with a WHERE= Data Set Option 1

 OBS LASTNAME FIRSTNME PHONE

 1 BOWMAN HUGH E. 109 XT901
 2 FAULKNER CARRIE ANN 132 XT417
 3 GARRETT OLAN M. 212 XT208
 4 KNAPP PATRICE R. 222 XT 12
 5 KNIGHT ALTHEA 213 XT218
 6 MILLSAP JOEL B. 131 XT224
 7 MUELLER PATSY 223 XT822
 8 NATHANIEL DARRYL 118 XT544
 9 SALAZAR YOLANDA 111 XT169
 10 WATERHOUSE CLIFTON P. 101 XT109
 11 AMEER DAVID 545 XT495

Appending Data to SAS 7 or Later Data Files
In the previous example, if the Corporation manager kept records in a SAS 7 data file
named V7.CorPhon (see the following output) and used variable names longer than eight
characters, the data in Vlib.EmpPhon could be appended by using the following
program:

 proc append base=v7.corphon
 (rename (firstname=firstnme))
 data=vlib.empphon;
 run;

 proc sort data=v7.corphon;
 by lastname;

 proc print data=v7.corphon;
 title2 'Corporation and Marketing Phone List';
 run;

Output 5.9 Data in V7.CorPhon

 Corporation Phone List

 Obs lastname firstname phone
 1 BOWMAN HUGH E. 109 XT901
 2 FAULKNER CARRIE ANN 132 XT417
 3 GARRETT OLAN M. 212 XT208
 4 KNAPP PATRICE M. 222 XT 12
 5 KNIGHT ALTHEA 213 XT218
 6 MILLSAP JOEL B. 131 XT224
 7 MUELLER PATSY 223 XT822
 8 NATHANIEL DARRYL 118 XT544
 9 SALAZAR YOLANDA 111 XT169
 10 WATERHOUSE CLIFTON P. 101 XT109

In this example, the RENAME= data set option is used to reconcile a character-length
discrepancy between the FIRSTNAME variable in the V7 data file and the FIRSTNME

Using the APPEND Procedure 55

variable in the view descriptor. The following output shows a portion of the data in the
updated data file V7.CorPhon.

Output 5.10 Data in V7.CorPhon with Appended Data from Vlib.EmpPhon

 Corporation and Marketing Phone List

 Obs lastname firstnme phone

 1 AMEER DAVID 545 XT495
 2 BOWMAN HUGH E. 109 XT901
 3 BROOKS RUBEN R. 581 XT347
 4 BROWN VIRGINA P. 218 XT258
 5 CHAN TAI 292 XT331
 6 FAULKNER CARRIE ANN 132 XT417
 7 GARRETT OLAN M. 212 XT208
 8 GARRETT OLAN M. 212 XT208
 9 GIBSON GEORGE J. 327 XT703
 10 GOODSON ALAN F. 323 XT512
 11 JUAREZ ARMANDO 506 XT987
 12 KNAPP PATRICE R. 222 XT 12
 13 KNIGHT ALTHEA 213 XT218
 14 LITTLEJOHN FANNIE 219 XT653
 15 MILLSAP JOEL B. 131 XT224
 16 MUELLER PATSY 223 XT822
 17 NATHANIEL DARRYL 118 XT544
 18 RICHARDSON TRAVIS Z. 243 XT325
 19 RODRIGUEZ ROMUALDO R 243 XT874
 20 SALAZAR YOLANDA 111 XT169
 21 SCHOLL MADISON A. 318 XT419
 22 SHROPSHIRE LELAND G. 327 XT616
 23 SMITH JERRY LEE 327 XT169
 24 VANHOTTEN GWENDOLYN 212 XT311
 25 WAGGONNER MERRILEE D 244 XT914
 26 WATERHOUSE CLIFTON P. 101 XT109
 27 WILLIAMSON JANICE L. 218 XT802

Appending SAS Data to a View Descriptor
When appending SAS data to a view descriptor, you cannot sort the data unless you
specify an output data file. To sort the data in the view descriptor, you would have to sort
the SYSTEM 2000 database, which is not recommended.

For more information about the APPEND procedure, see the SAS SQL Procedure User's
Guide.

Browsing and Updating with the QUEST
Procedure

Use the QUEST procedure to access a SYSTEM 2000 database directly, that is, without
using a view descriptor. This procedure is basically a messenger for SYSTEM 2000
statements: When you submit a statement in PROC QUEST, SAS scans the statement
and passes it to SYSTEM 2000, which executes it.

SYSTEM 2000 includes an interactive language (also named QUEST) that is used for
creating, browsing, updating, and managing SYSTEM 2000 databases. PROC QUEST

56 Chapter 5 • Browsing and Updating SYSTEM 2000 Data

gives you full access to that language, either from interactive line-mode sessions or
batch mode. In effect, when you submit the PROC QUEST statement, you start a
SYSTEM 2000 session. When you submit the EXIT statement, you end the session.

Because the QUEST language is interactive, SYSTEM 2000 responds to each statement
as soon as you submit it. As in PROC SQL, you do not need a RUN statement.

In this example, management is considering a reorganization and a list of all managers is
requested. That information is available in the database Employee, which can be
accessed in Multi-User mode. The following program uses PROC QUEST to browse and
update a SYSTEM 2000 database.

 proc quest s2kmode=m;

A message appears in the Log window, which verifies that you have accessed SYSTEM
2000. Now, submit SYSTEM 2000 statements to specify your password for the database
and to open the database.

 user, demo;
 data base name is employee;

Request a list of managers by using the TALLY statement in SYSTEM 2000.

 tally manager;

To end the SYSTEM 2000 session and print your report, submit the following:

 exit;

The following output displays the results.

Output 5.11 TALLY Statement Output

 ITEM- MANAGER

 OCCURRENCES VALUE

 1 AFG
 3 CPW
 2 FAC
 3 GVH
 5 HEB
 2 ILP
 4 JBM
 3 JC
 1 JFS
 2 JLH
 1 MAS
 3 MYJ
 4 OMG
 3 PQ
 3 PRK
 1 RMJ
 3 SQT
 4 TZR
 7 VPB

 19 DISTINCT VALUES

 55 TOTAL OCCURRENCES

Browsing and Updating with the QUEST Procedure 57

Now, suppose that Olan Garrett, the Vice-President for Marketing, wants to make one
change in his department. He decides to have Jerry Lee Smith report to a different
manager. Again, use PROC QUEST to access the database Employee.

 proc quest s2kmode=m;
 user, demo; data base name is employee;

Request a list of all Marketing employees and their current managers by using the LIST
statement in SYSTEM 2000. The following output displays the results.

 list employee number, last name, forename, manager,
 ordered by manager
 where department eq marketing at 1;

Output 5.12 LIST Statement Output

 * EMPLOYEE NUMBER LAST NAME FORENAME MANAGER

 * 1313 SMITH JERRY LEE AFG
 * 1217 RODRIGUEZ ROMUALDO R GVH
 * 1077 GIBSON GEORGE J. GVH
 * 1133 WILLIAMSON JANICE L. GVH
 * 1327 BROOKS RUBEN R. MAS
 * 1011 VAN HOTTEN GWENDOLYN OMG
 * 1161 RICHARDSON TRAVIS Z. OMG
 * 1007 BROWN VIRGINIA P. OMG
 * 1017 WAGGONNER MERRILEE D TZR
 * 1119 GOODSON ALAN F. TZR
 * 1234 SHROPSHIRE LELAND G. TZR
 * 1031 CHAN TAI TZR
 * 1050 AMEER DAVID VPB
 * 1145 JUAREZ ARMANDO VPB
 * 1015 SCHOLL MADISON A. VPB
 * 1062 LITTLEJOHN FANNIE VPB

After looking at the report, Olan Garrett decides to have Jerry Lee Smith report to
Madison Scholl. To do this, submit the following SYSTEM 2000 statement:

 change manager eq mas* wh employee number eq 1313;

SYSTEM 2000 issues a message that one record was selected to be changed.

To end the SYSTEM 2000 session, submit the following:

 exit;

Note: The commands QUIT and END are aliases for EXIT.

58 Chapter 5 • Browsing and Updating SYSTEM 2000 Data

Chapter 6

Creating and Loading SYSTEM
2000 Databases

DBLOAD Procedure in SAS and SYSTEM 2000 . 59
Using the DBLOAD Procedure . 59
Compatibility with SAS 6 . 59
Creating a SYSTEM 2000 Database . 60
Loading the Input Data File . 60
Subsetting Input Data . 62
Subsetting Input Data . 62
Loading a SYSTEM 2000 Database . 63
Adding New Logical Entries versus Updating Existing Logical Entries 65

Selecting a Processing Mode for Loading Data . 66

DBLOAD Procedure in SAS and SYSTEM 2000

Using the DBLOAD Procedure
The DBLOAD procedure runs in batch and interactive line mode and enables you to
create and load a SYSTEM 2000 database from a SAS data set. You can create the
database definition only and execute one or more incremental loads at a later time.

PROC DBLOAD constructs SYSTEM 2000 statements to create the database definition.
You can load new logical entries into the database, or you can insert new records into
existing logical entries. The data can come from a SAS data file, from a view created by
using the SQL procedure, or from a SYSTEM 2000 database or another DBMS (using a
view created by using the ACCESS procedure).

PROC DBLOAD associates each SAS variable in the input data with a SYSTEM 2000
item and assigns a default name, number, and type to each item. By default, items are
non-key at level 0. You can use the defaults or change the names, the status (key or non-
key), and the level, as necessary. When you are finished customizing the items, PROC
DBLOAD creates the SYSTEM 2000 database.

Compatibility with SAS 6
You can use SAS 6 and later SAS data files to create and load SYSTEM 2000 databases
by using PROC DBLOAD. However, beginning with SAS 7 data files, variables with
names that are longer than eight characters have their names truncated to eight characters
in the access and view descriptors created by PROC DBLOAD. The RENAME

59

statement in PROC DBLOAD can be used to rename the variables in the SYSTEM 2000
database, but it does not change the variable names in the access and view descriptors.
The truncated names must be used to access the data described by the view descriptors.

Creating a SYSTEM 2000 Database
In this section, PROC DBLOAD is used to create the database Banking and load data
into it. In this new database, each logical entry contains data for one customer.

The ENTRY schema record at level 0 contains two items: the customer name and
customer ID. The schema record at level 1 contains information about the customer's
checking and savings accounts. The schema record at level 2 contains information about
the transactions for each account.

After you create the database Banking, use the QUEST procedure to execute the
DESCRIBE statement in SYSTEM 2000 to produce the following output, which shows
the database definition.

Output 6.1 Banking Database Definition

 SYSTEM RELEASE NUMBER 12.1
 DATA BASE NAME IS BANKING
 DEFINITION NUMBER 1
 DATA BASE CYCLE NUMBER 18
 1* CUSTNAME (CHAR X(20))
 2* CUSTID (CHAR X(7))
 100* RECORD_LEVEL_1 (RECORD)
 101* ACCOUNT NUMBER (INTEGER NUMBER 9999 IN 100)
 102* ACCOUNT TYPE (CHAR X IN 100)
 200* RECORD_LEVEL_2 (RECORD IN 100)
 201* TRANS TYPE (CHAR X IN 200)
 202* TRANS AMOUNT (NON-KEY MONEY $9(7).99 IN 200)
 203* TRANS DATE (DATE IN 200)

Notice that the records are indented at three different levels to reflect the record
relationships. That is, record C200 is a descendant of record C100, which is a descendant
of the level 0 record.

Loading the Input Data File
The input SAS data file that is used for the examples given here is shown in “Data File
Trans.Banking” on page 155. If you want to run the examples, make sure that you sort
the observations before you use PROC DBLOAD. Sorting the observations groups them
by accounts for each customer, which produces data in the sequence required for loading
the three-level database Banking.

Each observation in the input data file represents one transaction. For example, John
Booker has four transactions, two for each of his accounts. His name and account
numbers are repeated in each observation as shown in the following output.

60 Chapter 6 • Creating and Loading SYSTEM 2000 Databases

Output 6.2 The SAS Data File Trans.Banking

OBS CUSTNAME CUSTID ACCTNUM ACCTTYP TRANSTYP TRANSAMT TRANSDAT

 1 BOOKER, JOHN 74-9838 8349 S D $40.00 05JUN89
 2 LOPEZ, PAT 38-7274 9896 S D $15.67 23JUN89
 3 JONES, APRIL 85-4941 4141 C W $213.78 29JUN89

 4 BOOKER, JOHN 74-9838 8349 S I $34.76 30JUN89
 5 MILLER, NANCY 07-6163 7890 S I $53.98 30JUN89
 6 LOPEZ, PAT 38-7274 9896 S I $16.43 30JUN89
 7 JONES, APRIL 85-4941 4141 C W $354.70 30JUN89
 8 MILLER, NANCY 07-6163 7890 S D $1,245.87 01JUL89
 9 JONES, APRIL 85-4941 4141 C D $2,298.65 01JUL89
 10 MILLER, NANCY 07-6163 3876 C W $45.98 08JUL89
 11 ROGERS, MIKE 96-5052 4576 C D $75.00 10JUL89

12 BOOKER, JOHN 74-9838 3673 C D $150.00 10JUL89
 13 LOPEZ, PAT 38-7274 9896 S D $50.00 10JUL89

 14 BOOKER, JOHN 74-9838 3673 C W $65.43 13JUL89
 15 ROGERS, MIKE 96-5052 4576 C W $12.34 13JUL89
 16 ROGERS, MIKE 96-5052 4576 C W $45.67 13JUL89
 17 MILLER, NANCY 07-6163 3876 C D $56.79 14JUL89
 18 ROGERS, MIKE 96-5052 4576 C W $12.16
15JUL89

After you sort the input data file by customer name and account type, PROC DBLOAD
loads data for each customer as a logical entry in the SYSTEM 2000 database.
Redundant data is reduced, which saves storage space. The logical entry for John Booker
would look like the following figure.

Figure 6.1 Sample Logical Entry in Banking Database

After you load the input data from Trans.Banking, run the following SYSTEM 2000
LIST statement in PROC QUEST.

 list c1, c101, c102, c201, c202;

Here are the results.

DBLOAD Procedure in SAS and SYSTEM 2000 61

Output 6.3 Output from LIST Statement Run on the Database Banking

* CUSTNAME ACCOUNT NUMBER ACCOUNT TYPE TRANS TYPE TRANS AMOUNT

* BOOKER, JOHN 3673 C D $150.00
* W $65.43
* 8349 S D $40.00
* I $34.76
* JONES, APRIL 4141 C W $213.78
* W $354.70
* D $2,298.65
* LOPEZ, PAT 9896 S D $15.67
* I $16.43
* D $50.00
* MILLER, NANCY 3876 C W $45.98
* D $56.79
* 7890 S I $53.98
* D $1,245.87
* ROGERS, MIKE 4576 C D $75.00
* W $12.34
* W $45.67
* W
$12.16

Notice the values shown for John Booker. His name appears only one time, but he has
two account numbers and four transactions. Because the examples that use PROC
DBLOAD rank the data values into levels, you have a clear, logical view of the data.

Subsetting Input Data
To subset your input data, use the WHERE statement in SAS. Creating a subset of the
input data is useful if you need to transfer only a portion of your SAS data to a SYSTEM
2000 database. For example, you might want to include only observations in which the
value in a variable is greater than a specified number.

The following program subsets the input data to include only those observations in
which the SAS variable ACCTNUM has a value greater than 4141. None of the items
are renamed or indexed, and they are all at level 0.

Notice that you use the SAS variable name in the WHERE statement, not the SYSTEM
2000 item name. For information about the syntax of the WHERE statement, see SAS
Statements: Reference.

 proc dbload dbms=s2k data=trans.banking;
 s2kpw=mine;
 dbn=banking;
 s2kmode=m;
 where acctnum > 4141;
 load;
 run;

Subsetting Input Data
To subset your input data, use the WHERE statement in SAS. Creating a subset of the
input data is useful if you need to transfer only a portion of your SAS data to a SYSTEM
2000 database. For example, you might want to include only observations in which the
value in a variable is greater than a specified number.

62 Chapter 6 • Creating and Loading SYSTEM 2000 Databases

The following program subsets the input data to include only those observations in
which the SAS variable ACCTNUM has a value greater than 4141. None of the items
are renamed or indexed, and they are all at level 0.

Notice that you use the SAS variable name in the WHERE statement, not the SYSTEM
2000 item name. For information about the syntax of the WHERE statement, see SAS
Statements: Reference.

 proc dbload dbms=s2k data=trans.banking;
 s2kpw=mine;
 dbn=banking;
 s2kmode=m;
 where acctnum > 4141;
 load;
 run;

Loading a SYSTEM 2000 Database
To create and load a SYSTEM 2000 database, use PROC DBLOAD with options and
statements that describe the SYSTEM 2000 database that you want to create and the data
that you want to load into the database. To load the database Banking, use the following
program. The function of each statement is explained in the section that follows.

JCL statements;

proc dbload dbms=s2k data=trans.banking;
 s2kpw=mine;
 dbn=banking;
 accdesc=mylib.bank;
 viewdesc=vlib.myview;
 s2kmode=m;
 rename acctnum='account number' 4= 'account type'
 5='trans type' 6='trans amount'
 7='trans date';
 index 1=y 2=y 3=y 4=y transtyp=y 7=y;
 level 3=1 4=1 5=2 6=2 transdat=2;
 list all;
 load;
 run;

JCL statements;
submit your statements for execution under SAS.

proc dbload dbms=s2k data=trans.banking;
invokes the DBLOAD procedure. The DBMS= option specifies the DBMS that you
want to load data into. The DATA= option specifies the SAS data file that contains
the data.

s2kpw=mine;
issues the password that becomes the master password for the new database.

dbn=banking;
identifies the database that you want to create. In this example, you create a
SYSTEM 2000 database named Banking.

accdesc=mylib.bank;
specifies the access descriptor libref and member name. The access descriptor is
created automatically by PROC DBLOAD. In this example, the specified name is
MyLib.Bank. The default access descriptor name is Work.Banking.ACCESS, where

DBLOAD Procedure in SAS and SYSTEM 2000 63

Banking is the name of the database to be created. The access descriptor member
name must not already exist when you are creating a new database.

viewdesc=vlib.myview;
specifies the view descriptor libref and member name. The view descriptor is created
automatically by PROC DBLOAD. In this example, the specified name is
Vlib.MyView. The default view descriptor name is Work.Banking.VIEW, where
Banking is the name of the database to be created. The view descriptor member
name must not already exist when you are creating a new database.

s2kmode=m;
creates the new database in a Multi-User environment. The default, S, specifies a
single-user environment. For a Multi-User session, the new database files can be
allocated when the session is initialized or dynamically allocated during execution by
using the ALLOC command in SYSTEM 2000, Release 12.0 and later. For a single-
user job, you must allocate the database files in the JCL for the job, or dynamically
allocate the database files using the S2KDBCnt file.

rename acctnum='account number' 4= 'account type' 5='trans
type' 6='trans amount' 7='trans date';

changes the names of the last five items. In a RENAME statement, always use a SAS
variable on the left side of the equal sign (=). You can use either the SAS variable
name or its positional equivalent as shown in the LIST statement output (Output 6.4).
You can rename as many items as you want in one RENAME statement.

index 1=y 2=y 3=y 4=y transtyp=y 7=y;
defines items as key (indexed). In this INDEX statement, all items except TRANS
AMOUNT are key items. TRANS AMOUNT is not listed, so it defaults to non-key.

In an INDEX statement, always use a SAS variable on the left side of the equal sign
(=). You can use either the SAS variable name or its positional equivalent as shown
in the LIST statement output below. You can index as many items as you want in one
INDEX statement.

level 3=1 4=1 5=2 6=2 transdat=2;
changes the level number of an item. In this LEVEL statement, ACCOUNT
NUMBER and ACCOUNT TYPE become items in a level 1 record; TRANS TYPE,
TRANS AMOUNT, and TRANS DATE become items in a level 2 record. PROC
DBLOAD automatically defines the schema record names RECORD_LEVEL_1 and
RECORD_LEVEL_2, respectively, and assigns appropriate component numbers.

In a LEVEL statement, always use a SAS variable on the left side of the equal sign
(=). You can use either the SAS variable name or its positional equivalent as shown
in the LIST statement output below. You can change the level number for as many
items as you want in one LEVEL statement.

list all;
lists the items, levels, and index settings.

load; run;
executes PROC DBLOAD and creates and loads the database.

64 Chapter 6 • Creating and Loading SYSTEM 2000 Databases

Output 6.4 LIST Statement Output

 Command ===>

 PROC DBLOAD for SYSTEM 2000 - OPTIONS FOLLOW:
 Input data set= TRANS BANKING DATA
 View descriptor= VLIB MYVIEW VIEW
 Access descriptor= MYLIB BANK ACCESS
 Database name= BANKING
 S2KMODE= M
 Label option= N
 Create option= N
 S2KLOAD= N
 ------------SAS NAME---LEVEL---INDEX---COMPONENT NAME----
 1 CUSTNAME YES CUSTNAME
 2 CUSTID YES CUSTID
 3 ACCTNUM 1 YES ACCOUNT NUMBER
 4 ACCTTYP 1 YES ACCOUNT TYPE
 5 TRANSTYP 2 YES TRANS TYPE
 6 TRANSAMT 2 TRANS AMOUNT
 7 TRANSDAT 2 YES TRANS DATE

To load additional logical entries into an existing SYSTEM 2000 database, invoke
PROC DBLOAD and specify the input data file and the appropriate view descriptor. The
view descriptor contains the database name, the component names, levels, and so on. It
also contains the password for the database and the access mode (single-user or
Multi-User). You can use a WHERE clause in SAS to limit the input. However, a
SYSTEM 2000 where-clause in the view descriptor does not affect an incremental load.

To perform an incremental load with PROC DBLOAD, use the following program. In
this example, the data file is Trans.IncLoad. The function of each statement is explained
immediately following the program.

JCL statements;

proc dbload dbms=s2k data=trans.incload;
 viewdesc=vlib.myview;
load;
run;

JCL statements;
submit your statements for execution under SAS.

proc dbload dbms=s2k data=trans.incload;
invokes the DBLOAD procedure. The DBMS= option specifies the DBMS that you
want to load data into. The DATA= option specifies the SAS data file that contains
the data.

viewdesc=vlib.myview;
specifies the existing view descriptor libref and member name.

load; run;
executes PROC DBLOAD and loads the database.

Adding New Logical Entries versus Updating Existing Logical
Entries

Incremental loads can either insert new logical entries or append new records to existing
logical entries. Both types of incremental loading are performed the same way, as shown

DBLOAD Procedure in SAS and SYSTEM 2000 65

in the previous example. How does the SYSTEM 2000 engine know which action to
perform?

If you issue an S2KLOAD statement, the input observations are treated as new logical
entries. Several observations can be collected to form each logical entry, but they are all
new entries. The observations must be sorted in order to achieve the correct result.

If you do not issue the S2KLOAD statement, your results are based on the order of the
observations and whether the view descriptor contains a BY key. A BY key identifies the
placement of inserted data records in an incremental load. See “Using a BY Key” on
page 123. When using a BY key, it is best (less ambiguous) if your view descriptor and
the BY key begin at level 0, even if you are loading records only at a lower level.

Selecting a Processing Mode for Loading Data
Two modes of processing are available when loading data with the DBLOAD procedure:
insert mode and optimized load mode. Insert mode must be used to add data records to
existing logical entries. Optimized load mode is a fast, efficient way to add new logical
entries to the database. For details about these processing modes, see the information
about the S2KLOAD statement in “DBLOAD Procedure Statements Syntax” on page
95.

66 Chapter 6 • Creating and Loading SYSTEM 2000 Databases

Chapter 7

SAS/ACCESS 9 for SYSTEM
2000: Reference

ACCESS Procedure in SAS and SYSTEM 2000 . 68
Types of Procedure Statements . 68
Passwords for Descriptor Files . 68
SAS Passwords . 69

ACCESS Procedure Statements . 70

ACCESS Procedure Syntax . 70

The PROC ACCESS Statement . 71

where-clause in SYSTEM 2000 . 72
Using the where-clause (SYSTEM 2000) . 72
where-clause Syntax (SYSTEM 2000) . 72
where-clause Examples (SYSTEM 2000) . 74

ordering-clause in SYSTEM 2000 . 77
Using the Ordering-clause (SYSTEM 2000) . 77
Ordering-clause Syntax (SYSTEM 2000) . 77
ordering-clause Example (SYSTEM 2000) . 77

Creating and Using View Descriptors Efficiently . 78

PROC ACCESS Data Conversions . 78

Dictionary . 79
ASSIGN= Statement (Optional) . 79
BYKEY Statement (Optional) . 79
CREATE Statement (Required) . 80
DATABASE Statement (Required) . 81
DROP Statement (Optional) . 81
FORMAT Statement (Optional) . 82
INFORMAT Statement (Optional) . 83
LENGTH Statement (Optional) . 83
LIST Statement (Optional) . 84
QUIT Statement (Optional) . 85
RENAME Statement (Optional) . 85
RESET Statement (Optional) . 86
SELECT Statement (Optional) . 87
SUBSET Statement (Optional) . 88
S2KPW Statement (Optional) . 89
UNIQUE Statement (Optional) . 89

67

ACCESS Procedure in SAS and SYSTEM 2000

Types of Procedure Statements
In SAS/ACCESS, there are two categories of procedure statements: database-
description statements and editing statements. The ACCESS procedure in SAS enables
you to create and edit the descriptor files used by the SAS/ACCESS interface to
SYSTEM 2000. Details about the ACCESS procedure statements are given in
alphabetical order after the details about the PROC ACCESS statement.

Passwords for Descriptor Files
The SAS/ACCESS interface requires that access descriptors and view descriptors have a
SYSTEM 2000 password to access the database. The password for an access descriptor
determines the description of the database that is used to create view descriptors. The
password for a view descriptor determines the data that you see, and your ability to
subset and edit the data through the descriptor.

For the access descriptor, the password is specified in the DATABASE statement. For
the view descriptor, the SYSTEM 2000 password is stored in the view descriptor by
using the S2KPW statement, or the password can be submitted as a SAS data set option.
Storing the SYSTEM 2000 password in a view descriptor, gives everyone who uses the
view descriptor access to its data. Specifying a password as a data set option gives users
access to the database passwords.

To protect your database passwords, store the SYSTEM 2000 password in the view
descriptor, and assign one or more SAS passwords to control access to the descriptor
file. You can also assign SAS passwords to control who can create view descriptors from
an access descriptor. To access the descriptor files, specify the SAS password as a data
set option. For example, to create a view descriptor, specify the access descriptor
password in the PROC ACCESS statement after the ACCDESC= option, as follows:

 proc access dbms=s2k accdesc=mylib.employee (alter=reward);
 create vlib.customer.view;
 select all;
 run;

The following table summarizes the levels of protection that SAS passwords give and
the effects on descriptor files.

Table 7.1 Effects of SAS Password on Descriptor Files

Files READ= WRITE= ALTER=

access descriptor no effect no effect protects descriptor
from being read or
edited

view descriptor protects DBMS data
from being read or
updated

protects DBMS
data from being
updated

protects descriptor
from being read or
edited

68 Chapter 7 • SAS/ACCESS 9 for SYSTEM 2000: Reference

For detailed information about the levels of protection and the types of SAS passwords
that you can use, see SAS 9.3 Statements: Reference. For more information about
protecting access and view descriptors, see “Data Security” on page 117.

SAS Passwords
You can assign, change, or clear a password for an access descriptor, a view descriptor,
or another SAS file in SAS by using the MODIFY statement in the DATASETS
procedure. The following syntax for PROC DATASETS assigns a password to an access
descriptor, a view descriptor, or a SAS data file:

PROC DATASETS LIBRARY= libref MEMTYPE= member-type;
MODIFY member-name (password-level = password-modification); RUN;

password-level can be one or more of the following values: READ=, WRITE=,
ALTER=, or PW=. Use PW to assign Read, Write, and Alter privileges to a descriptor or
a data file. password-modification enables you to assign a new password or to change or
delete an existing password. For example, the following program assigns the password
REWARD and specifies the level of protection to the access descriptor MyLib.Employe
as Alter. After this program is executed, users are prompted for a password when they
try to browse or edit the access descriptor or create view descriptors that are based on
MyLib.Employe.

proc datasets library=mylib memtype=access;
 modify employee (alter=reward);
run;

In the next example, the program assigns the passwords MYPW and MYDEPT with
Read and Alter levels of protection to the view descriptor Vlib.CustAcct. After this
program is executed, users are prompted for the SAS password when they try to read the
DBMS data, or try to browse or edit the view descriptor Vlib.CustAcct. In this instance,
you need both Read and Alter levels to protect the data and the view descriptor from
being read. However, a user could still update the data accessed by Vlib.CustAcct by
using an UPDATE statement in PROC SQL. Assign the Write level of protection to
prevent data updates.

proc datasets library=vlib memtype=view;
 modify custacct (read=mypw alter=mydept);
run;

To delete a password for an access descriptor or any SAS data set, put a slash after the
password, as shown in the following example:

proc datasets library=vlib memtype=view;
 modify custacct (read=mypw/ alter=mydept/);
run;

In the following program, PROC DATASETS sets a password for Read and Alter levels
to the view descriptor Vlib.CustInfo, and PROC PRINT tries to use the view descriptor
with an invalid password and, then, a valid password.

/* Assign passwords */
proc datasets library=vlib memtype=view;
 modify custinfo (read=r2d2 alter=c3po);
run;

/* Invalid password given */
proc print data=vlib.custinfo (pw=r2dq);
 where ssn = '178-42-6534';

ACCESS Procedure in SAS and SYSTEM 2000 69

 title2 'Data for 178-42-6534';
run;

/* Valid password given */
proc print data=vlib.custinfo (pw=r2d2);
 where ssn = '178-42-6534';
 title2 'Data for 178-42-6534';
run;

For more examples of assigning, changing, deleting, and using SAS passwords, see SAS
Statements: Reference.

ACCESS Procedure Statements
In the SAS/ACCESS interface to SYSTEM 2000, the DATABASE statement and its
options describe the database. All other statements, except CREATE, are editing
statements and are optional. The DATABASE statement is specified after the CREATE
statement and before any editing statements.

The options and statements that you use with PROC ACCESS depend on the task that
you are performing. For example, to create an access descriptor, use the following
program:

proc access dbms=s2k;
 create mylib.employe.access;
 DATABASE statement;
 optional editing statement(s);
run;

To create an access descriptor and a view descriptor, use the following program:

proc access dbms=s2k;
 create mylib.employe.access;
 DATABASE statement;
 optional editing statement(s);

 create vlib.emppos.view;
 optional editing statement(s);
run;

To create a view descriptor from an existing access descriptor, use the following
program:

proc access dbms=s2k accdesc=mylib.employe;
 create vlib.emppos.view;
 optional editing statement(s);
run;

ACCESS Procedure Syntax
PROC ACCESS <options>;

70 Chapter 7 • SAS/ACCESS 9 for SYSTEM 2000: Reference

CREATE libref.member-name.ACCESS | VIEW;
DATABASE=database-name;
S2KPW=password MODE= SINGLE | MULTI;
ASSIGN= YES | NO;
BYKEY variable-identifier = YES | NO <...variable-identifier-n = YES | NO>;
DROP variable-identifier <...variable-identifier-n>;
FORMAT variable-identifier = SAS-format-name

<...variable-identifier-n = SAS-format-name>;
INFORMAT variable-identifier = SAS-informat-name

<...variable-identifier-n = SAS-informat-name-n>;
LENGTH variable-identifier = item-width

<...variable-identifier-n = item—width-n> ;
LIST ALL | VIEW | <variable-identifier>;
QUIT;
RENAME variable-identifier = SAS-variable-name

<...variable-identifier-n = SAS-variable-name-n>;
RESET ALL | variable-identifier <...variable-identifier-n>;
SELECT ALL | variable-identifier <...variable-identifier-n>;
SUBSET selection-criteria;
UNIQUE = YES | NO;

The PROC ACCESS Statement
PROC ACCESS <options>;

The following options can be used in the PROC ACCESS statement:

ACCDESC= libref.access-descriptor
identifies an access descriptor. Use this option to create a view descriptor from an
existing access descriptor.

If the access descriptor has been assigned a SAS password, you might need to
specify the password in the ACCDESC= option in order to create a view descriptor
based on the access descriptor. Whether you specify the password depends on the
level of protection that was assigned to the access descriptor. For more information,
see “Passwords for Descriptor Files” on page 68.

If you create the access descriptor and the view descriptor in the same execution of
PROC ACCESS, omit the ACCDESC= option because you specify the access
descriptor's name in the CREATE statement.

ACCESS= and AD= are aliases.

DBMS= S2K
specifies that you want to invoke the SAS/ACCESS interface to SYSTEM 2000.
This option is required when creating a descriptor, but is not required when
extracting DBMS data.

OUT=libref.member
specifies the SAS data file to which DBMS data is written. OUT= is used only with
the VIEWDESC= option.

The PROC ACCESS Statement 71

VIEWDESC=libref.view-descriptor
specifies a view descriptor that accesses the DBMS data. VIEWDESC= is used only
with the OUT= option.

VIEW= and VD= are aliases.

For programs that use these options, see Appendix 3, “Example Programs,” on page
137.

where-clause in SYSTEM 2000

Using the where-clause (SYSTEM 2000)
A SYSTEM 2000 where-clause is used to select specific logical entries in a SYSTEM
2000 database. If the password that you are using has where-clause authority for each
selected item, you might select any item included in the access descriptor from which the
view descriptor is derived.

When you include a SYSTEM 2000 where-clause in a view descriptor, the selection
criteria are executed each time you use the view descriptor in a SAS program. When a
SYSTEM 2000 where-clause is invoked, the interface view engine:

• replaces selections of SAS variable names with database item component numbers.
(The SAS variable names must correspond to a database item included in the view
descriptor.)

• translates keywords to uppercase for compatibility with SYSTEM 2000.

• expands connecting strings to connect the WHERE clause in SAS to the where-
clause in the view.

• preserves significant blanks in delimited text values.

The syntax of the where-clause can include one or more of the following conditions.
However, you cannot include a Collect File item name or the SAME operator in a
where-clause that is included in a view descriptor.

Note: This is a partial description of the SYSTEM 2000 where-clause. For a complete
description, see SYSTEM 2000 Software: QUEST Language and System-Wide
Commands, Version 12, First Edition.

where-clause Syntax (SYSTEM 2000)
WHERE expression;

WHERE
is the keyword that designates a where-clause. This keyword is optional if the where-
clause is the first clause or if you do not specify an ordering-clause. WH is an alias.

expression might be one of the following:

• condition

• (expression)

• NOT expression

• expression AND expression

• expression OR expression

72 Chapter 7 • SAS/ACCESS 9 for SYSTEM 2000: Reference

• record HAS expression

• expression AT n

condition [NON-KEY] item might be one of the following:

• unaryoperator

• binaryoperator value

• ternaryoperator value * value

• CONTAINS text

• * binaryoperator item*

NON-KEY
enables you to change a KEY condition to a NON-KEY condition. This capability is
not available in a WHERE clause in SAS. For information about using connecting
strings to extend the function of the NON-KEY specification to the WHERE clause
conditions in SAS, see “Using HAS, AT, and NON-KEY” on page 135. NK is an
alias for NON-KEY.

NOT
finds the complement of specified criteria. You can also use a logical not (¬) symbol.

AND
combines two expressions by finding data records that satisfy both expressions. You
can also use an ampersand (&).

OR
combines two expressions by finding data records that satisfy either expression or
both. You can also use a vertical bar (|).

record
is a schema record name or component number.

HAS
specifies a data record by its position under its parent. This capability is not available
in a WHERE clause in SAS. For information about using connecting strings to
extend the function of the AT operator to the WHERE clause conditions in SAS, see
“Using HAS, AT, and NON-KEY” on page 135.

n
is 0 or a positive integer that indicates position of a record under its parent. The last
position is indicated by 0.

item
is a schema item name or component number included in the access descriptor. You
can specify a SAS variable name if the item is included in the view descriptor. The
item can be KEY or NON-KEY.

unary operators: EXISTS (EXIST, EXISTING) | FAILS (FAIL, FAILING)
specifies the existence or non-existence of values.

binary operators: EQ, NE, GE, GT, LE, or LT
compares an item with a value or compares two items. You can also use the symbols
shown in Table 7.2.

Table 7.2 Binary Operators and Equivalent Symbols

Operator Equivalent Symbol

EQ =

where-clause in SYSTEM 2000 73

Operator Equivalent Symbol

NE ¬= or !=

GE >= or => or ¬< or !<

GT >

LE <= or =< or ¬> or !>

LT <

ternary operators: EQ, NE, or SPANS (SPAN, SPANNING)
compares an item with a range of values. Ternary operators require a low value and a
high value. You can also use the symbols shown in Table 7.3. There is no equivalent
symbol for SPANS.

Table 7.3 Ternary Operators and Equivalent Symbols

Operator Equivalent Symbol

EQ =

NE ¬= or !=

value
is a literal value or the SYSTEM 2000 system string *TODAY*. You can enclose a
value with a delimiter of your choice. As shown in the following example,
sometimes you might need delimiters around character values to preserve a mixed-
case value. Any special character that appears at the beginning and end of a character
value is assumed to be a delimiter.

where c1 = 'Abc De' looks for Abc De
where c1 = @Abc De@ looks for Abc De
where c1 = @Abc De looks for @Abc De

CONTAINS (CONT, CONTAIN, CONTAINING)
searches for characters within an item's values.

text
for the syntax and explanation of CONTAINS text, see SYSTEM 2000 Software:
QUEST Language and System-Wide Commands, Version 12, First Edition.

where-clause Examples (SYSTEM 2000)

Unary Operators
Unary operators search for values that exist or do not exist using the EXISTS and FAILS
operators. SYSTEM 2000 unary operators are similar to SAS missing values
expressions.

The following where-clause qualifies data records that have a value for the item
ACCRUED VACATION.

74 Chapter 7 • SAS/ACCESS 9 for SYSTEM 2000: Reference

 where accrued vacation exists

The following where-clause qualifies data records that do not have a value (that is, nulls)
for the item ACCRUED VACATION.

 where accrued vacation fails

Binary Operators
Binary operators compare items with a value or compare two items by using the EQ, NE,
GT, GE, LT, or LE operators (or their equivalent symbols).

The following where-clause qualifies data records that have the value for EMPLOYEE
NUMBER equal to 1224.

 where employee number=1224

The following where-clause qualifies data records where EMPLOYEE STATUS is not
equal to FULL TIME. (However, it does not qualify those records where EMPLOYEE
STATUS is null.)

 where employee status ne full time

The following where-clause qualifies data records where the value for HIRE DATE is
greater than or equal to June 1, 1987.

 where hire date=>06/01/1987

The following where-clause qualifies data records where the value for C105 equals the
value for C4.

 where C4 * EQ C105 *

Ternary Operators
Ternary operators search for values in a range of values by using the SPANS, EQ, and
NE operators (or their equivalent symbols).

The following where-clause qualifies data records where BIRTHDAY spans the dates
January 1, l949 and January 31, 1949, inclusively.

 where birthday spans 01/01/1949 * 01/31/1949

CONTAINS Operator
The CONTAINS operator searches for values that contain patterns of characters within
values.

The item must be a CHARACTER, TEXT, or UNDEFINED item.

The following where-clause qualifies data records where the values for STREET
ADDRESS contain the character string RIM ROCK.

 where street address contains /RIM ROCK/

Combining Conditions with AND (&) and OR (|)
Using the AND and OR operators, you can combine two or more conditions. AND
combines two conditions by selecting values that satisfy both conditions. OR combines
two conditions by selecting values that satisfy either or both conditions.

The following where-clause qualifies data records that have COBOL in the item SKILL
TYPE and 4 in the item YEARS OF EXPERIENCE.

 where skill type=cobol & years of experience=4

where-clause in SYSTEM 2000 75

Qualifying Unmatched Conditions with NOT (¬)
Using the NOT operator, you can select data records where values do not match a
condition.

The following where-clause selects data records for the item PAY SCHEDULE that do
not equal the value HOURLY or that are null.

 where ¬pay schedule=hourly

Designating-specific Types of Records with HAS
Using the HAS operator, you can specify a focal record.

In the following where-clause, the HAS operators specify C0 (the ENTRY record) as the
focal record because both conditions refer to the same schema record (C201). In this
example, the HAS operators qualify C0 records that have the values COBOL and
Fortran for C201. (If the HAS operator is not used, no records would qualify because
there would never be a C201 value of both COBOL and Fortran.)

where C0 has c201 eq cobol and C0 has c201 eq fortran

Specifying Position in Database with AT
Using the AT operator, you can select values that are stored in a specified position in the
database. Values must satisfy the condition and occupy a specific position. A data
record's position is its number (reading left-to-right) below its parent record.

The following where-clause qualifies the data record in position 2 in a logical entry.

 where position title eq programmer at 2

Processing Order
The order in which SYSTEM 2000 processes conditions can affect which data records
are selected. SYSTEM 2000 processes conditions that have operators in the following
order: AT, HAS, NOT, AND, OR.

When conditions are joined by the same operator, SYSTEM 2000 first processes KEY
conditions (conditions that are indexed) from right-to-left, then NON-KEY conditions
(ones not indexed) from right-to-left.

You can alter the processing order by changing the order of the conditions and by
enclosing conditions in parenthesis. Conditions enclosed in parenthesis are processed
first.

Because the software processes the AND operator before the OR operator, in order to
access the names of employees who have an MBA degree and either a major or minor in
Marketing, use the following where-clause:

where degree=mba &
 (major field=marketing | minor field=marketing)

The following where-clause would also result in SYSTEM 2000 selecting the names of
employees who have a minor in Marketing and degrees other than MBAs.

where degree=mba &
 major field=marketing | minor field=marketing

76 Chapter 7 • SAS/ACCESS 9 for SYSTEM 2000: Reference

ordering-clause in SYSTEM 2000

Using the Ordering-clause (SYSTEM 2000)
When you define a view descriptor, you can also include a SYSTEM 2000 ordering-
clause to specify the order of the data. You can use only the items selected for the view
descriptor. Without an ordering-clause or a BY statement in SAS, the order of the data is
determined by SYSTEM 2000.

A BY statement in SAS automatically issues an ordering-clause to SYSTEM 2000. If a
view descriptor already contains an ordering-clause, the BY statement overrides the
ordering-clause for that program except when the SAS procedure includes the option
NOTSORTED. Then, the BY statement in SAS is ignored, and the view descriptor
ordering-clause is used.

Note: When you include a SYSTEM 2000 ordering-clause in a view descriptor, you can
specify a terminator, either a colon (:) or a semicolon (;). If you specify both a
where-clause and an ordering-clause, do not use a terminator between them.

Ordering-clause Syntax (SYSTEM 2000)
ORDERED BY sortkeys;

ORDERED BY
is the keyword designating an ordering-clause. ORDER BY, OB, and SORT are
aliases.

sortkeys
specifies the component name, component number, or the SAS variable name of a
SYSTEM 2000 item that is included in the view descriptor. Use commas to separate
sort keys, which might be specified in either ascending or descending order. The
default is ascending order.

• ASCENDING | ASCEND | ASC | LOW | LO specifies that you want the data
ordered by ascending values of the sort key.

• DESCENDING | DESCEND | DESC | HIGH | HI specifies that you want the
data ordered by descending values of the sort key.

If you specify more than one SYSTEM 2000 component, the values are ordered by the
component that is named first, followed by the second component, and so on. For more
information about the ordering-clause, see SYSTEM 2000 Software: QUEST Language
and System-Wide Commands, Version 12, First Edition.

ordering-clause Example (SYSTEM 2000)
The following ordering-clause specifies that the values be sorted in ascending order
based on the values in item DEPARTMENT and then, within departments, the values in
item SALARY are sorted in descending order.

 order by department, desc salary

ordering-clause in SYSTEM 2000 77

Creating and Using View Descriptors Efficiently
To efficiently use SYSTEM 2000 and operating system resources:

• Select only the items your program needs. Selecting unnecessary items adds extra
processing time.

• Use an ordering-clause or a BY statement in SAS to specify the order in which
logical entries are presented to SAS only if SAS needs the data in a specific order for
processing. (The BY statement in SAS issues an ordering-clause to SYSTEM 2000
and overrides any existing ordering-clause for the view descriptor.) If you use an
ordering-clause or a BY statement in SAS, sort by an indexed item when possible.

• As an alternative to using an ordering-clause, which consumes CPU time each time
you access the SYSTEM 2000 database, you can use the SORT procedure with the
OUT= option to create a sorted SAS data file. This is a better approach for data that
you want to use multiple times.

• If a view descriptor describes a large SYSTEM 2000 database and you use the view
descriptor often, it might be more efficient to extract the data and place it in a SAS
data file. (Although the extracted data file is very large, it is created only one time.
However, the extracted data does not reflect any subsequent updates to the database.)

• When possible, specify selection criteria to subset the number of logical entries that
SYSTEM 2000 returns to SAS.

• Write selection criteria that enable SYSTEM 2000 to use available indexes when
possible. This applies whether you specify the selection criteria as part of the view
descriptor or use a WHERE clause in SAS. This is especially important when
accessing large databases because when SYSTEM 2000 cannot use an index, it scans
the entire database sequentially.

For more information about where-clause optimization guidelines, see SYSTEM 2000
Software: QUEST Language and System-Wide Commands, Version 12, First Edition.

PROC ACCESS Data Conversions
Table 7.4 shows the default SAS variable formats and informats that are assigned by
PROC ACCESS to each SYSTEM 2000 item type. If SYSTEM 2000 data falls outside
valid SAS data ranges, an error message is printed in the SAS log when you try to read
the data.

Table 7.4 Default SAS Formats and Informats for SYSTEM 2000 Item Types

SYSTEM 2000 Item Type and Picture SAS Variable Format and Informat

CHAR X(n) $n

TEXT X(n) $CHARn.

DATE DATE7.

78 Chapter 7 • SAS/ACCESS 9 for SYSTEM 2000: Reference

SYSTEM 2000 Item Type and Picture SAS Variable Format and Informat

INTEGER 9(n) n.

DECIMAL 9(n).9(d) n+d+1.d

MONEY 9(n).9(d) n+d+1.d

REAL BEST12.

DOUBLE BEST12.

UNDEFINED X(n) $HEXn*2.

Dictionary

ASSIGN= Statement (Optional)
Generates SAS names and formats that are based on item names and data types.

Alias: AN=

Applies to: access descriptors only

Syntax
ASSIGN= YES | NO | Y | N;

Details
The ASSIGN= statement generates SAS variable names based on the first 8, non-blank
characters of the item names and SAS variable attributes based on the item data types.
You can change names and formats only in the access descriptor. The names saved in the
access descriptor are the ones that will be used in the view descriptors.

The ASSIGN= statement causes view descriptors to inherit the SAS variable names and
formats of the parent access descriptor at the time that the access descriptor is created.
That is, if ASSIGN=YES (or Y), the variable names generated for the access descriptor
are used in all derived view descriptors, regardless of the statements used in the view
descriptor. If ASSIGN=NO (or N), you must specify the SAS variable names and
formats when you create a view descriptor from this access descriptor. Use the
RENAME, FORMAT, INFORMAT, LENGTH, BYKEY, and UNIQUE statements to
change the variable names and attributes when creating a descriptor. The default is NO.

When a new CREATE statement is entered, the ASSIGN= statement is reset to NO.

BYKEY Statement (Optional)
Designates one or more items as sort keys.

BYKEY Statement (Optional) 79

Applies to: access descriptors and view descriptors

Syntax
BYKEY variable-identifier = YES | NO <…variable-identifier-n= YES | NO> ;

Details
The BYKEY statement designates one or more items as BY keys and, in a view
descriptor, also selects them for the view.

The BYKEY statement cannot be used to change the BYKEY value in a view descriptor
if ASSIGN= YES is specified in the access descriptor from which the view descriptor is
derived.

variable-identifier can be one of the following:

• the current SAS name for the data item

Note: Any name on the left side of the equal sign (=) must be a SAS name, not a
SYSTEM 2000 name. In an access descriptor, if the ASSIGN statement is
omitted, you must enter the item number or component number (C-number) on
the left side of the equal sign (=).

• a positional equivalent, which is the number that represents the item, as specified in
the LIST statement

• the SYSTEM 2000 C-number of the database item

For example, if you want to make the third item a BY key, submit the following
statement:

bykey 3=y;

CREATE Statement (Required)
Creates an access descriptor or a view descriptor.

Applies to: access descriptors and view descriptors

Syntax
CREATE libref.member-name.ACCESS | VIEW;

Details
To create a descriptor, use a three-level name. The first level of the name is the libref of
the SAS library in which you want to store the descriptor. You can store the descriptor in
a temporary (Work) or permanent SAS library. The second level of the name is the
access descriptor's name (that is, the member name). The third level of the name is the
type of SAS file: ACCESS, for access descriptors, and VIEW, for view descriptors.

You can use the same CREATE statement to create access descriptors and view
descriptors (specify the view descriptors directly following the access descriptors that
they describe), unless you specify the ACCDESC= option in the PROC ACCESS
statement. Then, the CREATE statement will create only view descriptors.

80 Chapter 7 • SAS/ACCESS 9 for SYSTEM 2000: Reference

When you submit a CREATE statement for processing, the SAS/ACCESS interface
checks the statement for errors. The descriptor is not actually written until the next
CREATE or RUN statement is processed. If the SAS/ACCESS interface finds errors,
error messages are written to the SAS log and processing is terminated. After you correct
the error, resubmit the statements for processing.

The database-identification and DROP statements cannot be specified when creating a
view descriptor.

DATABASE Statement (Required)
Specifies the SYSTEM 2000 database to use.

Alias: DB=, DBN=, or S2KDB=

Applies to: access descriptors only

Syntax
DATABASE=database-name;

Details
The DATABASE statement specifies the name of the SYSTEM 2000 database that you
want to access. The DATABASE statement should immediately follow the CREATE
statement for the access descriptor being created.

database-name can be 1to 16 characters in length. Names longer than 16 characters are
truncated and no error message appears. If the database name contains blanks or special
characters, enclose the name in single or double quotation marks.

DROP Statement (Optional)
Drops the specified item so that it is not available for selection.

Applies to: access descriptors only

Syntax
DROP variable-identifier <…variable-identifier-n> ;

Details
The DROP statement drops the specified variable from the access descriptor so that the
variable is not available for selection when creating a view descriptor. The specified
variable in the database remains unaffected by the DROP statement.

variable-identifier can be one of the following:

• the current SAS name for the item

• the positional equivalent, which is the number that represents the item, as specified
in the LIST statement

• the SYSTEM 2000 C-number of the database item.

DROP Statement (Optional) 81

For example, if you want to drop the third and fifth items, submit the following
statement:

drop 3 5;

If you are creating an access descriptor in interactive line mode and want to mark an
item as display that was previously marked as non-display with the DROP statement, use
the RESET statement for that item.

Note: If you drop a record, every item in the record is dropped.

Note: If you use the RESET statement for an item, the various attributes of that item are
reset (such as name, format, and so on) to their default values.

FORMAT Statement (Optional)
Assigns a SAS format to a SYSTEM 2000 data item.

Alias: FMT

Applies to: access descriptors and view descriptors

Syntax
FORMAT variable-identifier = SAS-format-name

<...variable-identifier-n<=> SAS-format-name-n> ;

Details
The FORMAT statement changes a SAS variable format from its default format; the
default format is based on the database item's data type. You can enter as many formats
as necessary in one FORMAT statement.

variable-identifier can be one of the following:

• the current SAS variable name for the item

Note: Any name on the left side of the equal sign (=) must be a SAS name, not a
SYSTEM 2000 name. In an access descriptor, if the ASSIGN statement is
omitted, you must enter the item number or component number (C-number) on
the left side of the equal sign (=).

• the positional equivalent, which is the number that represents the item, as specified
in the LIST statement

• the SYSTEM 2000 C-number of the database item

For example, if you want to associate the DATE9. format with the fifth item in the
access descriptor, submit the following statement:

format 5 date9.;

You can use only the FORMAT statement with a view descriptor if ASSIGN= NO was
specified when the access descriptor was created. When used in a view descriptor, the
FORMAT statement automatically selects the reformatted item. That is, if you change
the format associated with an item, you do not have to issue a SELECT statement for
that item. FMT is an alias.

Note: You cannot specify the FORMAT statement for a record.

82 Chapter 7 • SAS/ACCESS 9 for SYSTEM 2000: Reference

INFORMAT Statement (Optional)
Assigns a SAS informat to a SYSTEM 2000 item.

Alias: INF

Applies to: access descriptors and view descriptors

Syntax
INFORMAT variable-identifier = SAS-informat-name
<…variable-identifier-n= SAS-informat-name-n> ;

Details
The INFORMAT statement changes a SAS variable informat from its default informat;
the default informat is based on the database item's data type. You can enter as many
informats as necessary using one INFORMAT statement.

variable-identifier can be one of the following:

• the current SAS variable name for the item

Note: Any name on the left side of the equal sign (=) must be a SAS name, not a
SYSTEM 2000 name. In an access descriptor, if the ASSIGN statement is
omitted, you must enter the item number or component number (C-number) on
the left side of the equal sign (=).

• the positional equivalent, which is the number that represents the item, as specified
in the LIST statement

• the SYSTEM 2000 C-number of the database item

For example, if you want to associate the DATE7. informat with the second item in the
access descriptor, submit the following statement:

informat 2 DATE7.;

You can use only the INFORMAT statement with a view descriptor if ASSIGN= NO in
the access descriptor from which the view is derived. When used for a view descriptor,
the INFORMAT statement automatically selects the reformatted item. That is, if you
change the informat associated with an item, you do not have to issue a SELECT
statement for that item.

Note: You cannot specify the INFORMAT statement for a record.

LENGTH Statement (Optional)
Assigns a character width to a data item.

Alias: S2KLEN or LEN

Applies to: access descriptors and view descriptors

LENGTH Statement (Optional) 83

Syntax
LENGTH variable-identifier = item-width <…variable-identifier-n= item-width-n> ;

Details
The LENGTH statement changes the item width in characters from the default width; the
default item width is based on the database item's picture specification. The LENGTH
statement enables SAS to handle S2K CHARACTER and TEXT items that overflow
their widths (SAS does not permit variable-length character variables).

item-width can be a maximum of 200 characters.

variable-identifier can be one of the following:

• the current SAS name for the item

Note: Any name on the left side of the equal sign (=) must be a SAS name, not a
SYSTEM 2000 name. In an access descriptor, if the ASSIGN statement is
omitted, you must enter the item number or component number (C-number) on
the left side of the equal sign (=).

• a positional equivalent, which is the number that represents the item, as specified in
the LIST statement

• the SYSTEM 2000 C-number of the database item.

You can use only the LENGTH statement with a view descriptor if ASSIGN= NO in the
access descriptor from which the view descriptor is derived. When used for a view
descriptor, the LENGTH statement automatically selects the reformatted item. That is, if
you change the length associated with an item, you do not have to issue a SELECT
statement for that item.

Note: You cannot specify a LENGTH statement for a record.

LIST Statement (Optional)
Lists all or selected items in the descriptor and information about the items.

Applies to: access descriptors and view descriptors

Syntax
LIST <ALL | VIEW|variable-identifier> ;

Details
The LIST statement lists all or selected items in the descriptor and attributes of the
items, including their positional equivalents, SYSTEM 2000 component numbers,
default SAS variable names based on the first eight non-blank characters of the
SYSTEM 2000 item names, and the default SAS formats based on the SYSTEM 2000
data types.

The LIST information is written to your SAS log. However, the SYSTEM 2000 item
names are not listed in the log because they can be 40 or more characters in length.

You can use one or more of the following in the LIST statement:

84 Chapter 7 • SAS/ACCESS 9 for SYSTEM 2000: Reference

ALL
lists all items and item attributes available for selection in the access descriptor. If an
item is dropped when the access descriptor is being created, *NON-DISPLAY* is
shown next to the item's description. If an item is selected when a view descriptor is
being created, *SELECTED* is shown next to the item's description. If you do not
specify an argument, the default is ALL.

VIEW
lists all items and item attributes in the access descriptor that is selected for the view
descriptor and any subsetting or ordering criteria. VIEW is valid only when creating
a view descriptor.

variable-identifier can be one of the following:

• the current SAS name for the item

• the positional equivalent, which is the number that represents the item, as specified
in the LIST statement

• the SYSTEM 2000 C-number of the database item

For example, if you want to list information about the fifth item in the database, submit
the following statement:

list 5;

If you want to list all of the items in the database followed by the items selected for the
view descriptor, submit the following statement:

list all view;

Note: If you specify a record in a LIST statement, all the data items in that record are
listed.

QUIT Statement (Optional)
Terminates the procedure without any further descriptor creation.

Applies to: access descriptors and view descriptors

Syntax
QUIT;

Details
The QUIT statement terminates the ACCESS procedure. EXIT is an alias.

RENAME Statement (Optional)
Enters or modifies the SAS name for an item.

Applies to: access descriptors and view descriptors

RENAME Statement (Optional) 85

Syntax
RENAME variable-identifier = SAS-variable-name

<…variable-identifier-n = SAS-variable-name-n> ;

Details
The RENAME statement enters or modifies the SAS variable name that is associated
with a database item. You cannot use the RENAME= statement if ASSIGN=YES is
specified in the access descriptor from which the view descriptor is derived.

When creating an access descriptor and ASSIGN=YES, you can use the RENAME
statement to assign new SAS names to the default SAS names. These new names are
always used when creating view descriptors based on the access descriptor.

When creating an access descriptor and ASSIGN=NO, any names assigned in the access
descriptor can be changed in the view descriptor by using the RENAME statement, but
the new name applies only in that view.

variable-identifier can be one of the following:

• the current SAS variable name for the item

Note: Any name on the left side of the equal sign (=) must be a SAS name, not a
SYSTEM 2000 name. In an access descriptor, if the ASSIGN statement is
omitted, you must use the item number or the component number (C-number) on
the left side of the equal sign (=).

• the positional equivalent, which is the number that represents the item's place in the
descriptor, as specified in the LIST statement.

• the SYSTEM 2000 C-number of the database item

For example, if you want to modify the SAS variable names associated with the fourth
and fifth items in a descriptor, submit the following statement:

rename 4=hire birthday=birth;

When creating a view descriptor, the RENAME statement automatically selects the
renamed item for the view. That is, if you rename the SAS variable associated with a
database item, you do not have to issue a SELECT statement for that item.

RESET Statement (Optional)
Resets specified or all items to their default settings.

Applies to: access descriptors and view descriptors

Syntax
RESET ALL | variable-identifier <…variable-identifier-n> ;

Details
The RESET statement resets the specified items or all the items to their default values.

When creating an access descriptor, the default setting for a SAS variable name is a
blank, unless you specify SAS variable names using the RENAME statement or include
the ASSIGN=YES statement. When using the RESET statement, the SAS variable

86 Chapter 7 • SAS/ACCESS 9 for SYSTEM 2000: Reference

names can be reset to the default name generated by PROC ACCESS (that is, the first
eight characters of the variable name) or to a blank. Items dropped by using a DROP
statement also become available and can be selected in view descriptors that are based
on this access descriptor.

When creating a view descriptor, the results are based on the setting of the ASSIGN
statement in the access descriptor from which the view descriptor is derived. If
ASSIGN=YES, the RESET statement cannot be used in the view descriptor. If
ASSIGN=NO and if you reset SAS variable names and variable attributes and select
them later within the same procedure execution, the SAS variable names and attributes
are reset to the default values generated from the item names and data types. In a view
descriptor, the RESET statement clears any items specified in the SELECT statement.

You can use one or more of the following in the RESET statement:

ALL
resets all the database items defined in the access descriptor to their default names
and attribute settings. When creating a view descriptor, ALL resets all the items that
have been selected, so that no items are selected for the view. You can use the
SELECT statement to select new items. For more information, see the SELECT
statement.

variable-identifier can be one of the following:

• the current SAS name

• the positional equivalent, which is the number that represents the item, as specified
in the LIST statement

• the SYSTEM 2000 C-number of the database item

For example, if you want to reset the SAS variable name and attribute associated with
the third item, submit the following statement:

reset 3;

SELECT Statement (Optional)
Selects the items in the access descriptor that are to be included in the view descriptor.

Applies to: view descriptors only

Syntax
SELECT ALL | variable-identifier <...variable-identifier-n> ;

Details
The SELECT statement selects the database items in the access descriptor that you want
included in the view descriptor. You might include as many items as you want in one
SELECT statement.

You can use one or more of the following in the SELECT statement:

ALL
includes in the view descriptor all of the items defined in the access descriptor that
were not dropped.

variable-identifier can be one of the following:

SELECT Statement (Optional) 87

• the current SAS name

• the positional equivalent, which is the number that represents the item, as specified
in the LIST statement

• the SYSTEM 2000 C-number of the database item.

For example, if you want to select the first three items, submit the following statement:

select 1 2 3;

SELECT statements are cumulative within the same view creation. That is, if you submit
the following two SELECT statements, items 1, 5, and 6 are selected (not just items 5
and 6):

select 1;select 5 6;

To clear all of the current selections when creating a view descriptor, you can use the
RESET ALL statement, and use another SELECT statement to select new items.

Note: If you select a record in a SELECT statement, all items in that record are selected.

SUBSET Statement (Optional)
Adds or modifies selection criteria defined for a view descriptor.

Applies to: view descriptors only

Syntax
SUBSET selection-criteria;

Details
The SUBSET statement specifies the selection criteria and ordering statement to be used
by SYSTEM 2000 when creating a view descriptor. These statements are optional, but
omitting them causes the view to retrieve all the data in the database. For more details
about the default where-clause, see the discussion about WHERE clauses in Appendix 2,
“Advanced Topics for Users,” on page 121. Here is an example of a WHERE clause:

subset "where amount<1010";

Multiple selection criteria can be included in one SUBSET statement. The quoted strings
are concatenated and passed to SYSTEM 2000 for processing:

subset "where amount<1010"
 "ob amount";

To clear the selection criteria, submit the following statement:

subset;

For more information about SYSTEM 2000 where-clause and ORDER BY syntax, see
the SYSTEM 2000 Software: QUEST Language and System-Wide Commands, Version
12, First Edition manual.

88 Chapter 7 • SAS/ACCESS 9 for SYSTEM 2000: Reference

S2KPW Statement (Optional)
Stores the SYSTEM 2000 password and access mode for a view descriptor.

Applies to: view descriptors only

Syntax
S2KPW=password MODE=SINGLE | MULTI | SU | MU | S | M;

Required Argument
password

can be 1 to 4 characters in length, with no embedded blanks, and enclosed in single
quotation marks. Passwords longer than 4 characters are truncated and a warning
message appears. If you specify a special character for a password, it must be a
single character (that is, a 1-character password) and enclosed in single quotation
marks.

Optional Argument
MODE=SINGLE | MULTI | SU | MU | S | M

specifies the mode in which you want to access SYSTEM 2000. SINGLE (SU or S)
means that the database in your SAS program environment is in single-user mode.
MULTI (MU or M) means that the database files are in Multi-User mode. The mode
is also stored with the view. The default is MULTI.

Details
TheS2KPW statement specifies the SYSTEM 2000 password and access mode for
creating a view descriptor. The password that you specify is stored in encrypted form. It
enables all who access the view descriptor to have access to the data that it describes. If
you do not specify the S2KPW statement when creating a view descriptor, you must
specify a password when using the view descriptor in order to access data from the
database.

The password that is used when you open a view descriptor determines which data you
see and your ability to subset and edit it through the view descriptor. You can specify the
password that was used in the access descriptor from which the view is derived, or you
can specify another password that encompasses a subset of the data in the view
descriptor. If you specify a password that does not encompass data from the access
descriptor, the view is created, but the software issues an error message when you
attempt to open the view descriptor.

UNIQUE Statement (Optional)
Generates unique SAS names based on item names.

Alias: UN=

Applies to: view descriptors only

UNIQUE Statement (Optional) 89

Syntax
UNIQUE= YES | NO | Y | N;

Details
The UNIQUE statement specifies whether the SAS/ACCESS interface should generate
unique SAS variable names for items for which SAS variable names or variable
attributes have not been specified.

You cannot use the UNIQUE statement when creating a view descriptor if
ASSIGN=YES is specified in the access descriptor from which this view is derived. The
YES value causes SAS to generate unique names, so the UNIQUE statement is not
necessary.

If you omit the ASSIGN statement or specify ASSIGN=NO, the SAS/ACCESS interface
continues to let duplicate SAS variable names exist. However, you must resolve any
duplicate SAS variable names before saving (and thereby creating) the view descriptor.
You can use the UNIQUE statement to automatically generate unique names, or you can
use the RENAME statement to resolve duplicate names. For more information, see the
“RENAME Statement (Optional)” on page 100.

If duplicate SAS variable names exist in the access descriptor from which this view is
derived, you can specify the UNIQUE statement to resolve the duplication. Specify
UNIQUE=YES to cause the SAS/ACCESS interface to append numbers to any duplicate
SAS variable names, thereby making each variable name unique.

If you are running your SAS/ACCESS job in non-interactive or batch mode, it is
recommended that you use the UNIQUE statement. If you do not use the UNIQUE
statement and SAS encounters duplicate SAS variable names in a view descriptor, the
job fails.

90 Chapter 7 • SAS/ACCESS 9 for SYSTEM 2000: Reference

Chapter 8

DBLOAD Procedure Reference

DBLOAD Procedure and SYSTEM 2000 . 91

Creating Customized View Descriptors . 92

Default SYSTEM 2000 Item Types . 92

Allocating the Database Files . 93

Adding Disjoint Schema Records . 94

Loading One SYSTEM 2000 Database from Another . 94

DBLOAD Procedure Options Syntax . 94
The PROC DBLOAD Statement . 94
DBLOAD Procedure Statements . 94

Dictionary . 95
DBLOAD Procedure Statements Syntax . 95
ACCDESC= Statement (Optional) . 96
CREATE Statement (Required) . 97
DBN= Statement (Required) . 97
DELETE Statement (Optional) . 97
INDEX Statement (Optional) . 98
LABEL Statement (Optional) . 98
LEVEL Statement (Optional) . 99
LIST Statement (Optional) . 99
LOAD Statement (Required) . 100
QUIT Statement (Optional) . 100
RENAME Statement (Optional) . 100
RESET Statement (Optional) . 101
S2KLEN Statement (Optional) . 101
S2KLOAD Statement (Optional) . 102
S2KMODE= Statement (Optional) . 102
S2KPW= Statement (Required) . 103
VIEWDESC= Statement (Required) | (Optional) . 103
WHERE Statement (Optional) . 104

DBLOAD Procedure and SYSTEM 2000
The DBLOAD procedure enables you to create and load a SYSTEM 2000 database
using data from a SAS data file, from a view created with the SQL procedure, or from a

91

SYSTEM 2000 database or another DBMS (using a view descriptor created by using the
ACCESS procedure).

Use the DBLOAD procedure to do the following:

• create a new database definition only

• create a new database definition and load data

• load new logical entries into an existing database

• insert new data records into existing logical entries

PROC DBLOAD constructs SYSTEM 2000 statements to create a new database
definition. The procedure associates each SAS variable with a SYSTEM 2000 item and
assigns a default name, item type, and picture to each item. You can change the
component names as necessary. Also, by default, each item is NON-KEY at level 0.
However, you can change the item to be a KEY item, and you can specify a level
number, which causes the procedure to create records under level 0. When you are
finished customizing the items, PROC DBLOAD creates the new database definition
and loads the data unless you have specified that you do not want to load any data at that
time.

When you load data into an existing database, you must specify an existing view
descriptor. You can specify the optimized load mode to load for new logical entries.
Insert mode must be used for adding new records to existing logical entries.

PROC DBLOAD can run in batch or interactive-line mode. For efficiency, you might
want to use batch mode for loads that process large amounts of data.

Creating Customized View Descriptors
When the DBLOAD procedure creates a new database, it always creates an access
descriptor and a view descriptor that matches the access descriptor. The default names
are Work.database.ACCESS and Work.database.VIEW.

If you do not like the default descriptors that PROC DBLOAD creates, submit a
CREATE statement and invoke the ACCESS procedure to create your own specific view
descriptor. Then return to PROC DBLOAD, specify the name that you created for your
view descriptor, and load your data.

You must ensure that incoming SAS variables match the SYSTEM 2000 items in your
view descriptor. You can have more components in your view descriptor than in the SAS
data file or vice versa. PROC DBLOAD matches input variables with the variables in the
view descriptor by SAS names. If your SAS names do not match, do one of the
following:

• Use PROC ACCESS to create a view descriptor that matches the SAS data file.

• Use the RENAME data set option in the DATA= argument. Use the KEEP or DROP
option in the DATA= argument to limit the SAS variables that are inspected.

Default SYSTEM 2000 Item Types
Table 8.1 contains the default conversions of SAS formats to SYSTEM 2000 item types.
These conversions cannot be changed. However, you can alter the formats of the input

92 Chapter 8 • DBLOAD Procedure Reference

SAS variables by using the MODIFY and FORMAT statements in the DATASETS
procedure if you want to affect the behavior of the type conversions. The modified
formats are saved in the access and view descriptors.

If there is no SAS format, a character variable becomes the item type CHARACTER
(with a picture equal to the length of the variable or the value that is specified in the
S2KLEN= statement), numeric variables that are 4 bytes become the item type REAL,
and numeric variables that are 8 bytes become the item type DOUBLE. The formats
saved in the access and view descriptors are $w. for character and BEST12. for numeric.

Table 8.1 Default SYSTEM 2000 Item Types and Pictures

SAS Format SYSTEM 2000 Type

$w. CHAR X(n)

$CHARw. TEXT X(n)

any date format DATE

w. INTEGER 9(n)

w.d DECIMAL 9(n-d-1).9(d)

DOLLARw.d MONEY 9(n-d-1).9(d)

Ew.

if n. < 8 REAL

if n. >= 8 DOUBLE

$HEXw. UNDEFINED X(n)

Note: n is the length of the SAS variable. The value of w is ignored.

Allocating the Database Files
In the single-user environment, you must allocate the appropriate database files in your
SAS session before invoking the DBLOAD procedure. For a Multi-User environment,
the database files must already exist and can be allocated when the Multi-User software
is initialized or, in Release 12.0 and later of SYSTEM 2000, the files can be dynamically
allocated during execution by using the ALLOC command. If a database already exists,
it is not released; SYSTEM 2000 returns a message and PROC DBLOAD terminates.

Allocating the Database Files 93

Adding Disjoint Schema Records
The DBLOAD procedure enables you to have records at multiple levels, but they must
be on the same path. If you have disjoint schema records, you must create the database
definition outside of PROC DBLOAD. Use the ACCESS procedure to create the access
and view descriptors. Then, use PROC DBLOAD to load data, one path at a time, in
incremental loads.

Loading One SYSTEM 2000 Database from
Another

To load one SYSTEM 2000 database from another, use a view descriptor as input.
However, both databases cannot be in the same execution environment if you request
optimized load processing. To load one SYSTEM 2000 database from another, one
database must be in the single-user environment and the other database must be in the
Multi-User environment. (Optimized load mode puts the database under exclusive use,
which excludes access to other databases in that environment until exclusive use is
terminated.)

DBLOAD Procedure Options Syntax

The PROC DBLOAD Statement
PROC DBLOAD <options>;

The following options can be used in the PROC DBLOAD statement:

DBMS= database-management-system
specifies the database management system to be accessed. If you have the SAS 7 or
later SAS/ACCESS interface to SYSTEM 2000 installed on your computer, the
DBMS= option defaults to S2K. If you have more than one SAS 7 or later
SAS/ACCESS interface installed, you must specify DBMS=S2K to access the
SYSTEM 2000 data management system.

DATA= libref.SAS-data-set
specifies the input data set. A SAS data set can be either a SAS data file or a SAS
view. If the file is permanent, you must use its two-level name, libref.SAS-data-set. If
you do not specify a data set in the DATA= option, the default is the last SAS data
set that was created.

DBLOAD Procedure Statements
The statements that you use in the DBLOAD procedure depend on whether you are
creating a new database to load data into or whether you are appending data to an
existing database. The following statements are required:

• DBN= and S2KPW= when creating and loading a new database

94 Chapter 8 • DBLOAD Procedure Reference

• VIEWDESC= when appending data to an existing database

• LOAD for both loading and appending

• CREATE for creating a database without loading any data

Of the remaining statements, most are used only when creating a new database;
warnings are issued if you use these statements with an existing database. The following
statements (listed in alphabetical order) can be used only when creating a database:

Table 8.2 Statements to Create a Database

ACCDESC INDEX RESET

CREATE LABEL S2KLEN

DBN LEVEL S2KMODE

DELETE RENAME S2KPW

If a view descriptor exists, PROC DBLOAD assumes that you are adding data to an
existing database. Therefore, it does not accept the preceding statements, which apply
only when creating a database.

Dictionary

DBLOAD Procedure Statements Syntax

DBLOAD Procedure Statements Syntax 95

Syntax
PROC DBLOAD <options>;

CREATE;
DBN= database-name;
ACCDESC= libref.access-descriptor;
DELETE variable-identifier <…variable-identifier-n>;
INDEX variable-identifier = Y | N <…variable-identifier-n= Y | N>;
LABEL;
LEVEL variable-identifier = n <…variable-identifier-n= n>;
LIST list-selection;
LOAD;
QUIT;
RENAME variable-identifier = name <...variable-identifier-n = name-n>;
RESET ALL | variable-identifier <…variable-identifier-n>;
S2KLEN variable-identifier = n <…variable-identifier-n = n>;
S2KLOAD;
S2KMODE= M | S;
S2KPW= password;
VIEWDESC= libref.view-descriptor;
WHERE SAS-where-expression;

ACCDESC= Statement (Optional)
Assigns a name to the access descriptor for a new database.

Alias: ACCESS= and AD=

Applies to: New databases

Syntax
ACCDESC= libref.access-descriptor;

Details
Note: When creating a new database using the ACCDESC=statement, it must follow

another statement that is used only for creating a new database. The ACCDESC=
statement cannot be the first statement specified in PROC DBLOAD.

The ACCDESC= statement specifies an access descriptor (member) name for the new
database. If the member name already exists, the DBLOAD procedure does not create
the new database.

PROC DBLOAD always creates an access descriptor file when it creates a database. By
default, the new database name is Work.database.ACCESS, where database contains the
first 7 characters of the new name. PROC DBLOAD also creates a view descriptor that
matches the access descriptor. (See “VIEWDESC= Statement (Required) | (Optional)”
on page 103.

96 Chapter 8 • DBLOAD Procedure Reference

CREATE Statement (Required)
Creates a database definition.

Applies to: New databases

Syntax
CREATE;

Syntax Description
The CREATE statement creates a SYSTEM 2000 database definition, but does not load
any data. By default, PROC DBLOAD expects you to load the data.

DBN= Statement (Required)
Specifies the database to be created

Alias: DB=

Applies to: New databases

Syntax
DBN= database-name;

Syntax Description
The DBN= statement is required when you are creating a new database. It specifies the
name of the database to be created. A database with the same name must not already
exist. database name must be a valid SYSTEM 2000 database name, from 1 to 16
characters in length. Database names longer than 16 characters are truncated and no
error message appears. If the database name contains embedded blanks or special
characters, enclose the special characters in single quotation marks. The slash (/), colon
(:), and equal sign (=) are not used.

SYSTEM 2000 uses the first 7 characters of the database name as part of the ddname for
the database files. Any restrictions imposed by the operating environment on ddnames
also apply to the database name.

For single-user jobs, you must allocate your files to your SAS session. For the
Multi-User environment, the database files can be allocated when the Multi-User
software is initialized or, if using Release 12.0 or later of SYSTEM 2000, the files can
be dynamically allocated during execution by using the ALLOC command.

DELETE Statement (Optional)
Does not load specified variables into the new database

Applies to: New databases

DELETE Statement (Optional) 97

Syntax
DELETE variable-identifier<…variable-identifier-n> ;

Syntax Description
The DELETE statement specifies that you want to delete (drop) the specified variables
from the load. By default, all SAS variables are loaded unless you specify a DELETE
statement.

variable-identifier can be either the SAS variable name or the positional equivalent in
the LIST output, which is the number that represents the variable's place in the data file.
For example, if you want to delete the third variable, issue the following statement:

 delete 3;

You can delete as many variables as you want to in one DELETE statement. If you
delete more than one variable, use spaces to separate the identifiers; do not use commas.

Note: If you delete a variable from a table, this does not change the positional
equivalents of the variables. For example, if you delete the second variable, the third
variable is still referenced by the number 3, not 2.

INDEX Statement (Optional)
Indicates the status of items

Applies to: New databases

Syntax
INDEX variable-identifier = Y | N <…variable-identifier-n= Y | N> ;

Syntax Description
The INDEX statement indicates the KEY or NON-KEY status of items in the SYSTEM
2000 database. Y means that the item is indexed (KEY); N means the item is not indexed
(NON-KEY). The default is NON-KEY (N).

variable-identifier can be either the SAS variable name or the positional equivalent in
the LIST output, which is the number that represents the variable's place in the data file.

LABEL Statement (Optional)
Causes DBMS column names to default to SAS labels

Applies to: New databases

Syntax
LABEL;

98 Chapter 8 • DBLOAD Procedure Reference

Syntax Description
The LABEL statement specifies that you want the SYSTEM 2000 item names to default
to the 40-character SAS variable labels. If a variable has no label, the 8-character SAS
variable name is used.

LEVEL Statement (Optional)
Specifies a number for the variable level

Applies to: New databases

Syntax
LEVEL variable-identifier = n <…variable-identifier-n=n> ;

Syntax Description
The LEVEL statement enables you to specify a number for the level for one or more
variables that will become items in the SYSTEM 2000 database. The default is level 0. If
you specify any items under level 0, PROC DBLOAD automatically defines the
appropriate schema records.

variable-identifier can be either the SAS variable name or the positional equivalent in
the LIST output, which is the number that represents the variable's place in the data file.
n is an integer from 0 through 9.

LIST Statement (Optional)
Lists information about the variables to be loaded

Applies to: New and existing databases

Syntax
LIST list-selection;

Syntax Description
The LIST statement causes a list of information to be displayed for all input variables,
along with the current options, such as KEY or NON-KEY and level number. The
default destination of the list is the SAS log.

list-selection can be one or more of the following:

ALL causes all information for the load to be listed.

FIELDS |
ITEMS

causes all SYSTEM 2000 items for the load to be listed. ITEMS
is an alias.

variable-identifier causes only one line with the information about the specified variable
to be listed. The variable-identifier can be either the SAS variable name or the positional
equivalent in the LIST output, which is the number that represents the variable's place in
the data file. For example, if you want to list the information for the item associated with
the third SAS variable, submit the following statement:

 list 3;

LIST Statement (Optional) 99

You can use one or more of these options in the LIST statement in any order

 list 3 fields 4;

This statement lists the information for the third SAS variable, followed by all the items
in the data file, followed by the information for the fourth SAS variable.

LOAD Statement (Required)
Executes the load operation

Applies to: New and existing databases

Syntax
LOAD;

Syntax Description
The LOAD statement specifies that you want to execute the DBLOAD procedure.

QUIT Statement (Optional)
Terminates the DBLOAD procedure

Applies to: New and existing databases

Syntax
QUIT;

Syntax Description
The QUIT statement specifies that you want to exit the procedure without additional
processing. EXIT and END are aliases.

RENAME Statement (Optional)
Renames DBMS columns

Applies to: New databases

Syntax
RENAME variable-identifier= name <…variable-identifier-n= name-n> ;

Syntax Description
The RENAME statement specifies that you want to change the names of the SYSTEM
2000 items associated with the listed SAS variables. The new component names go into
the access descriptor and the view descriptor that are created for the new database.

100 Chapter 8 • DBLOAD Procedure Reference

variable-identifier can be either the SAS variable name or the positional equivalent in
the LIST output, which is the number that represents the variable's place in the data file.
For example, if you want to rename the item associated with the third SAS variable,
submit the following statement:

 rename 3='employee name';

The name must be a valid SYSTEM 2000 component name. If the item name includes
embedded blanks or invalid SAS name characters, such as the pound sign (#) or hyphen
(-), you must enclose the item name in single quotation marks.

n is an integer from 1 to a maximum of 9,999.

The RENAME statement enables you to include variables that were deleted. For
example, if you first submit the statement DELETE 3 and then submit RENAME
3=XYZ, the third variable will be included and assigned the name XYZ and the default
item type.

If you do not use the RENAME statement, all SYSTEM 2000 item names default to the
corresponding SAS names or to the SAS labels if you submitted the LABEL statement.
You can list multiple variables in one RENAME statement. The RENAME statement
overrides the LABEL statement for the items that are renamed.

RESET Statement (Optional)
Resets column names and data types to their default values

Applies to: New databases

Syntax
RESET ALL | variable-identifier <...variable-identifier-n> ;

Syntax Description
The RESET statement resets the items that are associated with the listed SAS variables
to their defaults. You can reset multiple items in one RESET statement.

ALL resets all items to the defaults. Deleted items are restored with default
values. Item names default to SAS variable names (or labels), item
types are generated from the SAS variable formats, and all items are
NON-KEY at level 0. ALL specifies that all previous RENAME,
DELETE, INDEX, LEVEL, and S2KLEN statements are ignored.

variable-
identifier

can be either the SAS variable name or the positional equivalent in
the LIST output, which represents the variable's place in the data file.

n is an integer that defines a specific level. If you want the tenth variable, then its value
is 10. There is no range for the value of n. For example, if you want to reset the item
associated with the third SAS variable, submit the following statement:

 reset 3;

S2KLEN Statement (Optional)
Changes the SAS variable length of DBMS column names

S2KLEN Statement (Optional) 101

Applies to: New databases

Syntax
S2KLEN variable-identifier = n <…variable-identifier-n = n> ;

Syntax Description
The S2KLEN statement enables you to change the SYSTEM 2000 picture for a
CHARACTER or TEXT type item.

variable-identifier can be either the SAS variable name or the positional
equivalent in the LIST output, which represents the variable's place in the data file.

n is an integer from 1 to 250, which is used in the definition of the new database, such as
CHAR X(10). If you do not specify the length of a CHARACTER or TEXT item, the
SAS variable length is used.

The main reason for changing the picture is to allow overflow when the SAS length is
greater than 4. A SYSTEM 2000 picture equal to or greater than 4 enables overflow of
CHARACTER or TEXT type data values. For example, if the length of a SAS variable
is 80 and you set the SYSTEM 2000 picture to 4, the entire value goes into overflow.

S2KLOAD Statement (Optional)
Turns on optimized load mode processing

Applies to: New and existing databases

Syntax
S2KLOAD;

Syntax Description
The S2KLOAD statement controls whether SYSTEM 2000 uses optimized load
processing. You can use the optimized load mode for the initial load or for incremental
loads that involve adding new logical entries. However, if you are inserting new records
into existing entries, you cannot use optimized loading because the new records are
inserted under existing records. The default is insert mode.

S2KMODE= Statement (Optional)
Specifies the mode for accessing SYSTEM 2000

Alias: S2KMD=

Default: S

Applies to: New databases

Syntax
S2KMODE= M | S;

102 Chapter 8 • DBLOAD Procedure Reference

Syntax Description
The S2KMODE= statement specifies the mode for accessing SYSTEM 2000.

M specifies the SYSTEM 2000 Multi-User mode.

S specifies the single-user mode, that is, a database in your SAS program
environment. S is the default.

S2KMODE= is also a data set option for input views for SAS procedures. However, you
cannot use it as a data set option in the DBLOAD procedure. For more information, see
“Overriding Options” on page 121.

S2KPW= Statement (Required)
Assigns a database password

Applies to: New databases

Syntax
S2KPW= password;

Syntax Description
The S2KPW= statement specifies the master password for the database that is being
created. The password must be acceptable to SYSTEM 2000.

password can be 1 to 4 characters in length, have no embedded blanks, and can be
enclosed in single quotation marks. Passwords longer than four characters are truncated,
and a warning message is issued. If you specify a special character for the password, it
must be a single character (that is, a 1-character password) enclosed in single quotation
marks.

S2KPW= is also a data set option for input views for SAS procedures. However, you
cannot use it as a data set option in the DBLOAD procedure. For more information, see
“Overriding Options” on page 121.

VIEWDESC= Statement (Required) | (Optional)
Assigns a name to the view descriptor for a new database

Applies to: Optional for new databases , Required for existing databases

Note: When creating a new database using the VIEWDESC= statement, it must follow
some statement that is only for creating a new database. The VIEWDESC=
statement cannot be the first statement specified in PROC DBLOAD.

Syntax
VIEWDESC= libref.view-descriptor;

Syntax Description
The VIEWDESC= statement identifies the view descriptor for the SYSTEM 2000
database that is being created or loaded.

VIEWDESC= Statement (Required) | (Optional) 103

For an existing database, the VIEWDESC= statement is required because it contains the
database name and identifies the password and the components in the view.

When you create a new database, PROC DBLOAD creates a view descriptor. By default,
the new database name is Work.database.VIEW, where database contains the first 7
characters of the new name. The view descriptor matches the access descriptor from
which it is derived. Use the VIEWDESC= statement to specify the libref and member
name for a permanent view descriptor. If the member name for the view descriptor
already exists, PROC DBLOAD does not create a new database.

WHERE Statement (Optional)
Subsets input data

Applies to: New and existing databases

Syntax
WHERE SAS-where-expression;

Syntax Description
The WHERE statement specifies how you want to subset your input data.

SAS-where-expression must be a valid WHERE statement in SAS.

Note: You must use SAS variable names in the WHERE statement; do not use the
SYSTEM 2000 component names.

The following statement loads only those observations that contain JONES and APRIL
in the SAS variable CUSTNAME:

 where custname='JONES, APRIL';

For information about the WHERE statement in SAS, see SAS Statements: Reference.

104 Chapter 8 • DBLOAD Procedure Reference

Chapter 9

QUEST Procedure Reference

QUEST Procedure in SAS with SYSTEM 2000 . 105

Statements in PROC QUEST . 106

SYSTEM 2000 Statements and the QUEST Procedure . 106
Using the QUEST Procedure . 106
ECHO ON and ECHO OFF Statements . 107
SYSTEM 2000 Strings and Functions . 107

Single-User Mode . 108
Using Single-User Mode . 108
The S2KPARMS File . 108
Attention Interrupts in TSO . 108

Multi-User Mode . 109
Using Multi-User Mode . 109
Temporary Output File . 109
Command File . 109
Attention Interrupts in TSO . 110

Dictionary . 110
QUEST Procedure Syntax . 110
MCS Procedure Statement (Optional) . 111
QUIT Procedure Statement (Optional) . 111
SCS Procedure Statement (Optional) . 112

QUEST Procedure in SAS with SYSTEM 2000
The QUEST procedure enables you to perform the following tasks in SYSTEM 2000
databases from within SAS:

• define new databases

• assign passwords

• retrieve data

• update data

• enable rollback

• restore a database

• save a database

105

PROC QUEST is interactive; SYSTEM 2000 executes statements as soon as you submit
them. You do not need a RUN statement.

Note: If you issue a RUN statement, SAS ignores it when you use PROC QUEST.

SAS statements that can be issued anywhere (for example, TITLE and FILENAME) are
also available when you use the QUEST procedure.

Statements in PROC QUEST
Note: All the statements in PROC QUEST are optional.

PROC QUEST statements specify how SYSTEM 2000 statements are submitted within
the QUEST procedure, that is, single command submission (SCS) or multiple command
submission (MCS). You can also submit SYSTEM 2000 statements in a Command File
and not use any PROC SYSTEM 2000 Statements and the QUEST Procedure and
Single-User Mode. QUEST statements. Multiple command submission and Command
Files are supported only in the Multi-User access mode.

For more information, see “SYSTEM 2000 Statements and the QUEST Procedure” on
page 106 and “Single-User Mode” on page 108.

SYSTEM 2000 Statements and the QUEST
Procedure

Using the QUEST Procedure
SYSTEM 2000 statements in PROC QUEST might be any valid SYSTEM 2000
statement that is available in the Self-Contained Facility, which includes the following:

• CONTROL statements to save and restore databases, to assign passwords and
authorities, to create and remove indexes, and so on,

• DEFINE statements to define, change, and delete database components in the
database definition

• QUEST statements to access a database for retrieval and updates

• REPORT statements to produce customized reports

For more information, see the Quick Reference Guide.

Note: When you submit SYSTEM 2000 statements in PROC QUEST, the statements are
subject to SAS syntax rules. For example, you must end statements with a semicolon
(;) instead of a colon (:), use '/*' and '*/' to delimit comments, and so on. SYSTEM
2000 statements that contain a character literal that is more than 200 characters in
length are rejected. If you want to use a single quotation mark (') or double (closing)
quotation marks (”) as the delimiter in a SYSTEM 2000 where-clause, you must use
one of the techniques described below. Otherwise, quotation marks cause ambiguity
between the SAS parser and the SYSTEM 2000 parser.

A quoted string is required if the SYSTEM 2000 where-clause condition contains any of
the following:

• a value that is specified in mixed case

106 Chapter 9 • QUEST Procedure Reference

• a where-clause keyword, such as OR, AT, or AND, in the value. For example,
PRINT ENTRY WHERE C303 CONTAINS 'INSTRUCTOR AT ACC';

• a single quotation mark (') or double (closing) quotation marks (”) in the value

You might want to use quoted strings because you are accustomed to using them in other
systems.

To use a single quotation mark (') or double (closing) quotation marks (”) around a value
in a where-clause condition, you can use either of the following methods:

• Create a short SYSTEM 2000 Command File that contains the following two
statements, which make the where-clause delimiter a single quotation mark ('):

 DELIMITER IS ';
 COMMAND FILE IS INPUT;

Invoke this short Command File one time to change the delimiter; the second statement
returns you to your usual way of entering statements in PROC QUEST. By running this
short Command File at the beginning of a PROC QUEST session, you do not have to put
every statement that contains a quoted string into a separate Command File.

Note: SYSTEM 2000 commands in a Command File must be specified in uppercase or
a syntax error occurs.

• If you do not want to create the short Command File, you can submit the following
statements from the Program Editor:

 delimiter is '; ';
 'x';

You will receive messages from SYSTEM 2000 and a syntax error warning, but,
after the 'X' statement finishes processing, you can safely use single quotation marks
(' ') as the where-clause delimiter.

If a value contains a single quotation mark, change the delimiter to double quotation
marks (” ”) by using one of the preceding methods.

ECHO ON and ECHO OFF Statements
SYSTEM 2000 messages are displayed in the Log window, along with SAS messages.

The ECHO ON statement specifies that echoes of SYSTEM 2000 statements appear in
theOutput window in addition to the statement output. This is convenient for debugging
or interpreting results.

The ECHO OFF statement specifies that echoes of SYSTEM 2000 statements do not
appear in the Output window.

Note: If you use ECHO ON and the MCS statement, you get one echo of all the
commands at the same time no matter how many individual commands were
submitted in one MCS. Also, only 249 characters are echoed.

SYSTEM 2000 Strings and Functions
You probably need to modify existing SYSTEM 2000 strings and functions when you
use PROC QUEST because

• the statement terminator must be the semicolon (;), not the colon(:). Any colons
embedded in the strings or functions do not work correctly. Therefore, a string or
function with embedded statement terminators can be invoked from within or from
outside PROC QUEST, but not both.

SYSTEM 2000 Statements and the QUEST Procedure 107

• statements cannot start with the default SYSTEM 2000 separator, the asterisk (*). In
SAS, an asterisk signifies the beginning of a comment.

• statements cannot contain a percent sign (%) as a system separator. In SAS, a percent
sign signifies the beginning of a macro statement.

To avoid problems with system separators, submit a SEPARATOR IS statement to
change the separator. For example, the following statement changes a separator to a
comma (,):

 separator is ,;

Single-User Mode

Using Single-User Mode
When you invoke PROC QUEST in single-user mode (S2KMODE=S), SAS displays the
following information:

• SYSTEM 2000 initialization parameters

• SYSTEM 2000 version number

• copyright information

Submit the USER statement to establish your password and start your SYSTEM 2000
session. The following example statements also attach the database Employee to your
session:

 user,demo;
 data base name is employee;

The SYSTEM 2000 interface to SAS accesses the database and displays any output in
the Output window or in the procedure output file (if you are executing in interactive
line mode).

The S2KPARMS File
Because you are running in your own address space when you are in single-user access
mode, you can specify a variety of parameters. (See SYSTEM 2000(R) Software: Product
Support Manual, Version 1, First Edition for information about SYSTEM 2000
execution parameters.) To specify execution parameters for the QUEST procedure in
single-user mode, you must set up a file with the fileref S2KParms. If there is no fileref
named S2KParms, system defaults are used.

For example, the LIST=YES parameter displays the parameter values in the Log window
when the system is initialized. To suppress this display, edit the file and specify
LIST=NO and allocate it using the fileref of S2KParms in your SYSTEM 2000 CLIST
or EXEC.

Attention Interrupts in TSO
If you interrupt where-clause processing under TSO in single-user mode, your request is
canceled. A canceled retrieval produces no output, and a canceled update does not alter
the database.

108 Chapter 9 • QUEST Procedure Reference

If you interrupt processing at any other time, the interrupt is ignored. When you return to
SAS, the usual SAS interrupt-handling mechanism is restored.

While it is not recommended, you can prevent single-user mode from intercepting the
SAS attention-interrupt mechanism by specifying STAX=NO in the file S2KParms.
However, be aware that, if you terminate both the QUEST procedure and SAS by using
the SAS Attention exit after having updated the database, you might have unwritten
buffers left in memory. As a result, the database could be damaged.

Multi-User Mode

Using Multi-User Mode
When you invoke PROC QUEST in Multi-User mode (S2KMODE=M), SAS displays
the following messages:

QUEST Ready
S2K3212/00 - SYSTEM 2000 INTERACTIVE INTERFACE READY -

Submit the USER statement to establish your password and start your SYSTEM 2000
session. For example, the following statements attach the database Employee to your
session:

 user,demo;
 data base name is employee;

The SYSTEM 2000 interface to SAS accesses the database and displays any output in
the Output window or in the procedure output file (if you are executing in interactive
line mode).

Temporary Output File
PROC QUEST uses a disk file to temporarily store output. In CMS, the file is allocated
automatically. In TSO, you need to allocate a file with at least 10 tracks of 3350 disk
space (or the equivalent) and assign the ddname S2KOUTP. If the file is not allocated,
the warning message -895- appears, and any response from SYSTEM 2000 that exceeds
4096 bytes is truncated.

Usually, 10 tracks of 3350 disk space is enough for typical use. If some output cannot be
stored in S2KOUTP, message -897- appears, and you lose some output. Re-allocate the
file with more space later.

Command File
You can save SYSTEM 2000 statements in a file by using the SAS Text Editor and
directing PROC QUEST to read statements from that file by submitting the following
statement:

 local command file is fileref;

fileref is the ddname for the file. However, any SAS macros in the file are not expanded
because PROC QUEST submits the statements directly to SYSTEM 2000 without SAS
reading them.

The following statement lets you continue to submit statements from the Program
Editor; write it at the end of the Command File:

Multi-User Mode 109

 LOCAL COMMAND FILE IS INPUT;

If you omit this command, PROC QUEST automatically returns to the Program Editor
when it finds an end-of-file in the Command File.

Note: SYSTEM 2000 commands in a Command File must be specified in uppercase or
a syntax error occurs.

PROC QUEST enables you to use alternate user files for the Data File, Message File,
and Report File. They can be local files or files allocated in the Multi-User region.

Attention Interrupts in TSO
If you interrupt processing while running PROC QUEST under TSO, the usual SAS
message (asking whether you want to terminate or continue) does not appear. Instead, an
attention interrupt in the Output window is interpreted to mean that you want to purge
any additional output. The first line on the next page is displayed, but additional output
from your last statement is discarded. If you interrupt processing at any other time, the
interrupt is ignored.

To cancel the session, you must first terminate PROC QUEST.

Dictionary

QUEST Procedure Syntax

Syntax
PROC QUEST <S2KMODE= M | S> <BLANKS>;

MCS;
QUIT;
SCS;
SYSTEM 2000 statements;

Optional Arguments
S2KMODE=M | S

specifies the mode in which you want to access SYSTEM 2000, M for Multi-User
mode or S for single-user mode. Use M to access Multi-User SYSTEM 2000 running
under a different CMS computer or z/OS address space. Use S to load and execute
your own copy of SYSTEM 2000 on your computer or address space. The default is
M.

S2KMD= is an alias for S2KMODE=. (ACCESS=, ACC=, DBACCESS=, and
DBACC=, which were developed for SAS 5, might also be used.)

BLANKS
retains all blanks in SYSTEM 2000 statements and passes them to SYSTEM 2000
software. You can specify the BLANKS option in order to retain blanks in LIST
column headings, TEXT values, and report titles and headings. If you do not specify
the BLANKS option, SAS deletes extraneous blanks by default. That is, leading,

110 Chapter 9 • QUEST Procedure Reference

trailing, and embedded blanks are stripped from the statements before SYSTEM
2000 reads the statements. BLANK is an alias for BLANKS.

MCS Procedure Statement (Optional)
Puts the QUEST procedure into MCS mode.

Syntax
MCS;

Details
The MCS statement puts the QUEST procedure into statement-queuing mode (multiple
command submission). That is, PROC QUEST accumulates statements in a 32760-byte
buffer before submitting them to SYSTEM 2000. If the accumulated statements fill the
buffer, the system displays message -898-. This message instructs you to submit the
statements in the buffer by entering two semicolons (;;) or to submit the SCS statement
to erase the buffer contents and terminate the MCS mode. You remain in MCS mode
until you issue the SCS statement.

The MCS statement is ignored in single-user access mode. In a Multi-User environment,
you can use the MCS statement or a Command File to submit a long sequence of
SYSTEM 2000 statements that must be processed as a group. For example:

• to define a new database or modify an existing definition

• to submit statements to the Report Writer feature

• to submit a set of IF-THEN/ELSE statements

• to submit QUEUE and TERMINATE statement blocks

Issue the RECALL command to bring submitted statements back into the Program
Editor. Issue the SAVE command to store the statements in an external file. Then, when
you submit the LOCAL COMMAND IS statement, SYSTEM 2000 processes the
statements in that file.

If you exit SAS, the MCS buffer is emptied without sending the statements to SYSTEM
2000. To exit SAS and close the database, type BYE on the command line in the
Program Editor or submit an ENDSAS statement.

If you submit long strings of statements that terminate with the ENDSAS statement, you
must end the SYSTEM 2000 session by using two semicolons (;;) in order to submit the
statements to SYSTEM 2000.

QUIT Procedure Statement (Optional)
Terminates the QUEST procedure.

Syntax
QUIT;

QUIT Procedure Statement (Optional) 111

Details
The QUIT statement closes the SYSTEM 2000 database, terminates the SYSTEM 2000
session, and ends the QUEST procedure. END and EXIT are aliases for QUIT. You can
issue a SYSTEM 2000 EXIT statement any time during a PROC QUEST session.

SCS Procedure Statement (Optional)
Puts the QUEST procedure in SCS mode.

Syntax
SCS;

Details
The SCS statement puts PROC QUEST into single-statement queuing mode (single
command submission).

Note: SCS erases the 32760-byte buffer (used with the MCS mode) even if the buffer
contains statements that were not yet sent to SYSTEM 2000.

112 Chapter 9 • QUEST Procedure Reference

Appendix 1

Topics for Database
Administrators

SYSTEM 2000 and the SAS/ACCESS Interface . 113
Overview for the Database Administrator . 113
SYSTEM 2000 Interface View Engine . 114

Changing a SYSTEM 2000 Database Password . 116

Changing a Database Definition . 116

Data Security . 117
Ensuring Data Security . 117
SYSTEM 2000 Security . 118
SAS System Security . 118

Enabling the Rollback Log . 118

Locking Record Levels . 119

Maximizing SYSTEM 2000 Performance . 120

SYSTEM 2000 and the SAS/ACCESS Interface

Overview for the Database Administrator
Understanding how the SAS/ACCESS interface to SYSTEM 2000 works can help a
Database Administrator (DBA) decide how to use it.

When an access descriptor file is created by using the ACCESS procedure, SAS calls
SYSTEM 2000 to get a description of the database. When a view descriptor file is
created, SAS already has the information about the database in the access descriptor, so
it does not call SYSTEM 2000.

PROC ACCESS writes the descriptor files to a SAS library. Then, when a SAS
procedure is used with a view descriptor whose data is in a SYSTEM 2000 database, the
SAS Supervisor calls the interface view engine to access the data. The engine can access
a database for reading, updating, inserting, and deleting.

The connections between the SAS procedures and SYSTEM 2000 are shown in the
following figure:

113

Figure A1.1 SAS Procedures and SYSTEM 2000

SYSTEM 2000 Interface View Engine

Using the SYSTEM 2000 Interface View Engine
The SYSTEM 2000 interface view engine is a PLEX (Programming Language
Extension) applications program that retrieves and updates data in a SYSTEM 2000
database. Use the following to make calls to the engine:

• the ACCESS procedure to create an access descriptor

• the DBLOAD procedure and specify a view descriptor by using the VIEWDESC=
option

• the QUEST procedure to negotiate an execution environment

• a SAS DATA step or SAS procedures and specify a view descriptor by using the
DATA= option

In all instances, the same PLEX commands initiate and terminate communication
between the interface view engine and SYSTEM 2000. Each time a different SAS
procedure requires use of SYSTEM 2000, the procedure makes an initialization call to
the engine. This first call establishes communication with SYSTEM 2000. Then, the
interface view engine issues:

114 Appendix 1 • Topics for Database Administrators

1. the START S2K command for a single-user or Multi-User environment, as specified
by the calling SAS procedure.

2. an OPEN command for the specified database and then returns control to the
procedure. Additional calls to the engine perform retrieval and update operations
specified by the SAS procedure until the procedure is terminated.

3. a CLOSE command for the database that was opened.

4. the STOP S2K command when the entire SAS session terminates, or when you run
the QUEST procedure in the same environment (single-user or Multi-User) that the
SAS programs have been running in.

Using the ACCESS Procedure
The ACCESS procedure calls the interface view engine to retrieve item and record
information for a specified database. The engine sends the component number, name,
type, picture, level number, and key status (with the database cycle number, and so on)
back to the procedure for each item and record in the database. PROC ACCESS stores
this information in the access descriptor for later use when creating view descriptors.
PROC ACCESS also calls the engine to extract information into a SAS data file.

Using the DBLOAD Procedure
When you create a new database, the DBLOAD procedure always creates an access
descriptor and a view descriptor.

To insert data into an existing SYSTEM 2000 database, you must specify an appropriate
view descriptor by using the VIEWDESC= option in the DBLOAD procedure. The view
descriptor provides a mapping between the SAS variables that contain data to be inserted
and the SYSTEM 2000 components that insert the data into the database. It also contains
the database name, password, and access mode to be used when you insert data.

For each observation that is retrieved from the data file specified in the DATA= option, a
corresponding call is made to the interface view engine. The engine inserts the data into
the database identified by the view descriptor. The engine uses only Insert mode (one at
a time) for inserting new descendant records into existing logical entries. Also, if the
DATA= option identifies a SYSTEM 2000 view descriptor, the interface view engine is
called to read that view.

When you load new logical entries (starting with records at level 0) into a database, you
can specify that you want to use an optimized loading process. SYSTEM 2000 processes
the new logical entries as one batch of inserts (PLEX load mode). The optimized load
mode is faster than inserting records one at a time. However, it causes SYSTEM 2000 to
attach the database for exclusive use, and no other database can be open in the same
execution environment. Therefore, if your job is using optimized load, your input cannot
also be a SYSTEM 2000 view descriptor of a database in the same environment.

Using the QUEST Procedure
Usually, the QUEST procedure communicates directly with SYSTEM 2000. When you
enter SYSTEM 2000 statements (commands), they are processed immediately, and the
results are sent back to you, interactively. However, there is one exception. Each time
you execute the QUEST procedure, it calls the engine to request permission to execute.
If no other SAS programs are using the engine in the same environment, permission is
granted. Otherwise, permission to execute is refused. Similarly, when the QUEST
procedure terminates, it calls the engine to signal the event so that the engine can enable
other SAS programs to execute. The engine does not enable SAS jobs to execute in the
same environment while the QUEST procedure is running.

SYSTEM 2000 and the SAS/ACCESS Interface 115

Using Other SAS Procedures
SAS procedures can access records in a SYSTEM 2000 database by specifying a view
descriptor in the DATA= option. SAS examines the view descriptor to determine which
database management system is specified and passes control to the appropriate engine.
The interface view engine uses information stored in the view descriptor (for example,
access mode, password, database name, component numbers, levels, types, and so on) to
process SYSTEM 2000 data records as if they were observations in a SAS data file.

Before performing retrievals, the engine processes a PLEX dynamic where-clause (if
specified) to select a subset of data records that should be processed as observations. The
engine constructs the dynamic where-clause from the view where-clause and the
WHERE clause in SAS (if any). If no view where-clause exists, a where-clause is
constructed to locate all database records.

The dynamic where-clause processing returns a Locate File that contains the addresses
of database records that satisfied the selection criteria. Based on those addresses, the
engine issues a combination of GET S2KCOUNT, GET1, and GETA commands to read
one or more database records. Then, the engine combines data from the records
(according to the view descriptor) to form a SAS observation that it passes back to the
calling procedure for processing.

Based on the capabilities of the SAS procedure that you are using, the next call to the
engine might be a request to update or delete the SAS observation that was just
retrieved. For updates, the engine issues MODIFY, INSERT, and REMOVE commands
for one or more data records, based on how many records were used to construct the
observation. Then, the SAS procedure calls the engine again to retrieve another SAS
observation. The engine locates another group of records, constructs another SAS
observation, and returns it to the SAS procedure. This cycle continues until the SAS
procedure is terminated or until the last qualified SAS observation has been constructed
and returned to the SAS procedure. The interface view engine also uses other
commands, such as COMMIT, ROLLBACK, and CLEAR, to control processing.

Changing a SYSTEM 2000 Database Password
The master password holder (usually, the DBA) can change any database password at
any time. If a password that is stored in a view descriptor is changed, the DBA can either
change the view descriptor or override the stored password each time the view descriptor
is used. The software does not require that you use the same password. The engine only
requires that you use a password that has enough authority to service the view descriptor.

Because SYSTEM 2000 passwords are not stored in access descriptors, there are no
effects if a SYSTEM 2000 password is changed. Passwords can be stored in view
descriptors, but changing a password does not affect the view descriptor. It still has all
the items, but you might not be able to use the view. Nothing is automatically changed in
the descriptors when you change a password or its authorities.

Changing a Database Definition
Changes to a database definition can affect view descriptor files. The interface view
engine validates the view against the current definition and issues an error message if it
detects discrepancies.

116 Appendix 1 • Topics for Database Administrators

The following sections contain details about the effects of changes to a SYSTEM 2000
database definition on existing view descriptors.

• Changes that do not affect existing view descriptors:

• creating or deleting indexes

• inserting new schema items

• deleting schema items not referenced in any view descriptor

Note: If an access descriptor includes the deleted schema item, users might
create a view descriptor using that item, which would cause a problem.

• inserting or deleting schema records in paths not referenced in any view
descriptor

Note: If an access descriptor references the changed path, users might create a
view descriptor using that path. This would cause a problem.

• Changes that might affect existing view descriptors:

• changing an item name. If the item name was used in a where-clause or an
ordering-clause that is stored in the view descriptor, a syntax error message
appears when you try to use the view descriptor. The message indicates an
unrecognized component name.

• changing the attributes of items that are not in the view descriptor but are
referenced in the stored where-clause.

• The following changes can cause existing view descriptors to fail:

• inserting or deleting a level in the path of a view descriptor.

• changing the attributes of an item or the component number of an item, so that it
points to something different. Specifically,

• You can change the pictures for CHARACTER, TEXT, and UNDEFINED
item types, but you cannot change them to a DATE or NUMERIC item type.

• You cannot change a DATE item type to any other item type.

• You cannot change a NUMERIC item type to a non-numeric item type or
change its picture.

• changing the component number of parent records for any schema item or record
in the path of a view descriptor.

• deleting items that are referenced in a view descriptor.

Data Security

Ensuring Data Security
SAS preserves the data security provided by SYSTEM 2000 and SAS. The DBA
controls who has SYSTEM 2000 authorities and who can create SYSTEM 2000
databases. Creators of the databases control who can access the data. Therefore, SAS
users can access only SYSTEM 2000 databases that they created or databases for which
they have specific password authorities.

Data Security 117

To protect data from accidental update or deletion, you can use precautionary measures
on both sides of the interface.

SYSTEM 2000 Security
In SYSTEM 2000, the DBA gives users secondary passwords that enable only the
authority that they must have. For example, Jane needs to create a view descriptor that
reads and selects only the personal information about each employee in the database
Employee, which is stored in the ENTRY record. To do this, Jane only needs to perform
retrievals and where-clause selection on schema items C1 through C16. Use the
following commands to assign her authorities:

 valid password is jane;
 assign r,w to c1 through c16 for jane;

John needs to add new employees' names to the database, so he needs all authorities. Use
the following commands to assign his authorities:

 valid password is john;
 assign r, u, w to all components for john;

With retrieval, update, and where-clause authorities, John can create a view descriptor
that reads the data records for the schema items and can use that view descriptor to add
new logical entries to the database.

If SYSTEM 2000 detects a security violation while a SAS procedure or DATA step is
running, it issues the return code 45 or 47 and an error message. If rollback is enabled
for the database, partial updates are rolled out (canceled).

SAS System Security
In SAS, the DBA can do the following:

• Set up all access descriptors and drop items that contain sensitive data.

• Set up all view descriptors and enable users access to them on a selective basis by
storing the appropriate passwords in the descriptors, or requiring you to supply a
password.

• Give users Read-Only access to the SAS library in which the access descriptors are
stored. Read-Oonly access enables users to see only the items selected for each view
descriptor and prevents them from editing access descriptors.

• Set up several access descriptors for multiple secondary passwords, or require you to
create the access descriptors.

Enabling the Rollback Log
A single SAS observation can be composed of one or more SYSTEM 2000 database
records. Therefore, a single UPDATE command in SYSTEM 2000 to update a given
observation might involve several internal SYSTEM 2000 UPDATE commands. If one
of these UPDATE commands fails after several others have executed, the status of the
entire update is incomplete.

In order to guarantee the data integrity, you must enable the rollback feature. You can do
this easily with the QUEST procedure, by issuing the ENABLE ROLLBACK statement
in the CONTROL language. When you enable rollback, you must make sure that the

118 Appendix 1 • Topics for Database Administrators

Rollback Log (database File 8) and the Update Log (database File 7) are allocated. With
rollback enabled, SYSTEM 2000 can roll back the database to its status before the
sequence of commands that triggered the error.

If rollback is not enabled, partial updates can occur if error return codes are received.
Errors can occur from security violations or from bad data. For example, data that does
not match the SAS informat, or data that has too many significant decimal places for a
specific item's numerical precision. Also, if LHOLD=YES is specified in the SYSTEM
2000 execution parameters and rollback is not enabled, the interface view engine can
receive return code 111, which causes an update to be rejected.

Locking Record Levels
SAS supports several levels of locking through the CNTLLEV= data set option. If
CNTLLEV=REC (the default), SYSTEM 2000 performs record-level locking. The
interface view engine interprets any value for the CNTLLEV= option other than REC, to
signify that it should enable exclusive use of the database. Also, the database is under
exclusive use if you issue the S2KLOAD statement in the DBLOAD procedure.
Exclusive use locks out all other users until the database is closed, which usually occurs
when the procedure ends. (The database CLOSE operation depends on the procedure
used.)

Note: Some SAS procedures, such as statistical procedures, set CNTLLEV=MEM
internally because multiple passes of the data must be made. For example, finding
the median requires more than one pass.

In a Multi-User environment, exclusive use of a database can cause contention in a
database. Also, if you have specified optimized load mode (S2KLOAD) in PROC
DBLOAD, your input to that load cannot be a SYSTEM 2000 view descriptor for a
database in the same environment.

When exclusive use of the database is not requested, the interface view engine uses
SYSTEM 2000 record-level locking and multiple local holds. This means that an
observation is locked for retrieval, and unlocked only when some other observation is
retrieved or when the file is closed. Updates do not unlock an observation. Record-level
locking can cause contention in a SYSTEM 2000 database. The interface view engine
takes the following steps to keep the contention to a minimum:

• At retrieval time, the engine attempts to lock all records in the path (using the
PLEX /HOLD option). If the lowest-level record in the path (that is, the record
farthest from level 0) cannot be locked, an error return code is sent to SAS that
indicates that this observation cannot be locked. Records above the lowest level in
the view are locked if possible. However, the engine does not regard it as an error
when they cannot be locked, and no message is sent to warn you.

• At update time, only those records that were successfully locked can be updated. For
updates at levels that were not previously locked, the engine tries again to obtain the
locks. If it cannot get them, the update fails, a return code indicates that it could not
get the necessary lock, and partial updates are rolled back if rollback is enabled. If
the engine gets the locks, it checks to verify that the data in the database is the same
as when the data was originally retrieved. If the data is the same, the update takes
place.

The purpose of this locking mechanism is to avoid contention. You can always access a
path if the lowest-level record can be locked. You do not have to wait for another user to
drop a lock onto one of the upper-level records. (However, there might be relatively few
locks of upper-level records.) You are guaranteed to be able to update only items in the

Locking Record Levels 119

lowest-level record of the view descriptor. The engine attempted to update records at any
level that you specify and performed the update if it can.

Maximizing SYSTEM 2000 Performance
Among the factors that affect SYSTEM 2000 performance are the size of the database
being accessed, the number of items being accessed, and the number of data records
qualified by the selection criteria. For databases that have many items and many data
records, you should evaluate all SAS programs that need to access the database directly.
In your evaluation, consider the following:

• Does the program need all the SYSTEM 2000 items? If not, create and use an
appropriate view descriptor that includes only the items that are needed.

• Do the selection criteria retrieve only those data records needed for subsequent
analysis? If not, specify different conditions so that the selected records are restricted
for the program being used.

• Is the data going to be used by more than one procedure in one SAS session? If it is,
consider extracting the data and placing it in a SAS data file for SAS procedures to
use, instead of the data being accessed directly by each procedure. See “Performance
Considerations” on page 38 for circumstances when extracting data is the more
efficient method.

• Do the records need to be in a specific order? If they do, include a SYSTEM 2000
ordering-clause in the appropriate view descriptors or an ORDER BY clause in a
SAS program.

• Do the selection criteria enable SYSTEM 2000 to use key (indexed) items and non-
key (not indexed) items efficiently? See “where-clause in SYSTEM 2000” on page
72 for guidelines for specifying efficient selection criteria.

• What type of locking mechanism does SYSTEM 2000 need to use? See “Locking
Record Levels” on page 119.

120 Appendix 1 • Topics for Database Administrators

Appendix 2

Advanced Topics for Users

Overriding Options . 121
Override Corresponding Values . 121

Using Multiple View Descriptors . 122

Deleting Data Records . 122

Inserting Data Records . 123

BY Key . 123
Using a BY Key . 123
Examples Using a BY Key . 124
BY-Key Effects on Performance . 125

Missing Values (Nulls) . 126
Retrieving Nulls . 126
Updating Nulls . 126
Nulls in Selection Criteria . 127

WHERE Clauses in SAS and where-clauses in SYSTEM 2000 127
Overview of WHERE Clauses . 127
WHERE Clauses in SAS Translatable to SYSTEM 2000 130
WHERE Clauses in SAS Not Translatable to SYSTEM 2000 131
NOT Operator in SAS and SYSTEM 2000 . 132

Specifying Selection Criteria . 133

Connecting Strings to Order Conditions . 133
Using Connecting Strings . 133
Syntax for Specifying a Connecting String . 134
Omitting a WHERE Clause in SAS . 135
Using the OR Operator . 135
Using HAS, AT, and NON-KEY . 135

Stored Strings in SYSTEM 2000 . 136

Overriding Options

Override Corresponding Values
Data set options enable you to override corresponding values stored in a view descriptor.
The S2KPW= and S2KMODE= data set options can be specified by using the DATA=

121

argument in any PROC statement except PROC DBLOAD. The options are in effect
only for a single execution of the procedure.

S2KPW=password
enables you to override the SYSTEM 2000 password stored in the view descriptor. If
no password is stored in the view descriptor, the S2KPW= option must be used to
provide a valid password for the database.

The password must be an alphanumeric value that is 1 to 4 characters in length with
no embedded blanks and can be enclosed in single quotation marks. Passwords
longer than 4 characters are truncated and a warning message is issued. If the
password is a special character, it must be a single character (that is, a 1-character
password) enclosed in single quotation marks.

Use the S2KPW= option in the DATA= argument, where DATA= specifies a
SYSTEM 2000 view descriptor that is used as input to a SAS procedure except
PROC DBLOAD.

Note: Passwords specified in PROC DBLOAD cannot be overridden.

S2KMODE=S | M
enables you to override the SYSTEM 2000 access mode that is stored in the view
descriptor. S2KMODE=S executes the procedure as a single-user job, which means
that you allocate the database files in your job and execute a separate copy of
SYSTEM 2000. S2KMODE=M indicates that the database files are allocated in a
region controlled by the Multi-User software. S2KMD is an alias.

Use the S2KMODE= option in the DATA= argument, where DATA= specifies a
SYSTEM 2000 view descriptor that will be used as input to a SAS procedure except
PROC DBLOAD, which uses the mode that is specified for a new database, or the
mode that is stored in the view descriptor for an incremental load.

The following program executes the FSEDIT procedure using the view descriptor
EmpPos. The data set options specified in the PROC FSEDIT statement use the
password DEMO and execute SYSTEM 2000 in single-user mode.

proc fsedit data=vlib.emppos
 (s2kmode=s s2kpw=demo);
run;

Using Multiple View Descriptors
You can use multiple view descriptors in a single SAS session, but only one view
descriptor can be open for updating. This restriction applies to either one window that
opens two view descriptors or two windows that each open one view descriptor. You
cannot have the QUEST procedure and a SAS procedure or a DATA step that refers to a
SYSTEM 2000 view descriptor active at the same time in two windows, unless one is
single-user mode and the other is Multi-User mode.

Deleting Data Records
If you are deleting an observation from the S2K database (for example, by using the
FSEDIT procedure), use the DELETE command. However, the SAS/ACCESS interface
sets all the values of items in the view descriptor (that is, only the selected items in the

122 Appendix 2 • Advanced Topics for Users

same record) to missing and removes the lowest-level data record from the database if
one or more of its items were selected for display. Ancestor records are also removed if
they do not have other descendant records. Any data records that are removed must be
locked, but they are not removed until you move to a different observation.

The DELETE command does not remove items or records unless your password has U-
authority for the specific items and records.

Inserting Data Records
You can insert data records with SYSTEM 2000 by using the insert or the optimized load
mode when updating records with various SAS procedures or when loading a database
using the DBLOAD procedure. In PROC DBLOAD, you specify the mode by using the
S2KLOAD statement.

When a new observation is inserted, it can cause the insertion of more than one
SYSTEM 2000 database record. The number of inserts is based on how many levels are
in the database, and on a comparison between the data being inserted and the data in the
last observation (if any) that was read. During an Insert operation, record levels that have
data that is different from the prior observation (if any) result in a SYSTEM 2000
database record being inserted.

You must use Insert mode if you are loading new records into existing logical entries.
The insert or the optimized load mode can be used in PROC DBLOAD when you are
loading new logical entries. The optimized load mode is more efficient than insert mode,
but the optimized load mode has the following restrictions:

• Data must be sorted in data-tree order before the load.

• Logical entries are always inserted in their entirety.

• The number of inserts and the levels at which inserts are performed are based on the
order of the data and on which fields change from observation to observation.

• Your input cannot be a SYSTEM 2000 view in the same environment.

Note: During optimized load processing, your output database is open in exclusive use
mode with rollback temporarily disabled.

Insert mode is suitable for mass insertion of descendant records into existing logical
entries when using PROC DBLOAD. Similar to the optimized load mode, the interface
view engine determines where to insert the new records, based on the values of fields in
the observation. When you insert an observation, the engine compares it to the prior
observation. Based on how many fields have changed, one or more records are inserted
at the levels that have changed. Also, you can use a BY key to help determine where
records are inserted. (BY keys are discussed in the next section.)

BY Key

Using a BY Key
A BY key is similar to a BY group in SAS, which groups observations based on one or
more fields. Many SAS procedures process records in BY groups. Also, some updates in
the DATA step are performed by matching specified BY variables in different data sets.

BY Key 123

A similar matching process occurs with BY-key items in the SAS/ACCESS interface to
SYSTEM 2000. Use the BY-key capability to eliminate redundancy and to help the
interface view engine find an existing path for inserting the new records.

Each time the interface view engine is called to insert an observation, it inspects the
changes that you made from observation to observation, in order to determine how many
data records to insert into the database.

If none of the data changed, or if the changes were only at the lowest level of the view,
the engine needs to insert only a single new data record at the lowest level. Because the
engine inserts at least one record for any addition, and only one record is called for here,
there is no question about how many records to insert, that is, the insert is not
ambiguous.

However, if any data values changed in records above the lowest record in the path, an
ambiguous situation occurs. A specific number of new records seem to be required by
your changes, but some of the new data might already exist in the database records. That
is, the actual number of new records to be added to the database might be different.

In insert mode, the engine can determine whether some of the new data already exists in
a record. If the data exists, the engine needs to insert records only for the data that does
not exist in the database. If the data does not exist, the engine needs to insert a record at
every level.

In optimized load mode, the engine ignores the ambiguity; it inserts all of the new data
that is at or below the highest-level record that changed. Therefore, when you specify
optimized load mode, make sure that your incoming data is always sorted by major-to-
minor sort keys at every level (from level 0 down to the lowest level in the view). If the
data is not sorted correctly, redundancy occurs.

If you specify a BY key, it should contain one or more database items at each level
above the lowest level in your view descriptor.

BY keys cause extra processing time because the engine issues one or more where-
clauses to look for already-existing records.

Examples Using a BY Key
You have a view with C1 and C11 in the BY key and three observations.

Suppose you are using the FSEDIT procedure on observation 1, and you issue the DUP
command and enter values A, CCC, and 4. This is not an ambiguous insert; a BY key is
not required. The changes in values from observation 1 to your new input are confined to
the lowest level of the view. Here is the result.

124 Appendix 2 • Advanced Topics for Users

Now, suppose you are using the FSEDIT procedure on observation 1, and you issue an
ADD or a DUP command and enter the values B, DDD, and 5 for C1, C11, and C21,
respectively. The insert is ambiguous because all the fields in the new observation are
different from observation 1. Without a BY key, here is the result:

With a BY key, the engine finds the BY key values C1=B and C11=DDD in the
database. Here is the result:

BY-Key Effects on Performance
The recommended way to use BY keys is to

• include an item at every level above the lowest level of the view descriptor

• standardize all database updates through the same view or through consistent views.

CAUTION:
The engine does not enforce that a BY key must contain at least one item at every
level above the lowest level in the view descriptor. However, if the BY key does not
contain enough unique items, it might be inadequate to help the engine. The engine
might behave as if there were no BY key.

CAUTION:
The engine does not enforce consistent use of BY keys; one view descriptor might
have a BY key and another might not. In this instance, redundant data could be
added to the database through the view descriptor that does not have a BY key. Also,
some applications that use the QUEST procedure could enter redundant data. PROC
QUEST does not call the engine for database updates. If data is added in any way
other than through a view descriptor using a BY key, the engine might find several
qualified database records that match the incoming data. The engine would select
one record that works and use it when inserting the new records, and the incoming
data might be attached beneath a different existing record than the one that you
expect. To avoid this, make sure that all users who update the database follow the
same rules. That is, ensure that all data entry is performed through the interface view
engine and that all users use the same view descriptor (or consistent view
descriptors).

In addition, the content of a prior observation is important during inserts because the
engine compares your new data to it. The prior observation is obvious for SAS
procedures that pass through a file sequentially, such as the DBLOAD procedure.
However, other SAS procedures can pass randomly through a file, such as the FSEDIT
procedure.

When you add observations by using procedures that do not use sequential processing,
remember that the prior observation is the last observation that the procedure showed

BY Key 125

you. For example, in the FSVIEW procedure, the prior observation is the last
observation that the procedure displayed at the bottom of your monitor before your first
update.

In some instances, there is no prior observation, such as when you use the DBLOAD
procedure. PROC DBLOAD calls the engine to add an observation without any prior
retrieval. If this occurs, the engine issues a GET1 ... LAST command for the record at
the top of the view and retrieves the last record that was inserted into the database.

Missing Values (Nulls)

Retrieving Nulls
When the interface view engine is reading database records and constructing an
observation, it might find that data is missing in the path of the data records that
represent the observation.

In a SYSTEM 2000 database,

• missing structure means that the data record at the highest level of the view exists,
but some or all of its descendant records do not exist.

• missing values (nulls) means that the values for one or more items in a data record
do not exist. Nulls for all item types are represented by binary zeros in the database.

In SAS,

• missing values in character variables are represented by blanks

• missing numeric values are represented by a period (.)

When the interface view engine retrieves a null from the database, it sets the null as a
missing value in the corresponding SAS observation. Because SYSTEM 2000 preserves
all blanks for TEXT and UNDEFINED values, a value that contains all blanks for one of
these item types is interpreted as a missing value by a SAS procedure.

Updating Nulls
The interface view engine supports four types of updates: ADD, UPDATE, DUP, and
DELETE.

ADD
adds an observation, which can have nulls. The interface view engine converts a SAS
observation into a set of one or more SYSTEM 2000 data records, which comprise
the path defined by the view descriptor. Each variable in each record is converted
from the SAS internal format to the SYSTEM 2000 format. Even if all variables in a
SYSTEM 2000 record have nulls, the record is inserted into the database. That is, the
complete path of data records is always inserted; lower-level data records might
contain all nulls.

UPDATE
updates an observation in a record with a set of values. The record might contain
nulls.

If the observation being updated has no missing structure, each variable is converted
from its SAS form into a SYSTEM 2000 form.

126 Appendix 2 • Advanced Topics for Users

If the observation being updated has a missing structure in the database, the records
that exist in the path are updated with whatever values have changed since the path
was retrieved. Missing structures will be inserted only if the values are not null.

DUP
duplicates the selected observation in the database, which can cause duplication of
more than one database record.

DELETE
deletes an observation, which can cause deletion of more than one database record.
For more information, see “Deleting Data Records” on page 122.

Nulls in Selection Criteria
SYSTEM 2000 and SAS treat nulls differently when processing where-clause
conditions. SYSTEM 2000 assumes that a null is outside the domain of values for an
item. Therefore, the only way to qualify a null is by using the FAILS operator. In fact,
for any relational operator in an item-to-item condition, SYSTEM 2000 never qualifies a
record in which either of the items is null. Even if the condition is C1* = C2* and both
items are null, the record does not qualify. For example, if item C2 is null in some data
records, the following item-to-item condition never qualifies those records, regardless of
the respective values:

 WHERE C1* > C2*

In contrast, SAS assumes that nulls are equal to each other. In SAS, nulls

• for numeric variables are indicated by periods

• for character variables are indicated by blanks

When SAS processes a condition such as C1 >= C2, the qualified records include every
record in which C2 is null, regardless of the value of C1. Also, the condition C1 = C2
qualifies records that have nulls for both C1 and C2, in addition to records in which C1
and C2 have equal values that are not null.

Because of these different treatments, it is important to know whether SAS or SYSTEM
2000 is processing a where-clause. The where-clause in a view descriptor is never seen
by SAS and is processed by SYSTEM 2000. However, the WHERE clause associated
with a SAS procedure, the DATA step, or a SELECT statement in the SQL procedure
can be processed partly by both SAS and SYSTEM 2000 if individual conditions are
meaningful to SYSTEM 2000.

Because missing values are different, a condition in a WHERE clause in SAS that uses
the period (.) notation is never seen by SYSTEM 2000. SAS performs the qualification
for such conditions. For more information, see “WHERE Clauses in SAS and where-
clauses in SYSTEM 2000” on page 127.

WHERE Clauses in SAS and where-clauses in
SYSTEM 2000

Overview of WHERE Clauses
In addition to, or instead of including a SYSTEM 2000 where-clause in your view
descriptor for selection criteria, you can specify a WHERE clause in a SAS program for
selection criteria.

WHERE Clauses in SAS and where-clauses in SYSTEM 2000 127

Note: Unlike a SYSTEM 2000 where-clause that is stored in a view descriptor, a
WHERE clause in SAS is restricted to variables that correspond to items included in
the view descriptor. (A SYSTEM 2000 where-clause can reference items that are
contained in a view descriptor and items that are contained in the access descriptor
that the view descriptor is based on.)

When you specify a WHERE clause, the SAS/ACCESS interface view engine translates
the specified conditions into SYSTEM 2000 conditions. If the view descriptor includes a
SYSTEM 2000 where-clause, the interface view engine connects the conditions with the
Boolean operator AND. By default, the conditions in the WHERE clause in SAS are
connected to the end of the view descriptor conditions. For example, if a view descriptor
includes the condition

 sex=female

and the WHERE clause condition in SAS translates into

 position=marketing

the resulting selection criteria are

 sex=female and position=marketing

You can control the connection of the translated WHERE clause in SAS and the
SYSTEM 2000 where-clause conditions by including a connecting string in a SYSTEM
2000 where-clause that is included in a view descriptor. A connecting string indicates
where you want the connection to occur. For example, if you include the following
SYSTEM 2000 where-clause in a view descriptor (*SASAND* is a connecting string),

 sasand department=marketing

and execute a SAS procedure that includes a WHERE clause that produces the following
condition:

 salary gt 1000

The resulting selection criteria are

 salary gt 1000 and department=marketing

For more information and examples, see “Connecting Strings to Order Conditions” on
page 133.

Because there are capabilities in the WHERE clause in SAS that are not available in
SYSTEM 2000, when the interface view engine translates the WHERE clause conditions
in SAS into SYSTEM 2000 conditions, it is possible that the WHERE clause in SAS
cannot be totally executed in SYSTEM 2000.

For this possibility, the interface view engine first evaluates the WHERE clause in SAS
and determines which conditions SYSTEM 2000 can support. The interface view engine
might be able to partially execute the WHERE clause. For example, in the following
program:

 proc print data=vlib.emp1;
 where lastname < 'KAP'
 and payrate > 30 * overtime;
 run;

the interface view engine translates as much of the WHERE clause as possible, without
producing incorrect results or a syntax error in SYSTEM 2000. In this example,
SYSTEM 2000 can execute the first condition, but the arithmetic in the second condition
is not supported. Therefore, the engine uses where lastname < 'KAP' to filter out
as many data records as possible to improve performance. The conditions that are not
supported are bypassed by the engine, and post-processing (performed automatically by

128 Appendix 2 • Advanced Topics for Users

SAS) will be required after SYSTEM 2000 completes its subsetting. The engine
bypasses:

• unacceptable conditions.

• conditions connected by OR to unacceptable conditions.

• conditions that exceed the 1000-byte limit of a SYSTEM 2000 where-clause. If the
WHERE clause in SAS exceeds 1000 bytes, the rightmost portion of the clause is
bypassed by SYSTEM 2000.

When the interface view engine first examines the WHERE clause in SAS and
determines which conditions SYSTEM 2000 can support, the engine has not yet
processed the view descriptor where-clause. Later, when the engine processes the
view descriptor where-clause, the possibility arises that the combined length of the
WHERE clause conditions in SAS that can be supported in SYSTEM 2000 and the
view descriptor where-clause conditions might exceed 1000 bytes.

If the engine determines that SYSTEM 2000 completely supports the WHERE
clause in SAS, but also determines that the conditions cannot be combined due to the
1000-byte limit, an unrecoverable error occurs. To the SAS procedure or DATA step,
it appears as if the first "read" observation failed. You might need to carefully
examine the error messages in the log to find out what actually happened.

Note: If there is no SYSTEM 2000 where-clause included in the view descriptor and no
WHERE clause specified in the SAS program, the interface view engine issues a
default where-clause in the form of WHERE Cn EXISTS OR Cn FAILS, where Cn
is a component in the lowest-level record in the view descriptor.

The default where-clause “WHERE Cn EXISTS OR Cn FAILS” guarantees that the
view retrieves 100% of the database defined by that view, but it does cause a complete
non-key pass of the database. A more efficient default where-clause can be defined by
using the following syntax:

*DEFAULT (WHERE valid-subset where-clause)

As a knowledgeable user of your database, you might be able to define a where-clause
using all key components that still guarantee that you retrieve 100% of the database
defined by this view.

The *DEFAULT where-clause is validated by SYSTEM 2000 at run time. When you
specify a SAS WHERE clause, the *DEFAULT is not used. However, when you open a
view that has *DEFAULT specified and do not specify a SAS WHERE clause,
*DEFAULT is used to qualify the data. The qualified data is passed to the engine for
processing by the application or procedure. If a subsequent SAS WHERE clause is
specified, the new WHERE clause is the only qualification that is sent to SYSTEM 2000
for retrieval.

In the following table, assume that C114 is a component in the lowest-level record of a
view descriptor.

Table A2.1 Translating SYSTEM 2000 where-clause and WHERE Clauses in SAS

where-clause
in SYSTEM
2000 View
Descriptor

WHERE Clause in
SAS SYSTEM 2000 Translation

Post-
Processing
Required?

C1=A C2=B OR C3>C4+10 (C1=A) Yes

WHERE Clauses in SAS and where-clauses in SYSTEM 2000 129

where-clause
in SYSTEM
2000 View
Descriptor

WHERE Clause in
SAS SYSTEM 2000 Translation

Post-
Processing
Required?

C1=A C2=B & C3>C4+10 (C1=A) & (C2=B) Yes

C1=A C2=B OR C3>C4 (C1=A) & (C2=B OR
C3*>C4*)

No

C1=A C2=B & C3 (C1=A) & (C2=B) Yes

--- --- C114 EXISTS OR C114
FAILS

No

--- C3*20 < C5 C114 EXISTS OR C114
FAILS

Yes

--- C3 = C5 C3* = C5* No

WHERE Clauses in SAS Translatable to SYSTEM 2000
The next three tables show the interface view engine translations of acceptable WHERE
clause conditions in SAS into where-clause conditions in SYSTEM 2000.

Table A2.2 SAS Operators Translated into SYSTEM 2000 Operators

WHERE Clause Operators in SAS SYSTEM 2000 Operators

= =

> >

< <

<> !=

>= >=

<= <=

IS NULL FAILS

IS NOT NULL EXISTS

((

))

AND AND

130 Appendix 2 • Advanced Topics for Users

WHERE Clause Operators in SAS SYSTEM 2000 Operators

OR OR

Table A2.3 Additional SAS Syntax Translations into SYSTEM 2000

WHERE Clause Syntax in SAS SYSTEM 2000 Translation

C1 BETWEEN 1 AND 3 C1 = 1*3

C1 IN (4,9,14) C1=4 OR C1=9 OR C1=14

C4 > C5 C4* > C5*

C4 = '02AUG87'D C4 = 08/02/1987

SYSTEM 2000 can handle a limited subset of WHERE clause pattern matching
specified in SAS, under the following conditions:

• The pattern must be less than 100 characters in length.

• The pattern must have a percent sign (%) as the last character.

• Underscores (_) are permitted only in the beginning position(s).

• The pattern cannot have a percent sign (%) anywhere except in the beginning or in
the last position.

• The pattern must have some characters that are not percent signs (%) or underscores
(_).

Table A2.4 SAS Pattern Syntax Translated to SYSTEM 2000

WHERE Clause Syntax in SAS SYSTEM 2000 Translation

C1 LIKE %ABC% C1 CONTAINS ABC

C1 LIKE ABC% C1 CONTAINS ABC IN 1

C1 LIKE _ABC% C1 CONTAINS ABC IN 2

C1 LIKE __ABC% C1 CONTAINS ABC IN 3

WHERE Clauses in SAS Not Translatable to SYSTEM 2000
Here are some (but not all) WHERE clause conditions in SAS that are not accepted in
SYSTEM 2000. They are executed automatically by SAS post-processing:

• arithmetic expressions such as the following example:

WHERE C1 = C4 * 3
WHERE C4 < -C5

WHERE Clauses in SAS and where-clauses in SYSTEM 2000 131

• expressions in which a variable or combination of variables assumes a value of 1 or 0
to signify true or false, such as in the following example:

WHERE C1
WHERE (C1 = C2) * 20

• concatenation of character variables.

• truncated comparison, as in the following example:

 C1 =: ABC

• DATETIME and TIME formats, as in the following example:

'12:00'T
'01JAN60:12:00'DT

• SOUNDEX.

• HAVING, GROUP BY, and NOT CONTAINS conditions.

• references to nulls indicated by a period (.) for numeric variables or closing
quotation marks ('') for character variables. Use WHERE C1 IS NULL, do not use
WHERE C1 = . or ''to indicate a null. The interface view engine can translate C1
IS NULL into C1 FAILS.

NOT Operator in SAS and SYSTEM 2000
The WHERE clause NOT operator in SAS and the where-clause NOT operator in
SYSTEM 2000 do not function the same way. If you want NOT to have its SAS
meaning, put it in the WHERE clause in SAS. If you want NOT to have its SYSTEM
2000 meaning, put it in the view descriptor where-clause in SYSTEM 2000.

If you specify NOT in a WHERE clause in SAS, NOT is transformed by the WHERE
clause parser in SAS; the interface view engine never sees the NOT operator.

Table A2.5 Examples of the NOT Operator in SAS

WHERE Clause in SAS What the Interface View Engine Sees

WH NOT LASTNAME = 'Jones'; WH LASTNAME NE 'Jones';

WH NOT LASTNAME > 'Baker'; WH LASTNAME <= 'Baker';

WH NOT (LASTNAME =
JONES

AND HIREDATE > '02aug82'd);

WH LASTNAME NE 'Jones' OR HIREDATE <=
'02aug82'd;

In SYSTEM 2000, the logical converse of wh not lastname = 'Jones'; is wh
lastname ne Jones or lastname fails. Before any relational operator can
find a match for a value, the value must exist. One reason for this is that nulls are not
contained in SYSTEM 2000 indexes, and processing an operator such as NE could be
expensive if it were not confined to indexed values.

132 Appendix 2 • Advanced Topics for Users

Specifying Selection Criteria
The following guidelines help you determine when to use a WHERE clause in SAS and
when to use a SYSTEM 2000 where-clause to specify selection criteria.

Use a SYSTEM 2000 where-clause in your view descriptor when you want to do one of
the following actions:

• restrict users of view descriptors to specific subsets of data.

• use SYSTEM 2000 syntax and functionality, such as component names, stored
strings, HAS, AT, and the NON-KEY specification.

• qualify using a database item that is not in the view descriptor.

• ensure that nulls (missing values) are treated how SYSTEM 2000 expects. (The
SYSTEM 2000 handling of nulls differs from SAS in that SYSTEM 2000 does not
treat nulls as equal to other values, including other nulls.)

• use the SYSTEM 2000 functionality of the NOT operator. (The SYSTEM 2000
processing of the NOT operator differs from SAS in that SYSTEM 2000 includes
null values in the answer, where SAS might or might not include nulls.)

• prevent users from sequentially passing the entire database. (The DBA can also set
the SYSTEM 2000 option to DISABLE FULL PASSES as a way of preventing
sequential processing.)

Use a WHERE clause in SAS when the preceding guidelines do not apply, and you have
one of the following situations:

• you need more run-time flexibility in subsetting data

• you need to use WHERE clause capabilities in SAS that SYSTEM 2000 does not
support, such as arithmetic expressions or truncated comparisons

Connecting Strings to Order Conditions

Using Connecting Strings
The order in which SYSTEM 2000 processes conditions can affect which data records
are selected. This is most obvious when you include a SYSTEM 2000 where-clause in a
view descriptor, and specify a WHERE clause in a SAS program that uses the view
descriptor. By default, the interface view engine connects the translated WHERE clause
conditions in SAS to the end of the SYSTEM 2000 where-clause conditions by using the
Boolean operator AND.

To affect the order of the connected conditions, you can include a connecting string in a
SYSTEM 2000 where-clause to tell the engine how you want to connect the conditions.
See the following table:

Connecting Strings to Order Conditions 133

Table A2.6 Examples of Using Connecting Strings

SYSTEM 2000 where-
clause in View Descriptor

WHERE Clause in SAS
Program Connected Conditions

C1 = A C110 > 27 (C1 = A) & (C110 > 27)

SAS & C1 = A C110 > 27 (C110 > 27) & C1 = A

C1 = 'A' *ANDSAS* C110 > 27 C1 = 'A' AND (C110 > 27)

Note: Remember that the interface view engine translates only those WHERE
conditions in SAS that it understands.

The following table summarizes the connecting strings that you can specify in a
SYSTEM 2000 where-clause that is included in a view descriptor.

Table A2.7 Strings to Specify in SYSTEM 2000 where-clauses

Connecting String Expands to

SAS (SAS-conditions)

ANDSAS AND (SAS-conditions)

SASAND (SAS-conditions) AND

ANDNK AND (NK (SAS-conditions))

NKAND (NK (SAS-conditions)) AND

*ANDAT(n) AND ((SAS-conditions)AT n)

*ATAND(n) ((SAS-conditions) AT n) AND

*ANDHAS(record) AND (record HAS (SAS-conditions))

*HASAND(record) (record HAS (SAS-conditions))AND

*HASSAS(record) (record HAS (SAS-conditions))

NKSAS NK (SAS-conditions)

*SASAT(n) (SAS-conditions)AT n

Syntax for Specifying a Connecting String
You can specify a connecting string in a SYSTEM 2000 where-clause after a keyword or
a special character. For example,

 C1 = A AND *SAS*

134 Appendix 2 • Advanced Topics for Users

The following syntax is not acceptable:

 C1 = A *ANDSAS*

however, you can use the preceding syntax if you include a delimiter (special character.)
In the following example, the delimiter is a set of single quotation marks:

 C1 = 'A' *ANDSAS*

Omitting a WHERE Clause in SAS
If a view descriptor includes a SYSTEM 2000 where-clause with a connecting string,
and you do not execute a WHERE clause in SAS, there is nothing to substitute. For
example, suppose you have included the following SYSTEM 2000 where-clause (with
the connecting string *SAS*) in a view descriptor:

 C1 = A AND *SAS*

Then, you issue a SAS program specifying a WHERE clause that produces the following
SYSTEM 2000 condition:

 C110 > 27

If you do not specify a WHERE clause in the SAS program, the "dangling connector"
would result in a SYSTEM 2000 error.

 C1 = A AND

If you want the flexibility of omitting the WHERE clause in SAS, you can use the
ANDSAS or *SASAND* connecting string. For example,

 C1 = 'A' *ANDSAS*

Then, even if you did not specify a WHERE clause in SAS, there would not be a
problem. The result would be:

 C1 = 'A'

Using the OR Operator
You cannot use an OR operator to connect a connecting string to other parts of a view
descriptor where-clause. For example, the following view descriptor where-clauses are
not acceptable:

 C1 = A OR *SAS*
 C1 = C OR (C1 = A OR C1 = B) *ANDSAS*

However, you can use the OR operator as shown in the following example:

 (C1 = A OR C1 = B) AND *SAS*

Using HAS, AT, and NON-KEY
The HAS and AT operators and the NON-KEY specification are available in a SYSTEM
2000 where-clause, but they are not available in a WHERE clause in SAS. By using
specific connecting strings, you can make the function of HAS, AT, and NON-KEY
more useful in the SYSTEM 2000 where-clause and have the option of omitting the
WHERE clause in SAS without introducing errors or unexpected results. See the
following table for examples.

Connecting Strings to Order Conditions 135

Table A2.8 HAS, AT, and NON-KEY in SAS and SYSTEM 2000

SYSTEM 2000 where-clause
in View Descriptor

WHERE Clause in
SAS Selection Criteria

C1='A' *ANDNK* C2=B OR C3=X C1='A' & (NK C2=B OR NK C3=X)

C1='A' *ANDNK* C1='A'

C1='A' *ANDHAS(C0) C21=B & C22=X C1='A' AND (C0 HAS (C21=B &
C22=X))

*ATAND(12) C1=A C21=B C21=B AT 12 & C1=A

Stored Strings in SYSTEM 2000
When you include a SYSTEM 2000 where-clause in a view descriptor, you can either
use where-clause syntax as explained in “where-clause in SYSTEM 2000” on page 72,
or you can refer to a SYSTEM 2000 stored string. A stored string is syntax contained in
a SYSTEM 2000 database definition that can be invoked by using the string number or
name. Either a complete where-clause or a portion of one can be stored. For example,
you can store part of a SYSTEM 2000 where-clause in the database, such as the
following example:

 sex=female

If you assign string number C1001 to the string, when you include a where-clause in a
view descriptor, you can refer to the string number:

 department=marketing and *c1001*

When the selection criteria are processed by SYSTEM 2000 against the database, here is
the result:

 department=marketing and sex=female

However, when the interface view engine confronts the view descriptor where-clause,
the engine can check for errors only until it encounters the string reference. The engine
cannot access the string definition and therefore cannot expand the string to validate
your syntax. Also, the engine cannot check the syntax that follows the string expansion,
which means you must be more careful with the where-clause construction. However,
the engine appends a WHERE clause in SAS at the end of the view descriptor where-
clause if this was not done before the occurrence of a SYSTEM 2000 string reference.

If you specify a stored string in a view descriptor where-clause, follow these rules in the
where-clause syntax after the string reference:

• Use only valid SYSTEM 2000 item component names or numbers.

• Enter all keywords and any character values in uppercase.

• Do not use connecting strings.

• Do not use TEXT values that contain significant blanks.

136 Appendix 2 • Advanced Topics for Users

Appendix 3

Example Programs

Using the Example Programs . 137

SYSTEM 2000 Database Definition for Database EMPLOYEE 137

Access Descriptors . 139
Access Descriptor MYLIB.EMPLOYE . 139

View Descriptors . 141
Access Descriptor MYLIB.EMPLOYE . 141
View Descriptor VLIB.EMPBD . 141
View Descriptor VLIB.EMPEDUC . 141
View Descriptor VLIB.EMPPHON . 144
View Descriptor VLIB.EMPPOS . 145
View Descriptor VLIB.EMPSKIL . 147
View Descriptor VLIB.EMPVAC . 150

SAS Data Files . 152
Data File MYDATA.CLASSES . 152
Data File V6.BIRTHDY . 153
Data File V7.CONSULTING_BIRTHDAYS . 153
Data File MYDATA.CORPHON . 154
Data File Trans.Banking . 155

Using the Example Programs
If you want to run the example programs contained in this section, contact your on-site
SAS support personnel for information about accessing the Sample Library files. Also,
contact your DBA to be sure the data in the database EMPLOYEE is correct. (The
database EMPLOYEE might need to be restored if previous users ran the examples
given here, which include deletes and inserts.)

SYSTEM 2000 Database Definition for Database
EMPLOYEE

The descriptor files created and used in this documentation are based on the complete
database definition for the database EMPLOYEE:

137

Output A3.1 Database Definition for Database EMPLOYEE

 SYSTEM RELEASE NUMBER 11.6A
 DATA BASE NAME IS EMPLOYEE
 DEFINITION NUMBER 2
 DATA BASE CYCLE NUMBER 25
 1* EMPLOYEE NUMBER (INTEGER NUMBER 9999)
 2* LAST NAME (CHAR X(10) WITH FEW FUTURE OCCURRENCES)
 3* FORENAME (NON-KEY CHAR X(20))
 4* HIRE DATE (DATE)
 5* BIRTHDAY (DATE)
 6* SOCIAL SECURITY NUMBER (NON-KEY CHAR X(11))
 7* SEX (CHAR X(6) WITH MANY FUTURE OCCURRENCES)
 8* ETHNIC ORIGIN (CHAR X(9) WITH SOME FUTURE OCCURRENCES)
 9* EMPLOYEE STATUS (CHAR X(9) WITH MANY FUTURE OCCURRENCES)
 10* OFFICE-EXTENSION (NON-KEY CHAR X(9))
 11* ACCRUED VACATION (NON-KEY DECIMAL NUMBER 999.99)
 12* ACCRUED SICK LEAVE (NON-KEY DECIMAL NUMBER 999.99)
 13* SECURITY CLEARANCE (INTEGER NUMBER 999 WITH MANY FUTURE OCCURRENCES)
 14* STREET ADDRESS (NON-KEY CHAR X(20))
 15* CITY-STATE (NON-KEY CHAR X(15))
 16* ZIP CODE (CHAR X(5) WITH FEW FUTURE OCCURRENCES)
 100* POSITION WITHIN COMPANY (RECORD)
 101* POSITION TITLE (NON-KEY CHAR X(10) IN 100)
 102* DEPARTMENT (CHAR X(14) IN 100 WITH SOME FUTURE OCCURRENCES)
 103* MANAGER (CHAR XXX IN 100 WITH FEW FUTURE OCCURRENCES)
 104* POSITION TYPE (CHAR X(12) IN 100 WITH SOME FUTURE OCCURRENCES)
 105* START DATE (DATE IN 100)
 106* END DATE (NON-KEY DATE IN 100)
 110* SALARY WITHIN POSITION (RECORD IN 100)
 111* PAY RATE (MONEY $9999.99 IN 110)
 112* PAY SCHEDULE (CHAR X(7) IN 110)
 113* EFFECTIVE DATE (DATE IN 110)
 114* CURRENT DEDUCTION (NON-KEY MONEY $9999.99 IN 110)
 120* MONTHLY PAYROLL ACCOUNTING (RECORD IN 110)
 121* PAYROLL MONTH (DATE IN 120)
 122* REGULAR HOURS (NON-KEY DECIMAL NUMBER 999.99 IN 120)
 123* OVERTIME HOURS (NON-KEY DECIMAL NUMBER 999.99 IN 120)
 124* GROSS PAY (NON-KEY MONEY $9999.99 IN 120)
 125* FEDERAL TAX DEDUCTION (NON-KEY MONEY $9999.99 IN 120)
 126* NET PAY (NON-KEY MONEY $9999.99 IN 120)
 130* ADDITIONAL INFORMATION (RECORD IN 100)
 131* LINE NUMBER (DECIMAL NUMBER 99.9 IN 130)
 132* COMMENT TEXT (NON-KEY TEXT X(7) IN 130)
 200* JOB SKILLS (RECORD)
 201* SKILL TYPE (CHAR X(12) IN 200 WITH SOME FUTURE OCCURRENCES)
 202* PROFICIENCY (NON-KEY CHAR X(5) IN 200)
 203* YEARS OF EXPERIENCE (NON-KEY INTEGER NUMBER 99 IN 200)
 300* PERSONAL INTERESTS (RECORD)
 301* INTEREST (CHAR X(12) IN 300 WITH FEW FUTURE OCCURRENCES)
 302* AFFILIATION (NON-KEY CHAR X(5) IN 300)
 303* COMMENT (NON-KEY TEXT X(5) IN 300)
 400* EDUCATIONAL BACKGROUND (RECORD)
 410* EDUCATION (RECORD IN 400)
 411* SCHOOL (CHAR X(15) IN 410)
 412* DEGREE/CERTIFICATE (CHAR X(7) IN 410 WITH FEW FUTURE OCCURRENCES
)
 413* DATE COMPLETED (DATE IN 410)
 414* MAJOR FIELD (NON-KEY CHAR X(16) IN 410)
 415* MINOR FIELD (NON-KEY CHAR X(12) IN 410)
 420* TRAINING (RECORD IN 400)
 421* SOURCE (NON-KEY CHAR X(12) IN 420)
 422* CLASS NAME (CHAR X(12) IN 420 WITH FEW FUTURE OCCURRENCES)
 423* DATE ACCOMPLISHED (DATE IN 420)

138 Appendix 3 • Example Programs

Access Descriptors

Access Descriptor MYLIB.EMPLOYE
The access descriptor MYLIB.EMPLOYE for the database EMPLOYEE is used in most
of the examples in this documentation. You can create the access descriptor
MYLIB.EMPLOYE by using the following program in batch or in interactive line mode.

proc access dbms=s2k;
 create mylib.employe.access;
 database=employee
 s2kpw=demo mode=s;
 assign=yes;
 rename forename=firstnme office_e=phone
 yearsofe=years gender=sex
 degree_c=degree;
 length firstnme=13 lastname=13 c101=16;
 list all;
run;

The following results are printed to the SAS log:

Access Descriptors 139

Output A3.2 Listing of Access Descriptor MYLIB.EMPLOYE

SYSTEM 2000 Database: EMPLOYEE
Function: CREATE Descriptors- access: EMPLOYE view:
 Item C-num SAS Name Len Format Informat BY-key
 1 C0 *RECORD* *RECORD* *RECORD*
 2 C1 EMPLOYEE 4.0 4.0
 3 C2 LASTNAME 13 $13. $13.
 4 C3 FIRSTNME 13 $13. $13.
 5 C4 HIREDATE DATE7. DATE7.
 6 C5 BIRTHDAY DATE7. DATE7.
 7 C6 SOCIALSE $11. $11.
 8 C7 SEX $6. $6.
 9 C8 ETHNICOR $9. $9.
 10 C9 EMPLOYE0 $9. $9.
 11 C10 PHONE $9. $9.
 12 C11 ACCRUEDV 6.2 6.2
 13 C12 ACCRUEDS 6.2 6.2
 14 C13 SECURITY 3.0 3.0
 15 C14 STREETAD $20. $20.
 16 C15 CITY_STA $15. $15.
 17 C16 ZIPCODE $5. $5.
 18 C100 *RECORD* *RECORD* *RECORD*
 19 C101 POSITION $10. $10.
 20 C102 DEPARTME $14. $14.
 21 C103 MANAGER $3. $3.
 22 C104 POSITIO1 $12. $12.
 23 C105 STARTDAT DATE7. DATE7.
 24 C106 ENDDATE DATE7. DATE7.
 25 C110 *RECORD* *RECORD* *RECORD*
 26 C111 PAYRATE 7.2 7.2
 27 C112 PAYSCHED $7. $7.
 28 C113 EFFECTIV DATE7. DATE7.
 29 C114 CURRENTD 7.2 7.2
 30 C120 *RECORD* *RECORD* *RECORD*
 31 C121 PAYROLLM DATE7. DATE7.
 32 C122 REGULARH 6.2 6.2
 33 C123 OVERTIME 6.2 6.2
 34 C124 GROSSPAY 7.2 7.2
 35 C125 FEDERALT 7.2 7.2
 36 C126 NETPAY 7.2 7.2
 37 C130 *RECORD* *RECORD* *RECORD*
 38 C131 LINENUMB 4.1 4.1
 39 C132 COMMENTT $CHAR7. $CHAR7.
 40 C200 *RECORD* *RECORD* *RECORD*
 41 C201 SKILLTYP $12. $12.
 42 C202 PROFICIE $5. $5.
 43 C203 YEARSOFE 2.0 2.0
 44 C300 *RECORD* *RECORD* *RECORD*
 45 C301 INTEREST $12. $12.
 46 C302 AFFILIAT $5. $5.
 47 C303 COMMENT $CHAR5. $CHAR5.
 48 C400 *RECORD* *RECORD* *RECORD*
 49 C410 *RECORD* *RECORD* *RECORD*
 50 C411 SCHOOL $15. $15.
 51 C412 DEGREE $7. $7.
 52 C413 DATECOMP DATE7. DATE7.
 53 C414 MAJORFIE $16. $16.
 54 C415 MINORFIE $12. $12.
 55 C420 *RECORD* *RECORD* *RECORD*
 56 C421 SOURCE $12. $12.
 57 C422 CLASSNAM $12. $12.
 58 C423 DATEACCO DATE7. DATE7.

140 Appendix 3 • Example Programs

View Descriptors

Access Descriptor MYLIB.EMPLOYE
You can create all the view descriptors used in this documentation by using the
following SAS programs in batch or in interactive line mode. All the view descriptors
are based on the access descriptor MYLIB.EMPLOYE.

View Descriptor VLIB.EMPBD
The view descriptor VLIB.EMPBD was created by using the following program. This
view descriptor accesses the data shown in the output below the program.

proc access dbms=s2k ad=mylib.employe;
 create vlib.empbd.view;
 select lastname firstnme birthday;
 subset "ob lastname,firstnme";
 s2kpw=demo mode=s;
 list view;
run;

Output A3.3 Data Accessed by VLIB.EMPBD

 Data Accessed by VLIB.EMPBD 1

 OBS LASTNAME FIRSTNME BIRTHDAY

 1 AMEER DAVID 10OCT51
 2 BROOKS RUBEN R. 25FEB52
 3 BROWN VIRGINA P. 24MAY46
 4 CHAN TAI 04JUL46
 5 GARRETT OLAN M. 23JAN35
 6 GIBSON GEORGE J. 23APR46
 7 GOODSON ALAN F. 21JUN50
 8 JUAREZ ARMANDO 28MAY47
 9 LITTLEJOHN FANNIE 17MAY54
 10 RICHARDSON TRAVIS Z. 30NOV37
 11 RODRIGUEZ ROMUALDO R 09FEB29
 12 SCHOLL MADISON A. 19MAR45
 13 SHROPSHIRE LELAND G. 04SEP49
 14 SMITH JERRY LEE 13SEP42
 15 VAN HOTTEN GWENDOLYN 13SEP42
 16 WAGGONNER MERRILEE D 27APR36
 17 WILLIAMSON JANICE L. 19MAY52

View Descriptor VLIB.EMPEDUC
The view descriptor VLIB.EMPEDUC was created using the following program. This
view descriptor accesses the data shown in the output below the program.

proc access dbms=s2k ad=mylib.employe;
 create vlib.empeduc.view;
 select lastname firstnme sex degree;

View Descriptors 141

 subset "ob lastname,firstnme";
 s2kpw=demo mode=s;
 list view;
run;

142 Appendix 3 • Example Programs

Output A3.4 Data Accessed by VLIB.EMPEDUC

 Data Accessed by VLIB.EMPEDUC 1

 OBS LASTNAME FIRSTNME SEX DEGREE

 1
 2 AMEER DAVID MALE BS
 3 BOWMAN HUGH E. MALE MS
 4 BOWMAN HUGH E. MALE PHD
 5 BOWMAN HUGH E. MALE BS
 6 BROOKS RUBEN R. MALE BS
 7 BROWN VIRGINA P. FEMALE BA
 8 CAHILL JACOB MALE BS
 9 CAHILL JACOB MALE BS
 10 CANADY FRANK A. MALE MA
 11 CANADY FRANK A. MALE BS
 12 CHAN TAI MALE PHD
 13 CHAN TAI MALE BA
 14 COLLINS LILLIAN FEMALE HIGH SC
 15 FAULKNER CARRIE ANN FEMALE
 16 FERNANDEZ SOPHIA FEMALE BS
 17 FERNANDEZ SOPHIA FEMALE MS
 18 FREEMAN LEOPOLD MALE BS
 19 FREEMAN LEOPOLD MALE BS
 20 GARCIA FRANCISCO MALE MBA
 21 GARCIA FRANCISCO MALE BS
 22 GARRETT OLAN M. MALE MS
 23 GARRETT OLAN M. MALE BS
 24 GIBSON MOLLY I. FEMALE BA
 25 GIBSON GEORGE J. MALE BA
 26 GIBSON GEORGE J. MALE MS
 27 GIBSON GEORGE J. MALE MS
 28 GOODSON ALAN F. MALE BA
 29 HERNANDEZ JESSE L. MALE PHD
 30 HERNANDEZ JESSE L. MALE MA
 31 HERNANDEZ JESSE L. MALE BS
 32 HERNANDEZ JESSE L. MALE BA
 33 JOHNSON BRADFORD MALE
 34 JONES MICHAEL Y. MALE BS
 35 JONES MICHAEL Y. MALE
 36 JONES RITA M. FEMALE
 37 JUAREZ ARMANDO MALE MS
 38 JUAREZ ARMANDO MALE BS
 39 KAATZ FREDDIE MALE HIGH SC
 40 KNAPP PATRICE R. FEMALE BA
 41 KNIGHT ALTHEA FEMALE
 42 LITTLEJOHN FANNIE FEMALE HIGH SC
 43 MILLSAP JOEL B. MALE PHD
 44 MUELLER PATSY FEMALE HIGH SC
 45 NATHANIEL DARRYL MALE AA
 46 POLANSKI IVAN L. MALE BS
 47 POLANSKI IVAN L. MALE BS
 48 POLANSKI IVAN L. MALE MS
 49 QUINTERO PEDRO MALE BS
 50 QUINTERO PEDRO MALE
 51 REDFOX RICHARD B. MALE BS
 52 REED KENNETH D. MALE
 53 REID DAVID G. MALE BS
 54 RICHARDSON TRAVIS Z. MALE BS
 55 RODRIGUEZ ROMUALDO R MALE BS
 (continued)

View Descriptors 143

 56 SALAZAR YOLANDA FEMALE AA
 57 SAVAGE WILLIAM D. MALE
 58 SCHMIDT PENNY FEMALE HIGH SC
 59 SCHOLL MADISON A. MALE MS
 60 SCHOLL MADISON A. MALE BS
 61 SEATON GARY MALE
 62 SHROPSHIRE LELAND G. MALE BA
 63 SLYE LEONARD R. MALE HIGH SC
 64 SMITH JERRY LEE MALE MA
 65 SMITH JERRY LEE MALE BA
 66 SMITH GARLAND P. MALE AA
 67 SMITH JANET F. FEMALE BA
 68 THROCKMORT STEWART Q. MALE BS
 69 THROCKMORT STEWART Q. MALE MS
 70 VAN HOTTEN GWENDOLYN FEMALE BA
 71 WAGGONNER MERRILEE D FEMALE AA
 72 WATERHOUSE CLIFTON P. MALE
 73 WATERHOUSE CLIFTON P. MALE
 74 WILLIAMSON JANICE L. FEMALE BA
 75 WILLIAMSON JANICE L. FEMALE AA

View Descriptor VLIB.EMPPHON
The view descriptor VLIB.EMPPHON was created by using the following program.
This view descriptor accesses the data shown in the output below the program.

proc access dbms=s2k ad=mylib.employe;
 create vlib.empphon.view;
 select lastname firstnme phone;
 subset "ob lastname,firstnme";
 s2kpw=demo mode=s;
 list view;
run;

Output A3.5 Data Accessed by VLIB.EMPPHON

 Data Accessed by VLIB.EMPPHON 1

 OBS LASTNAME FIRSTNME PHONE

 1 AMEER DAVID 545 XT495
 2 BROOKS RUBEN R. 581 XT347
 3 BROWN VIRGINA P. 218 XT258
 4 CHAN TAI 292 XT331
 5 GARRETT OLAN M. 212 XT208
 6 GIBSON GEORGE J. 327 XT703
 7 GOODSON ALAN F. 323 XT512
 8 JUAREZ ARMANDO 506 XT987
 9 LITTLEJOHN FANNIE 219 XT653
 10 RICHARDSON TRAVIS Z. 243 XT325
 11 RODRIGUEZ ROMUALDO R 243 XT874
 12 SCHOLL MADISON A. 318 XT419
 13 SHROPSHIRE LELAND G. 327 XT616
 14 SMITH JERRY LEE 327 XT169
 15 VAN HOTTEN GWENDOLYN 212 XT311
 16 WAGGONNER MERRILEE D 244 XT914
 17 WILLIAMSON JANICE L. 218 XT802

144 Appendix 3 • Example Programs

View Descriptor VLIB.EMPPOS
The view descriptor VLIB.EMPPOS was created by using the following program. This
view descriptor accesses the data shown in the output following the program.

proc access dbms=s2k ad=mylib.employe;
 create vlib.emppos.view;
 select lastname firstnme position departme
 manager;
 subset "order by lastname";
 s2kpw=demo mode=s;
 list all;
run;

View Descriptors 145

Output A3.6 Data Accessed by VLIB.EMPPOS

 Data Accessed by VLIB.EMPPOS 1

 OBS LASTNAME FIRSTNME POSITION DEPARTME MANAGER

 1 PROGRAMMER INFORMATION SY MYJ
 2 AMEER DAVID SR SALES REPRESE MARKETING VPB
 3 AMEER DAVID JR SALES REPRESE MARKETING VPB
 4 BOWMAN HUGH E. EXECUTIVE VICE-P CORPORATION CPW
 5 BROOKS RUBEN R. JR SALES REPRESE MARKETING MAS
 6 BROWN VIRGINA P. MANAGER WESTERN MARKETING OMG
 7 CAHILL JACOB MANAGER SYSTEMS INFORMATION SY JBM
 8 CANADY FRANK A. MANAGER PERSONNE ADMINISTRATION PRK
 9 CHAN TAI SR SALES REPRESE MARKETING TZR
 10 COLLINS LILLIAN MAIL CLERK ADMINISTRATION SQT
 11 FAULKNER CARRIE ANN SECRETARY CORPORATION JBM
 12 FERNANDEZ SOPHIA STANDARDS & PROC INFORMATION SY JLH
 13 FREEMAN LEOPOLD SR SYSTEMS PROGR INFORMATION SY JLH
 14 GARCIA FRANCISCO JR PROGRAMMER/AN INFORMATION SY MYJ
 15 GARRETT OLAN M. SR SALES REPRESE MARKETING VPB
 16 GARRETT OLAN M. MANAGER OF SALES MARKETING HEB
 17 GARRETT OLAN M. VICE-PRESIDENT M CORPORATION HEB
 18 GIBSON MOLLY I. TECHNICAL WRITER INFORMATION SY JC
 19 GIBSON GEORGE J. INSTRUCTOR MARKETING GVH
 20 GOODSON ALAN F. SR SALES REPRESE MARKETING TZR
 21 HERNANDEZ JESSE L. MANAGER DATA BAS INFORMATION SY JBM
 22 JOHNSON BRADFORD JR SYSTEMS PROGR INFORMATION SY JFS
 23 JONES RITA M. MANAGER ACCOUNTI ADMINISTRATION PRK
 24 JONES MICHAEL Y. SR SYSTEMS ANALY INFORMATION SY JC
 25 JUAREZ ARMANDO SR SALES REPRESE MARKETING VPB
 26 JUAREZ ARMANDO JR SALES REPRESE MARKETING VPB
 27 KAATZ FREDDIE SUPPLY CLERK ADMINISTRATION SQT
 28 KNAPP PATRICE R. VICE-PRESIDENT A CORPORATION HEB
 29 KNIGHT ALTHEA SECRETARY CORPORATION OMG
 30 LITTLEJOHN FANNIE SECRETARY MARKETING VPB
 31 MILLSAP JOEL B. VICE-PRESIDENT I CORPORATION HEB
 32 MUELLER PATSY SECRETARY CORPORATION PRK
 33 NATHANIEL DARRYL SECRETARY CORPORATION HEB
 34 POLANSKI IVAN L. MANAGER SYSTEMS INFORMATION SY JBM
 35 QUINTERO PEDRO OPERATIONS SUPER INFORMATION SY ILP
 36 REDFOX RICHARD B. SYSTEMS ANALYST INFORMATION SY JC
 37 REED KENNETH D. COMPUTER LIBRARI INFORMATION SY PQ
 38 REID DAVID G. PROGRAMMER INFORMATION SY MYJ
 39 REID DAVID G. ASSISTANT PROGRA INFORMATION SY MYJ
 40 RICHARDSON TRAVIS Z. MANAGER EASTERN MARKETING OMG
(continued)

146 Appendix 3 • Example Programs

 41 RODRIGUEZ ROMUALDO R. PR & ADVERTISING MARKETING GVH
 42 SALAZAR YOLANDA ADMINISTRATIVE A CORPORATION CPW
 43 SALAZAR YOLANDA SECRETARY CORPORATION CPW
 44 SAVAGE WILLIAM D. COMPUTER OPERATO INFORMATION SY PQ
 45 SCHMIDT PENNY SECRETARY ADMINISTRATION FAC
 46 SCHOLL MADISON A. JR SALES REPRESE MARKETING VPB
 47 SCHOLL MADISON A. SR SALES REPRESE MARKETING VPB
 48 SEATON GARY COMPUTER OPERATO INFORMATION SY PQ
 49 SHROPSHIRE LELAND G. JR SALES REPRESE MARKETING TZR
 50 SLYE LEONARD R. GENERAL MAINTENA ADMINISTRATION SQT
 51 SMITH JANET F. SR SYSTEMS PROGR INFORMATION SY ILP
 52 SMITH JERRY LEE JR SALES REPRESE MARKETING AFG
 53 SMITH GARLAND P. BOOKKEEPER ADMINISTRATION RMJ
 54 THROCKMORT STEWART Q. OFFICE SUPERVISO ADMINISTRATION FAC
 55 VAN HOTTEN GWENDOLYN MANAGER PUBLIC R MARKETING OMG
 56 WAGGONNER MERRILEE D. SECRETARY MARKETING TZR
 57 WATERHOUSE CLIFTON P. PRESIDENT CORPORATION
 58 WILLIAMSON JANICE L. INSTRUCTOR MARKETING GVH

View Descriptor VLIB.EMPSKIL
The view descriptor VLIB.EMPSKIL was created using the following program. This
view descriptor accesses the data shown in the output following the program.

proc access dbms=s2k ad=mylib.employe;
 create vlib.empskil.view;
 select c2 c3 c201 c203;
 subset "ob skilltyp";
 s2kpw=demo mode=multi;
 list view;
run;

View Descriptors 147

Output A3.7 Data Accessed by VLIB.EMPSKIL

 Data Accessed by VLIB.EMPSKIL 1

 OBS LASTNAME FIRSTNME SKILLTYP YEARS

 1 .
 2 AMEER DAVID PASCAL 3
 3 BOWMAN HUGH E. DP SYSTEMS A 11
 4 BOWMAN HUGH E. RUSSIAN 15
 5 BOWMAN HUGH E. TEACHING 7
 6 BOWMAN HUGH E. PUBLIC RELAT 13
 7 BROOKS RUBEN R. PASCAL 4
 8 BROOKS RUBEN R. PUBLIC RELAT 1
 9 BROWN VIRGINA P. SYSTEMS PROG 2
 10 BROWN VIRGINA P. PUBLIC RELAT 8
 11 BROWN VIRGINA P. ASSEMBLER 3
 12 BROWN VIRGINA P. FRENCH 11
 13 CAHILL JACOB TECHNICAL WR 10
 14 CAHILL JACOB ASSEMBLER 11
 15 CAHILL JACOB COBOL 11
 16 CAHILL JACOB SYSTEMS PROG 16
 17 CANADY FRANK A. ACCOUNTING 15
 18 CANADY FRANK A. COBOL 4
 19 CANADY FRANK A. TYPING 20
 20 CHAN TAI SYSTEMS PROG 6
 21 CHAN TAI CHINESE 8
 22 COLLINS LILLIAN TYPING 2
 23 COLLINS LILLIAN SHORTHAND 1
 24 FAULKNER CARRIE ANN GRAPHICS 1
 25 FAULKNER CARRIE ANN SHORTHAND 5
 26 FAULKNER CARRIE ANN TYPING 6
 27 FERNANDEZ SOPHIA SYSTEMS PROG 6
 28 FERNANDEZ SOPHIA DATA BASE AD 3
 29 FERNANDEZ SOPHIA SYSTEMS ANAL 12
 30 FERNANDEZ SOPHIA PL/1 2
 31 FERNANDEZ SOPHIA PASCAL 1
 32 FERNANDEZ SOPHIA COBOL 4
(continued)

148 Appendix 3 • Example Programs

 33 FERNANDEZ SOPHIA FORTRAN 5
 34 FERNANDEZ SOPHIA ASSEMBLER 8
 35 FREEMAN LEOPOLD COBOL 20
 36 FREEMAN LEOPOLD JAPANESE 3
 37 FREEMAN LEOPOLD SYSTEMS PROG 20
 38 FREEMAN LEOPOLD DATA BASE AD 6
 39 FREEMAN LEOPOLD ASSEMBLER 20
 40 GARCIA FRANCISCO COBOL 3
 41 GARCIA FRANCISCO PASCAL 3
 42 GARCIA FRANCISCO FORTRAN 3
 43 GARRETT OLAN M. PUBLIC SPEAK 20
 44 GARRETT OLAN M. PUBLIC RELAT 8
 45 GARRETT OLAN M. WRITING 13
 46 GARRETT OLAN M. FINANCIAL AU 7
 47 GIBSON MOLLY I. GRAPHICS 3
 48 GIBSON MOLLY I. CARTOON ART 1
 49 GIBSON GEORGE J. PUBLIC SPEAK 15
 50 GIBSON GEORGE J. TEACHING 10
 51 GIBSON GEORGE J. SYSTEMS ANAL 8
 52 GOODSON ALAN F. PASCAL 1
 53 HERNANDEZ JESSE L. ASSEMBLER 24
 54 HERNANDEZ JESSE L. SYSTEMS PROG 25
 55 HERNANDEZ JESSE L. SYSTEMS ANAL 17
 56 HERNANDEZ JESSE L. DATA BASE AD 10
 57 HERNANDEZ JESSE L. FORTRAN 19
 58 HERNANDEZ JESSE L. SPANISH 46
 59 JOHNSON BRADFORD SYSTEMS PROG 3
 60 JONES MICHAEL Y. PL/1 10
 61 JONES MICHAEL Y. ASSEMBLER 17
 62 JONES MICHAEL Y. COBOL 21
 63 JONES MICHAEL Y. SYSTEMS PROG 11
 64 JONES MICHAEL Y. PASCAL 3
 65 JONES MICHAEL Y. GERMAN 7
 66 JONES MICHAEL Y. TECHNICAL WR 4
 67 JONES RITA M. .
 68 JUAREZ ARMANDO ASSEMBLER 7
 69 KAATZ FREDDIE .
 70 KNAPP PATRICE R. CPA 14
 71 KNAPP PATRICE R. WRITING 3
 72 KNIGHT ALTHEA GERMAN 3
 73 KNIGHT ALTHEA ACCOUNTING 2
 74 KNIGHT ALTHEA SHORTHAND 8
 75 KNIGHT ALTHEA TYPING 8
 76 KNIGHT ALTHEA ETS OPERATOR 1
 77 LITTLEJOHN FANNIE SHORTHAND 4
 78 LITTLEJOHN FANNIE GRAPHICS 3
 79 LITTLEJOHN FANNIE TYPING 4
 80 MILLSAP JOEL B. SYSTEMS ANAL 17
 81 MILLSAP JOEL B. HEBREW 4
 82 MILLSAP JOEL B. SYSTEMS PROG 15
 83 MILLSAP JOEL B. FORTRAN 13
 84 MILLSAP JOEL B. ASSEMBLER 14
 85 MUELLER PATSY TYPING 6
 86 MUELLER PATSY SHORTHAND 5
 87 MUELLER PATSY ACCOUNTING 5
 88 NATHANIEL DARRYL ACCOUNTING 9
 89 NATHANIEL DARRYL TYPING 9
 90 NATHANIEL DARRYL SHORTHAND 7
 91 NATHANIEL DARRYL PUBLIC RELAT 3
(continued)

View Descriptors 149

 92 POLANSKI IVAN L. RUSSIAN 3
 93 POLANSKI IVAN L. ASSEMBLER 7
 94 POLANSKI IVAN L. OPERATIONS R 10
 95 POLANSKI IVAN L. SYSTEMS PROG 10
 96 QUINTERO PEDRO OPERATIONS R 4
 97 QUINTERO PEDRO SYSTEMS PROG 5
 98 QUINTERO PEDRO ASSEMBLER 3
 99 REDFOX RICHARD B. SYSTEMS PROG 10
 100 REDFOX RICHARD B. ASSEMBLER 15
 101 REDFOX RICHARD B. SYSTEMS ANAL 12
 102 REDFOX RICHARD B. FORTRAN 9
 103 REED KENNETH D. LIBRARY SCIE 1
 104 REID DAVID G. FORTRAN 1
 105 REID DAVID G. PL/1 5
 106 REID DAVID G. COBOL 1
 107 RICHARDSON TRAVIS Z. JAPANESE 7
 108 RODRIGUEZ ROMUALDO R GRAPHICS 20
 109 RODRIGUEZ ROMUALDO R VISUAL DESIG 22
 110 SALAZAR YOLANDA SHORTHAND 10
 111 SALAZAR YOLANDA ACCOUNTING 4
 112 SALAZAR YOLANDA TYPING 13
 113 SAVAGE WILLIAM D. COBOL 4
 114 SCHMIDT PENNY SHORTHAND 12
 115 SCHMIDT PENNY TYPING 23
 116 SCHMIDT PENNY ETS OPERATOR 3
 117 SCHOLL MADISON A. SYSTEMS ANAL 9
 118 SCHOLL MADISON A. FORTRAN 7
 119 SEATON GARY .
 120 SHROPSHIRE LELAND G. PUBLIC SPEAK 6
 121 SLYE LEONARD R. PRINT SHOP 0
 122 SMITH JERRY LEE SYSTEMS DESI 3
 123 SMITH JANET F. SYSTEMS PROG 8
 124 SMITH JANET F. ASSEMBLER 7
 125 SMITH JANET F. COBOL 4
 126 SMITH GARLAND P. .
 127 THROCKMORT STEWART Q. .
 128 VAN HOTTEN GWENDOLYN TYPING 12
 129 VAN HOTTEN GWENDOLYN GRAPHICS 8
 130 VAN HOTTEN GWENDOLYN TECHNICAL WR 4
 131 VAN HOTTEN GWENDOLYN SHORTHAND 1
 132 VAN HOTTEN GWENDOLYN PUBLIC SPEAK 9
 133 WAGGONNER MERRILEE D TYPING 19
 134 WAGGONNER MERRILEE D SHORTHAND 15
 135 WATERHOUSE CLIFTON P. COBOL 10
 136 WATERHOUSE CLIFTON P. FRENCH 21
 137 WATERHOUSE CLIFTON P. PUBLIC RELAT 19
 138 WATERHOUSE CLIFTON P. SYSTEMS ANAL 21
 139 WATERHOUSE CLIFTON P. PUBLIC SPEAK 12
 140 WATERHOUSE CLIFTON P. ACCOUNTING 12
 141 WATERHOUSE CLIFTON P. ASSEMBLER 4
 142 WILLIAMSON JANICE L. COBOL 2
 143 WILLIAMSON JANICE L. ASSEMBLER 1
 144 WILLIAMSON JANICE L. COBOL 4
 145 WILLIAMSON JANICE L. TECHNICAL WR 2
 146 WILLIAMSON JANICE L. TEACHING 1

View Descriptor VLIB.EMPVAC
The view descriptor VLIB.EMPVAC was created by using the following program. This
view descriptor accesses the data shown in the output following the program.

proc access dbms=s2k ad=mylib.employe;
 create vlib.empvac.view;

150 Appendix 3 • Example Programs

 select lastname firstnme accruedv departme;
 subset "ob lastname,firstnme";
 s2kpw=demo mode=s;
 list view;
run;

Output A3.8 Data Accessed by VLIB.EMPVAC

 Data Accessed by VLIB.EMPVAC 1

 OBS LASTNAME FIRSTNME ACCRUEDV DEPARTME

 1 INFORMATION SY
 2 AMEER DAVID 56.00 MARKETING
 3 AMEER DAVID 56.00 MARKETING
 4 BOWMAN HUGH E. 40.00 CORPORATION
 5 BROOKS RUBEN R. 80.00 MARKETING
 6 BROWN VIRGINA P. 48.00 MARKETING
 7 CAHILL JACOB 60.00 INFORMATION SY
 8 CANADY FRANK A. 8.00 ADMINISTRATION
 9 CHAN TAI 40.00 MARKETING
 10 COLLINS LILLIAN 80.00 ADMINISTRATION
 11 FAULKNER CARRIE ANN 48.00 CORPORATION
 12 FERNANDEZ SOPHIA 96.00 INFORMATION SY
 13 FREEMAN LEOPOLD . INFORMATION SY
 14 GARCIA FRANCISCO 80.00 INFORMATION SY
 15 GARRETT OLAN M. 80.00 MARKETING
 16 GARRETT OLAN M. 80.00 CORPORATION
 17 GARRETT OLAN M. 80.00 MARKETING
 18 GIBSON GEORGE J. 80.00 MARKETING
 19 GIBSON MOLLY I. 40.00 INFORMATION SY
 20 GOODSON ALAN F. 48.00 MARKETING
 21 HERNANDEZ JESSE L. 56.00 INFORMATION SY
 22 JOHNSON BRADFORD 40.00 INFORMATION SY
 23 JONES RITA M. 24.00 ADMINISTRATION
 24 JONES MICHAEL Y. 80.00 INFORMATION SY
 25 JUAREZ ARMANDO 48.00 MARKETING
 26 JUAREZ ARMANDO 48.00 MARKETING
 27 KAATZ FREDDIE 80.00 ADMINISTRATION
 28 KNAPP PATRICE R. 8.00 CORPORATION
 29 KNIGHT ALTHEA 0.00 CORPORATION
 30 LITTLEJOHN FANNIE 8.00 MARKETING
 31 MILLSAP JOEL B. 24.00 CORPORATION
 32 MUELLER PATSY 40.00 CORPORATION
 33 NATHANIEL DARRYL 40.00 CORPORATION
 34 POLANSKI IVAN L. 56.00 INFORMATION SY
 35 QUINTERO PEDRO 32.00 INFORMATION SY
 36 REDFOX RICHARD B. 48.00 INFORMATION SY
 37 REED KENNETH D. 64.00 INFORMATION SY
 38 REID DAVID G. 80.00 INFORMATION SY
 39 REID DAVID G. 80.00 INFORMATION SY
 40 RICHARDSON TRAVIS Z. 88.00 MARKETING
 41 RODRIGUEZ ROMUALDO R 32.00 MARKETING
 42 SALAZAR YOLANDA 80.00 CORPORATION
(continued)

View Descriptors 151

 43 SALAZAR YOLANDA 80.00 CORPORATION
 44 SAVAGE WILLIAM D. 80.00 INFORMATION SY
 45 SCHMIDT PENNY 80.00 ADMINISTRATION
 46 SCHOLL MADISON A. 40.00 MARKETING
 47 SCHOLL MADISON A. 40.00 MARKETING
 48 SEATON GARY 80.00 INFORMATION SY
 49 SHROPSHIRE LELAND G. 32.00 MARKETING
 50 SLYE LEONARD R. 0.00 ADMINISTRATION
 51 SMITH JANET F. 16.00 INFORMATION SY
 52 SMITH JERRY LEE 0.00 MARKETING
 53 SMITH GARLAND P. 8.00 ADMINISTRATION
 54 THROCKMORT STEWART Q. 64.00 ADMINISTRATION
 55 VAN HOTTEN GWENDOLYN 0.00 MARKETING
 56 WAGGONNER MERRILEE D 56.00 MARKETING
 57 WATERHOUSE CLIFTON P. 8.00 CORPORATION
 58 WILLIAMSON JANICE L. 40.00 MARKETING

SAS Data Files

Data File MYDATA.CLASSES
The SAS data file MYDATA.CLASSES (used in “SYSTEM 2000 Data in SAS
Programs”) was created by using the following SAS program:

 libname mydata 'your-SAS-library';
 data mydata.classes;
 input lastname $ 1-10 firstnme $ 15-25 class $ 30-50;
 datalines;
 AMMER DAVID PRESENTING IDEAS
 CANADY FRANK A. PRESENTING IDEAS
 GIBSON MOLLY I. SUPERVISOR SKILLS
 GIBSON MOLLY I. STRESS MGMT
 RICHARDSON TRAVIS Z. SUPERVISOR SKILLS
 ;

The output shows the results after running the following program on the data file:

 proc print data=mydata.classes;
 title2 'SAS Data File MYDATA.CLASSES';
 run;

Output A3.9 SAS Data File MYDATA.CLASSES

 SAS Data File MYDATA.CLASSES 1

 OBS LASTNAME FIRSTNME CLASS

 1 AMEER DAVID PRESENTING IDEAS
 2 CANADY FRANK A. PRESENTING IDEAS
 3 GIBSON MOLLY I. SUPERVISOR SKILLS
 4 GIBSON MOLLY I. STRESS MGMT
 5 RICHARDSON TRAVIS Z. SUPERVISOR SKILLS

152 Appendix 3 • Example Programs

Data File V6.BIRTHDY
The SAS data file V6.BIRTHDY (used in “Updating SAS Data Files with SYSTEM
2000 Data”) was created by using the following SAS program:

 libname v6 'your-SAS-library';
 data v6.birthdy;
 input lastname $10. firstnme $10. birthday date7.;
 format birthday date7.;
 datalines;
 JONES FRANK 22MAY53
 MCVADE CURTIS 25DEC54
 SMITH VIRGINIA 14NOV49
 TURNER BECKY 26APR50
 ;

The output shows the results after running the following program on the data file:

 proc print data=v6.birthdy;
 title2 'SAS Data File V6.BIRTHDY';
 format birthday date7.;
 run;

Output A3.10 SAS Data File V6.BIRTHDY

 SAS Data File V6.BIRTHDY 1

 OBS LASTNAME FIRSTNME BIRTHDAY

 1 JONES FRANK 22MAY53
 2 MCVADE CURTIS 25DEC54
 3 SMITH VIRGINA 14NOV49
 4 TURNER BECKY 26APR50

Data File V7.CONSULTING_BIRTHDAYS
The SAS data file V7.CONSULTING_BIRTHDAYS (used in “Updating SAS Data Files
with SYSTEM 2000 Data”) was created by using the following SAS program:

data v7.consulting_birthdays;
 input last_name $ 1-13 first_name $ 14-26
 birthdate DATE7.;
 informat birthdate DATE7.;
 format birthdate DATE7.;
 datalines;
 JOHNSON ED 30JAN65
 LEWIS THOMAS 25MAY54
 SMITH AMANDA 02DEC60
 WILSON REBECCA 13APR58
;

The output shows the results after running the following program on the data file:

proc print data=V7.consulting_birthdays;
 title2 'V7.Consulting_Birthdays Data File';

SAS Data Files 153

run;

Output A3.11 SAS Data File V.Consulting_Birthdays

 V7.Consulting_Birthdays Data File 1

 obs last_name first_name birthdate

 1 JOHNSON ED 30JAN65
 2 LEWIS THOMAS 25MAY54
 3 SMITH AMANDA 02DEC60
 4 WILSON REBECCA 13APR58

Data File MYDATA.CORPHON
The SAS data file MYDATA.CORPHON (used in “Browsing and Updating SYSTEM
2000 Data”) was created by using the following SAS program:

 libname mydata 'your-SAS-library';
 data mydata.corphon;
 input lastname $15. firstnme $15. phone $10.;
 datalines;
 BOWMAN HUGH E. 109 XT901
 FAULKNER CARRIE ANN 132 XT417
 GARRETT OLAN M. 212 XT208
 KNAPP PATRICE R. 222 XT 12
 KNIGHT ALTHEA 213 XT218
 MILLSAP JOEL B. 131 XT224
 MUELLER PATSY 223 XT822
 NATHANIEL DARRYL 118 XT544
 SALAZAR YOLANDA 111 XT169
 WATERHOUSE CLIFTON P. 101 XT109
 ;

The output shows the results after running the following program on the data file:

 proc print data=mydata.corphon;
 title 'SAS Data File MYDATA.CORPHON';
 run;

Output A3.12 SAS Data File MYDATA.CORPHON

 SAS Data File MYDATA.CORPHON 1

 OBS LASTNAME FIRSTNME PHONE

 1 BOWMAN HUGH E. 109 XT901
 2 FAULKNER CARRIE ANN 132 XT417
 3 GARRETT OLAN M. 212 XT208
 4 KNAPP PATRICE R. 222 XT 12
 5 KNIGHT ALTHEA 213 XT218
 6 MILLSAP JOEL B. 131 XT224
 7 MUELLER PATSY 223 XT822
 8 NATHANIEL DARRYL 118 XT544
 9 SALAZAR YOLANDA 111 XT169
 10 WATERHOUSE CLIFTON P. 101 XT109

154 Appendix 3 • Example Programs

Data File Trans.Banking
The SAS data file Trans.Banking (used in 'Creating and Loading SYSTEM 2000
Databases”, as input to the DBLOAD procedure to create and load data into the
SYSTEM 2000 database Banking) was created by using the following SAS program:

 libname trans 'your.SAS.library';
 data trans.banking;
 input custname & $20.
 custid & $7.
 acctnum & 4.
 accttyp & $1.
 transtyp & $1.
 transamt & dollar10.2
 transdat & date7.;
 format acctnum 4.
 transamt dollar10.2
 transdat date7.;
 informat transdat date.;
 datalines;
 booker, john 74-9838 8349 s d $40.00 05jun89
 lopez, pat 38-7274 9896 s d $15.67 23jun89

 ...more data lines

 ;

The output shows the results after running the following program on the data file:

 proc print data=trans.banking;
 title 'Data in SAS Data File TRANS.BANKING';
 run;

SAS Data Files 155

Output A3.13 SAS Data File Trans.Banking

 Data in SAS Data File TRANS.BANKING
1

OBS CUSTNAME CUSTID ACCTNUM ACCTTYP TRANSTYP TRANSAMT TRANSDAT

 1 BOOKER, JOHN 74-9838 8349 S D $40.00 05JUN89
 2 LOPEZ, PAT 38-7274 9896 S D $15.67 23JUN89
 3 JONES, APRIL 85-4941 4141 C W $213.78 29JUN89
 4 BOOKER, JOHN 74-9838 8349 S I $34.76 30JUN89
 5 MILLER, NANCY 07-6163 7890 S I $53.98 30JUN89
 6 LOPEZ, PAT 38-7274 9896 S I $16.43 30JUN89
 7 JONES, APRIL 85-4941 4141 C W $354.70 30JUN89
 8 MILLER, NANCY 07-6163 7890 S D $1,245.87 01JUL89
 9 JONES, APRIL 85-4941 4141 C D $2,298.65 01JUL89
 10 MILLER, NANCY 07-6163 3876 C W $45.98 08JUL89
 11 ROGERS, MIKE 96-5052 4576 C D $75.00 10JUL89
 12 BOOKER, JOHN 74-9838 3673 C D $150.00 10JUL89
 13 LOPEZ, PAT 38-7274 9896 S D $50.00 10JUL89
 14 BOOKER, JOHN 74-9838 3673 C W $65.43 13JUL89
 15 ROGERS, MIKE 96-5052 4576 C W $12.34 13JUL89
 16 ROGERS, MIKE 96-5052 4576 C W $45.67 13JUL89
 17 MILLER, NANCY 07-6163 3876 C D $56.79 14JUL89
 18 ROGERS, MIKE 96-5052 4576 C W $12.16
15JUL89

Note: The input SAS data file Trans.Banking must be sorted before you can use the data
for the examples in Chapter 6, “Creating and Loading SYSTEM 2000 Databases,”
on page 59. The programs using PROC DBLOAD create and load a three-level
SYSTEM 2000 database. Each logical entry represents a customer. Records at level
1 contain data for the accounts by customer; records at level 2 contain transaction
data.

The following program sorts the input SAS data file Trans.Banking by the variables
CUSTNAME and ACCTNUM:

 proc sort data=trans.banking;
 by custname acctnum;
 run;

After you sort the data file Trans.Banking, you can use it to create the database Banking
(shown in Chapter 6, “Creating and Loading SYSTEM 2000 Databases,” on page 59),
which also contains the new database definition and the stored data.

156 Appendix 3 • Example Programs

Recommended Reading

Here is the recommended reading list for this title:

• Base SAS Procedures Guide

• SAS Language Reference: Concepts

• SAS SQL Procedure User's Guide

• SAS Companion -- for your operating system

• The Little SAS Book: A Primer

For a complete list of SAS publications, go to sas.com/store/books. If you have
questions about which titles you need, please contact a SAS Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-0025
Fax: 1-919-677-4444
Email: sasbook@sas.com
Web address: sas.com/store/books

157

http://www.sas.com/store/prodBK_65423_en.html
http://sas.com/store/books
mailto:sasbook@sas.com
http://sas.com/store/books

158 Recommended Reading

Glossary

access descriptor
a SAS/ACCESS file that describes data that is managed by SAS, by a database
management system, or by a PC-based software application such as Microsoft Excel,
Lotus 1-2-3, or dBASE. After creating an access descriptor, you can use it as the
basis for creating one or more view descriptors. See also view descriptor.

Accounting Log
in SYSTEM 2000 software, a file used to hold the Multi-User accounting system
records.

action-clause
in the SYSTEM 2000 QUEST language, the portion of a command on the left of a
where-clause or the entire command if there is no where-clause; for retrievals, the
retrieval-clause and the ordering-clause, if any; for updates, the update-clause.

active database
in SYSTEM 2000 software, a database that is on disk for production use in the Self-
Contained Facility or in PLEX jobs.

ad hoc function
in SYSTEM 2000 QUEST software, an arithmetic expression enclosed in
parentheses and specified in an action-clause.

alias
an alternative name, usually a shortened form, for a particular SAS language
element. An example of an alias is PWD for PASSWORD.

allocation
the operating system's association between a logical name (DDname) and an
operating system data set.

ancestor record
a record on the level that precedes a specified record in the same path.

archival database
in SYSTEM 2000 software, a copy of a database saved for use in recovery or
restoration. An archival database is a historical database saved at a significant point
in time.

159

arithmetic expression
See SAS expression.

arithmetic operator
in SAS, any of the symbols (+, -, /, *, and **) that are used to perform addition,
subtraction, division, multiplication, or exponentiation in arithmetic expressions. In
SYSTEM 2000 software only, ** is not supported.

ASM PLEX
in the SYSTEM 2000 PLEX facility, the Programming Language Extension for IBM
Assembler Language.

attach a database
in SYSTEM 2000 software, to make database files available to a job.

available space
in SYSTEM 2000 software, the allocated or extendable storage space beyond the
logical end of a file or table.

batch mode
a noninteractive method of running SAS programs by which a file (containing SAS
statements along with any necessary operating system commands) is submitted to the
batch queue of the operating environment for execution.

by-clause
part of a retrieval-clause, which specifies that the values within a data tree be
displayed together. A by-clause begins with the keyword BY and includes its focal
record and all subsequent components in the retrieval-clause, up to the beginning of
another by-clause or to the beginning of an ordering-clause or where-clause.

by-phrase
in SYSTEM 2000 software, a system function followed by the keyword BY and its
focal record.

C-number
See component number.

CHARACTER
in SYSTEM 2000 software, an item type for textual values where leading blanks,
trailing blanks, and multiple blanks between words are ignored. CHARACTER is
abbreviated as CHAR.

children
the records that immediately follow a specified record.

CICS Command Editor
a tool that enables you to create, save, retrieve, and submit command streams in a
CICS environment. It can be used in the CICS interface to access, modify, and
resubmit the most recent command stream.

CICS Interface
in SYSTEM 2000 software, an interface that allows direct communication with the
IBM Customer Information Control System (CICS) TP monitor.

160 Glossary

clearing
in SYSTEM 2000 software, the process of copying an updated page in a database or
Update Log from main memory to disk.

close a database
in SYSTEM 2000 software, to make the files of a database unavailable to a job.

COBOL PLEX
in the SYSTEM 2000 PLEX facility, the COBOL Programming Language
Extension.

Collect File
in SYSTEM 2000 software, a temporary file holding a relational table containing
COLLECT command output. Collect File values can originate in more than one
database and can be used in QUEST language and REPORT language commands.

command
a directive to an operating system to perform a particular task.

Command Editor (CICS Command Editor)
in SYSTEM 2000 software, a capability for creating, saving, retrieving, and
submitting command streams in a CICS environment.

Command File
in SYSTEM 2000 software, a user file that includes Self-Contained Facility (SCF)
input commands. The Command File is the standard input file by default, but it can
be a user-assigned alternate file.

command terminator
in SYSTEM 2000 software, a signal that indicates the end of a command, usually a
colon or semicolon.

COMMBLOCK
in a SYSTEM 2000 PLEX program, a declarative statement that sets up a
COMMBLOCK. The COMMBLOCK is a data area for passing status information
back and forth between the PLEX program and SYSTEM 2000 software.

component
a self-contained, reusable programming object that provides some type of service to
other components in an object-oriented programming environment.

component label
the user-assigned component name or number that uniquely identifies a component
in a SYSTEM 2000 database definition.

component name
a unique name that is assigned to a component in a SYSTEM 2000 database
definition. See also component.

component number (C-number)
a unique number that is assigned to a component in a SYSTEM 2000 database
definition. See also component.

Glossary 161

condition
a part of a SYSTEM 2000 where-clause that contains an EXISTS, FAILS, EQ, NE,
SPANS, LT, GT, LE, GE, or CONTAINS operator (or an equivalent symbol) and its
operands, which are either schema items or specified values.

connecting string
optional syntax that you can use in a SYSTEM 2000 where-clause that is included in
a SAS/ACCESS view descriptor. A connecting string tells the interface view engine
how you want to connect conditions in the SYSTEM 2000 where-clause with
conditions that are translated from a SAS WHERE clause.

constant
in SAS software, a number or a character string that indicates a fixed value.

CONTROL
in SYSTEM 2000 software, a Self-Contained Facility language used for
administrative tasks, such as saving, restoring, and recovering databases. CONTROL
is the processor of the CONTROL language.

Coordinated Recovery
in SYSTEM 2000 software, the process of reinstating a damaged database to a
previous, undamaged condition. Coordinated Recovery uses the Rollback Log and
the Update Log.

create a database
in SYSTEM 2000 software, to assign a name and storage space to a database yet to
be defined.

cycle number (database cycle number)
in SYSTEM 2000 software, the total number of times that data have been updated or
loaded into a database. This is also referred to as database cycle number.

damage flag
in SYSTEM 2000 software, an internal indicator of whether a database is damaged.

damaged database
in SYSTEM 2000 software, a database for which updates have been only partially
completed before processing was stopped (for example, because of a hardware
failure).

Data File
in SYSTEM 2000 software, a user file containing data for Self-Contained Facility
commands that are to be executed by a SYSTEM 2000 processor. The Data File is
the standard input file by default.

data length
in SYSTEM 2000 software, the number of symbols or characters in a data value.

data management software
an integrated software package that enables you to create and manipulate data in the
form of databases.

data record
an identifiable set of values that are treated as a unit and which are associated with a
schema record. A logical entry consists of related data records. See also logical
entry.

162 Glossary

data set
See SAS data set.

data structure
in SYSTEM 2000 software, the view of a database in terms of data items, data
records, and the hierarchical relationships of the records. This is also called a logical
data structure.

Data Table (DT)
in a SYSTEM 2000 database, a table containing all data values for the records in the
database.

data value
a unit of character, numeric, or alphanumeric information that is stored as a single
item in a data record.

data view
See SAS data view.

database
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes. See also
database definition.

database cycle number
See cycle number.

database definition (definition)
a blueprint for the type of data that is stored in a SYSTEM 2000 database. A
definition consists of schema records and related schema items, which are organized
in a hierarchical structure. A definition labels the data to be stored, arranges the data
into groups, and establishes relationships among the groups of data. See also schema
record.

database management system (DBMS)
a software application that enables you to create and manipulate data that is stored in
the form of databases. See also hierarchical structure.

Database Manager
in SYSTEM 2000 software, the nucleus (executive code) of the software.

DATE
in SYSTEM 2000 software, the item type for date values.

date and time format
instructions that tell SAS how to write numeric values as dates, times, and datetimes.

DBA password
a SYSTEM 2000 password that provides a level of authority between that of the
master password and that of the secondary passwords. The DBA password enables
the DBA to administer databases without being able to access the data that is stored
in them.

DBMS
See database management system.

Glossary 163

DECIMAL
in SYSTEM 2000 software, an item type for numeric values with a fixed decimal
point and an optional plus or minus sign.

DEFINE language
in SYSTEM 2000 software, a Self-Contained Facility language used to define a
database.

definition
See database definition.

definition number
in SYSTEM 2000 software, the total number of times that a database definition has
been changed (mapped).

Definition Table
in a SYSTEM 2000 database, a table that contains the definition of a database.

delimiter
a character that serves as a boundary that separates the elements of a text string.

descendant
a record that a member that resides at a lower level in relation to other members in
the hierarchy. A record is a descendant of its ancestors.

DESCRIBE order
in SYSTEM 2000 software, the order in which the schema of a database is displayed
as a result of the DESCRIBE command in the QUEST language.

descriptor file
a type of SAS/ACCESS file that is used to establish a connection between SAS and
files that are created and maintained by other software applications. Descriptor files
describe data to SAS. To create descriptor files, you use the ACCESS procedure.
There are two types of descriptor files: access descriptors and view descriptors.

descriptor information
information about the contents and attributes of a SAS data set. For example, the
descriptor information includes the data types and lengths of the variables, as well as
which engine was used to create the data. SAS creates and maintains descriptor
information within every SAS data set.

Diagnostic Log
in SYSTEM 2000 software, a file that contains diagnostic tuning aids (at different
levels) resulting from job processing in a Multi-User environment.

dimension level (level)
an element of a dimension hierarchy. Levels describe the dimension from the highest
(most summarized) level to the lowest (most detailed) level. For example, possible
levels for a Geography dimension are Country, Region, State or Province, and City.

direct mode
in SYSTEM 2000 software, the state in which the Update Log for a database is
written directly to tape or disk.

164 Glossary

disjoint record
a schema record in a SYSTEM 2000 database that is outside a path as specified in a
view descriptor, and thus cannot be included.

Distinct Values Table (DVT)
in SYSTEM 2000 software, one of two tables that make up the index for a database.
This table contains an entry for each distinct value of a key item. See also Multiple
Occurrence Table.

DOUBLE
in SYSTEM 2000 software, an item type for double-precision, floating-point values.

DT
See Data Table.

DVT
See Distinct Values Table.

DYNAMIC where-clause
in SYSTEM 2000 software, a QUEST where-clause that can be created and modified
within a PLEX program while the program is executing.

EFT
See Extended Field Table.

engine (SAS engine)
a component of SAS software that reads from or writes to a file. Various engines
enable SAS to access different types of file formats.

entry terminator
in SYSTEM 2000 software, a signal that indicates the end of a data entry or subtree
in the Data File. The default entry terminator is END*.

exclusive use
the condition under which only one user can access a database at a time.

execution option
in SYSTEM 2000 software, an option specified in a JCL EXEC statement and then
passed as a parameter to the program called in the job step.

execution parameter
in SYSTEM 2000 software, an independent variable, such as an argument in a string,
subroutine, or execution statement, for which a value is assigned at time of use.

Extended Field Table (EFT)
in a SYSTEM 2000 database, a table used to store the characters that extend beyond
the assigned field width.

family
a SYSTEM 2000 record, all its ancestors, and all its descendants.

focal record
in SYSTEM 2000 software, a data record that determines the family of schema
records in a has-expression, a by-clause, or a by-phrase.

Glossary 165

format a database
in SYSTEM 2000 software, to fill the pages of the database tables with binary zeros.

FORTRAN PLEX
in the SYSTEM 2000 PLEX family, the FORTRAN Programming Language
Extension.

full pass
in SYSTEM 2000 software, the process of examining all the records in the Data
Table one by one.

function
See SAS function.

Genius
in SYSTEM 2000 software, a conversational facility for specifying LISTING
reports.

global hold
in SYSTEM 2000 software, the state in which an entire database is reserved for use
by one user temporarily to prevent other users from updating or reserving any
portion of the database.

has-clause
in a SYSTEM 2000 where-clause, the word HAS preceded by a record name or
component number and followed by a condition or expression.

hierarchical data management
the practice of storing and accessing data in a database structure that minimizes
redundancy by organizing stored data in levels.

hierarchical structure
an arrangement of data in which records occur at distinct levels, with different types
of information at each level. Records are related to other records as ancestors,
descendants, siblings, and so on.

hierarchical table (HT)
in a SYSTEM 2000 database, a table that contains the hierarchical relationships
among the records in a database.

HOLD option
in SYSTEM 2000 software, an option in a PLEX retrieval command that enables a
user to reserve specified data records temporarily.

HT
See hierarchical table.

if-clause
in the SYSTEM 2000 QUEUE and REPORT languages, an additional criterion to
further qualify the records that satisfy a where-clause.

immediate mode
in SYSTEM 2000 software, the PLEX mode in which an update command is
processed immediately after being issued. See also load mode, queue mode.

166 Glossary

inclusion list
in SYSTEM 2000 software, a part of a PLEX retrieval or update command
specifying the items that are to participate in the operation.

incremental loading
in SYSTEM 2000 software, the loading of new logical entries in separate batches.

index
See SAS index.

informat
See SAS informat.

initial loading
in SYSTEM 2000 software, the loading of the first batch of logical entries into the
database. See also incremental loading.

INTEGER
in SYSTEM 2000 software, an item type for whole numeric values (or 0) having an
optional plus or minus sign.

interactive line mode (line mode)
a method of running SAS programs in which you enter one line of a SAS program at
a time at the SAS session prompt. SAS processes each line immediately after you
press the ENTER or RETURN key. Procedure output and informative messages are
returned directly to your display device.

interface view engine
a type of SAS engine that SAS/ACCESS software uses to retrieve data from files
that have been formatted by another vendor's software. Each SAS/ACCESS interface
has its own interface view engine, which reads the interface product data and returns
the data in a form that SAS can understand (that is, in a SAS data set). See also
engine.

invoke a string
in SYSTEM 2000 software, to initiate the transaction stored in a string by giving the
string's name or number and supplying any parameter values that were defined.

Item Menu
in SYSTEM 2000 software, a QueX screen containing the items available to a
specific user for a particular record and a menu of commands that may be used in
processing the items displayed.

item type
a classification of values that determines how the values will be stored in a SYSTEM
2000 database. The item types are CHARACTER, TEXT, INTEGER, DECIMAL,
MONEY, DATE, REAL (or FLOAT), DOUBLE, and UNDEFINED.

Keepfile
in SYSTEM 2000 software, a file that holds the permanent Update Log recordings; it
is used to recover a database.

key
See lookup key.

Glossary 167

key condition
in SYSTEM 2000 software, a condition that contains a key item, which means
records are qualified by means of the index.

left sibling
in a SYSTEM 2000 schema or data tree, the sibling record on the left of a given
record, that is, the record one position nearer to the beginning of the logical chain of
siblings.

level
See dimension level.

library member
any of several types of SAS file in a SAS library. A library member can be a data set,
a view, a catalog, a stored program, or an access descriptor.

library reference
See libref.

libref (library reference)
a SAS name that is associated with the location of a SAS library. For example, in the
name MYLIB.MYFILE, MYLIB is the libref, and MYFILE is a file in the SAS
library. See also SAS library.

line mode
See interactive line mode.

load a database (populate a database)
in SYSTEM 2000 software, to enter logical entries in a database.

load mode
in SYSTEM 2000 software, the PLEX mode in which only INSERT commands are
issued. The software processes those commands in part when they are issued and
completes processing when the TERMINATE command is given. See also
immediate mode, queue mode.

loader stream
in SYSTEM 2000 software, the values for logical entries coded in the format
necessary to load a database.

local hold
in SYSTEM 2000 software, the state in which one data record is reserved
temporarily for use by a user to prevent other users from updating or reserving that
data record.

Locate File
in SYSTEM 2000 software, a PLEX work file that stores addresses of data records
for subset processing.

logical entry
the data records that pertain to one entry in a SYSTEM 2000 database. For example,
in the EMPLOYEE database, all data records that pertain to one employee comprise
a logical entry.

168 Glossary

logical order
in SYSTEM 2000 software, the order of records in a tree in which each record
precedes all of its descendants and all of its right siblings.

logical unit of work
in SYSTEM 2000 software, a sequence of updates bounded by synchpoints. A
logical unit of work is used in Coordinated Recovery.

lookup key (key)
a value that uniquely identifies a specific record and its order among other records in
a database or table.

master password
the password under which a SYSTEM 2000 database is created. The holder of the
master password can access the entire database and has the authority to use any
SYSTEM 2000 statement.

Master Record
in SYSTEM 2000 software, a table of identification information, such as the
database name and passwords.

member name
a name that is assigned to a SAS file in a SAS library. See also member type.

member type
a SAS name that identifies the type of information that is stored in a SAS file.
Member types include ACCESS, AUDIT, DMBD, DATA, CATALOG, FDB,
INDEX, ITEMSTOR, MDDB, PROGRAM, UTILITY, and VIEW.

Message File
in SYSTEM 2000 software, a user file containing messages issued by the software,
such as error diagnostics, informative messages, and echoes of commands. The
Message File is the standard output file by default, but it can be a user-assigned
alternate file.

missing value
a type of value for a variable that contains no data for a particular row or column. By
default, SAS writes a missing numeric value as a single period and a missing
character value as a blank space. See also null value, null item, null record.

MONEY
in SYSTEM 2000 software, an item type for money values; it is similar to
DECIMAL type, except that $, CR, and DB are displayed with the values.

MOT
See Multiple Occurrence Table.

multi-user environment
a data entry environment in which several users access a database at the same time,
with queries and updates being handled simultaneously by a single copy of the
software. See also single-user environment.

Multiple Occurrence Table (MOT)
in SYSTEM 2000 software, a table that is part of the index.

Glossary 169

non-exclusive use
in SYSTEM 2000 software, the state in which more than one user can perform
updates and retrievals on the same database.

non-key condition
in SYSTEM 2000 software, a where-clause condition for which the software uses the
Data Table instead of the index to qualify records.

normalization
the process of obtaining ancestors or descendants of qualified records during the
processing of a SYSTEM 2000 where-clause.

NULL
in SYSTEM 2000 software, a format option that requests the output display of
NULL for items having missing values. See also null value.

null item
an item for which space is allocated in a record, although no value currently exists in
the SYSTEM 2000 database. A null item is similar to a SAS missing value, but they
are not identical. See also missing value, schema item.

null record
a data record that contains all null items.

null value
a special value that indicates the absence of information. Null values are analogous
to SAS missing values. See also missing value.

numeric item
in SYSTEM 2000 software, an item whose values are numbers that can be calculated
(as opposed to ZIP codes). The numeric item types are INTEGER, DECIMAL,
MONEY, REAL (FLOAT), and DOUBLE.

observation
a row in a SAS data set. All of the data values in an observation are associated with a
single entity such as a customer or a state. Each observation contains either one data
value or a missing-value indicator for each variable.

open a database
in SYSTEM 2000 software, to attach a database for use.

ORDERED BY clause
See ordering-clause.

ordering-clause (ORDERED BY clause)
a set of one or more user-specified SYSTEM 2000 schema items that control the
sorting of selected values.

ordinal
in SYSTEM 2000 software, the place of a member in an ordered set, for example,
the left-to-right ordering of data records within a set of similar siblings, the left-to-
right ordering of conditions in a PLEX where-clause, or the first-to-last ordering of
items in a subschema record.

170 Glossary

padding
in SYSTEM 2000 software, the unused space in a page of a database table that is
reserved for future use.

parametric string
in SYSTEM 2000 software, a string containing one or more parameters for which
values are assigned when the string is invoked.

path
See view descriptor path.

physical order
the order in which data records or observations appear in their storage structure.

physical storage structure
in SYSTEM 2000 software See also storage structure.

picture (schema item picture)
the logical size (length) of values for a particular schema item in a SYSTEM 2000
database.

PL/I PLEX
in SYSTEM 2000 software, an abbreviation for PL/I Programming Language
Extension, a dialect of the PLEX Facility.

PLEX
in SYSTEM 2000 software, a facility for extending a COBOL, FORTRAN, PL/I, or
Assembler program to include SYSTEM 2000 commands. PLEX is also the name of
the processor of the PLEX language.

PLEX processor directive
in SYSTEM 2000 software, an instruction issued to the PLEX processor that does
not result in executable code.

populate a database
See load a database.

Primary Record
in SYSTEM 2000 QueX software, the Request Record used with a SELECT
command to initiate a sequence of retrievals. All other records requested must be
related to the Primary Record in some manner.

processor
in SYSTEM 2000 software, a subsystem that is specific to each of the languages
available, for example, DEFINE, CONTROL, QUEST, REPORT, and PLEX.

Program Service Processor (PSP)
in SYSTEM 2000 software, the interface subsystem between an executing PLEX
program and the Data Base Manager.

PSP
See Program Service Processor.

qualified record
in SYSTEM 2000 software, a record that satisfies one or more conditions in a where-
clause.

Glossary 171

QUEST
the query/update language that is used in SYSTEM 2000 software. QUEST is also
the name of the processor of the QUEST language.

QUEUE
in SYSTEM 2000 software, a QUEST language option used for queries and updates
in which all commands for a session are processed simultaneously when the
TERMINATE command is given. QUEUE is also the name of the processor for the
QUEUE language.

queue mode
in SYSTEM 2000 software, a PLEX mode in which update commands are not
processed until the TERMINATE command is given. See also immediate mode, load
mode.

QueX database
in SYSTEM 2000 software, a database that contains a description of each QueX user
view of the data. A QueX database is used to condition and control the QueX
environment.

QueX menu
in SYSTEM 2000 software, a QueX screen containing the records available to a
specific user.

QueX software
in SYSTEM 2000 software, a query and update facility that is fixed-screen,
interactive, and menu-driven.

QueX table
in SYSTEM 2000 software, any of the run-time tables that drive QueX software.

R-authority
a code that is specified by the holder of the master password and which gives the
holder of a secondary password the authority to retrieve a SYSTEM 2000 schema
component.

REAL
in SYSTEM 2000 software, an item type for single-precision, floating-point values.

record membership
in SYSTEM 2000 software, the relationship between an item and the record that it
belongs to.

record relationship
in SYSTEM 2000 software, the hierarchical relationship between records.

recover a database
in SYSTEM 2000 software, to restore an archival database and apply some or all of
the updates recorded in its Keepfile.

reinstate a database
in SYSTEM 2000 software, to use the Coordinated Recovery process to bring a
damaged database back to a previous, undamaged state.

related
in SYSTEM 2000 software, the state of belonging to the same schema path.

172 Glossary

release a database
in SYSTEM 2000 software, to free the space occupied by the database files on disk.

reload a database
in SYSTEM 2000 software, to unload a database, then build new database tables
with the unloaded data by means of the RELOAD command.

rename a database
in SYSTEM 2000 software, to change the name of a database and its files.

reorganize a database
in SYSTEM 2000 software, to compress the index of a database.

REPORT
in SYSTEM 2000 software, a language for defining and generating reports. REPORT
is also the name of the processor of the REPORT language.

Report File
in SYSTEM 2000 software, a user file containing the results of retrieval requests,
such as reports, tallies, and the output from the REPORT processor. The Report File
is the standard output file by default, but it can be a user-assigned alternate file.

Request Record
in SYSTEM 2000 QueX software, the record requested for display.

restore a database
in SYSTEM 2000 software, to copy an archival database disk for active use.

restructure a database
in SYSTEM 2000 software, to change the logical data structure and the physical
storage structure of a database to reflect a schema modification.

retrieval-clause
in the SYSTEM 2000 QUEST language, the list of components to be retrieved.

return code
a numeric value that indicates whether a request was successful. A return code can
also indicate a specific error or warning.

reusable space
in SYSTEM 2000 software, the inactive storage space within a database table made
available by deletions of values or records.

right sibling
in a SYSTEM 2000 schema or data tree, the sibling record on the right of a given
record, that is, the record one position farther from the beginning of the logical chain
of siblings.

rollback
a data recovery process that restores a database after a hardware or software failure,
or that returns it to a state before changes were made.

rollback log
in SYSTEM 2000 software, a file that holds copies of database pages as they
appeared before the update commands were applied.

Glossary 173

root
See root node.

root node (root)
the topmost level in a hierarchical tree, representing the entire tree and its contents.

SAS data file
a type of SAS data set that contains data values as well as descriptor information that
is associated with the data. The descriptor information includes information such as
the data types and lengths of the variables, as well as the name of the engine that was
used to create the data. See also SAS data set, SAS data view.

SAS data set (data set)
a file whose contents are in one of the native SAS file formats. There are two types
of SAS data sets: SAS data files and SAS data views. See also descriptor
information.

SAS data view (data view)
a type of SAS data set that retrieves data values from other files. A SAS data view
contains only descriptor information such as the data types and lengths of the
variables (columns) plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors' file
formats.

SAS engine
See engine.

SAS expression (arithmetic expression)
a type of macro expression consisting of a sequence of operands and arithmetic
operators that form a set of instructions that are evaluated to produce a numeric
value, a character value, or a Boolean value. Examples of operands are constants and
system functions. SAS uses arithmetic expressions in program statements to create
variables, to assign values, to calculate new values, to transform variables, and to
perform conditional processing.

SAS file
a specially structured file that is created, organized, and maintained by SAS. A SAS
file can be a SAS data set, a catalog, a stored program, an access descriptor, a utility
file, a multidimensional database file, a financial database file, a data mining
database file, or an item store file.

SAS function (function)
a type of SAS language element that is used to process one or more arguments and
then to return a result that can be used in either an assignment statement or an
expression.

SAS index (index)
a component of a SAS data set that enables SAS to access observations in the SAS
data set quickly and efficiently. The purpose of SAS indexes is to optimize WHERE-
clause processing and to facilitate BY-group processing.

SAS informat (informat)
a type of SAS language element that is used to read data values according to the
data's type: numeric, character, date, time, or timestamp.

174 Glossary

SAS library
one or more files that are defined, recognized, and accessible by SAS, and that are
referenced and stored as a unit. Each file is a member of the library.

SAS variable (variable)
a column in a SAS data set or in a SAS data view. The data values for each variable
describe a single characteristic for all observations (rows).

save a database
in SYSTEM 2000 software, to copy a database from disk to a permanent file called
the Savefile.

Savefile
in SYSTEM 2000 software, a tape or disk file that holds the archival database. After
you save a database, the Savefile can be used to restore the database at a later time.

SCF
See Self-Contained Facility.

schema
a map or model of the overall data structure of a database. A schema consists of
schema records that are organized in a hierarchical tree structure. Schema records
contain schema items.

schema component
in SYSTEM 2000 software, a schema item or a schema record.

schema item
a component that specifies the name and characteristics of a group of SYSTEM 2000
database values. That is, a schema item has a name, a type, and a picture (length).
Each value stored in a SYSTEM 2000 database corresponds to a schema item. A
SYSTEM 2000 schema item is analogous to a SAS variable.

schema item picture
See picture.

schema path
in SYSTEM 2000 software, a path in a schema tree.

schema record (SR)
an identifiable set of associated schema items that are treated as a unit in a SYSTEM
2000 database. See also disjoint record.

secondary password
a password, other than the master password or DBA password, that restricts
SYSTEM 2000 statement usage and which specifically assigns update, retrieval, and
where-clause authorities for any or all components of a SYSTEM 2000 database.

Secondary Record
in SYSTEM 2000 QueX software, a Request Record that is related to the Primary
Record as an ancestor, as a descendant, or as part of a linked network.

Security by Entry
in SYSTEM 2000 software, a security feature that protects the entire database. To
access any given logical entry, you must know the private value for a certain item.

Glossary 175

Self-Contained Facility (SCF)
in SYSTEM 2000 software, the facility consisting of the DEFINE, CONTROL,
QUEST, QUEUE, and REPORT languages. The SCF languages do not interact with
formal programming languages. See also PLEX.

separator
in SYSTEM 2000 software, a special character that separates labels from values in
commands, value streams, and output.

session
a single period during which a software application is in use, from the time the
application is invoked until its execution is terminated.

sibling
in a hierarchical database, any of two or more segments or records that have the
same parent segment or record.

similar records
in SYSTEM 2000 software, data records that are occurrences of the same schema
record.

single-user environment
a SYSTEM 2000 execution environment in which you are working with your own
copy of SYSTEM 2000 software. In a single-user environment, you usually have
exclusive access to the database. However, the single-user environment can be
configured so that multiple users can query the database. See also multi-user
environment.

source record
in the SYSTEM 2000 PLEX facility, a subschema record that appears on the left side
of a LINK command.

SR
See schema record.

SSR
See subschema record.

stack
in the SYSTEM 2000 PLEX facility, an area in which the software saves the
addresses of the most recently retrieved data records. The effect of every PLEX
retrieval and update command depends on the contents of the stack.

storage structure
in SYSTEM 2000 software, the stored version of a database, the physical files,
indexes, pages, pointers, and fields. This is also called physical storage structure.

stored function
in SYSTEM 2000 software

stored string
a text string that is contained in a SYSTEM 2000 database definition and which can
be invoked by using the string number or name.

176 Glossary

string
a stored command or part of a command or series of commands that are invoked by
specifying the string name or number in another command. Strings are part of a
SYSTEM 2000 database definition

subschema
in a SYSTEM 2000 PLEX program, one specific application's view of the database.
A subschema consists of a collection of subschema records.

subschema item
in SYSTEM 2000 software, an item in a subschema record.

subschema record (SSR)
in a SYSTEM 2000 PLEX program, the application's view of a schema record. A
subschema record contains subschema items; each item corresponds to a schema
item in the database definition.

subtree
in SYSTEM 2000 software, a tree consisting of a given record and all its
descendants.

synchpoint
in SYSTEM 2000 software, a point at which the software marks the end of a series
of updates. Up to the most recent synchpoint, the database is secure and the updates
are available for Coordinated Recovery.

syntax
a set of rules specifying proper construction of statements or commands.

SYSTEM 2000 view
a file that reads data directly from a SYSTEM 2000 database.

system function
in SYSTEM 2000 software, an operation available for use in an arithmetic
expression or action-clause. The six system functions are AVG, COUNT, MAX,
MIN, SIGMA, and SUM. A system function can operate on an arithmetic expression
or a schema item.

system release number
in SYSTEM 2000 software, a number indicating the version of the software used to
create the database. The DESCRIBE command prints the system release number.

system separator
in SYSTEM 2000 software See also separator.

system string
in SYSTEM 2000 software, syntax that provides the current date and time according
to the computer's internal calendar and clock. The four system strings are *NOW*,
TODAY, *FTODAY*, and *DATA*.

system-wide command
in SYSTEM 2000 software, a command accepted by any processor in the Self-
Contained Facility.

Glossary 177

target level
in SYSTEM 2000 software, the level of the data records to be selected for the action-
clause.

target record
in SYSTEM 2000 software, the schema record that determines the type of records to
be selected for an action-clause. The target record determines the target level. In the
PLEX facility, the subschema record on the right side of the LINK verb.

TEXT
in SYSTEM 2000 software, an item type for textual values in which blanks are
retained. You must include the blanks when specifying the value in a where-clause.
For example, JOHN SMITH is not the same value as JOHN SMITH.

text search
in SYSTEM 2000 software, a capability that permits the search for data patterns
within subsets of values.

tree
a hierarchical file structure that has a branching structure reminiscent of a physical
tree.

U-authority
a code that is set by the holder of the master password and which gives the holder of
a secondary password the authority to update a SYSTEM 2000 schema item or
schema record.

UNDEFINED item type
in SYSTEM 2000 software, an item type for hexadecimal values. All EBCDIC
characters from x'00' through x'FF' are valid.

unload a database
in SYSTEM 2000 software, to write data from a database to the Report File in loader
stream format.

Update Log
in SYSTEM 2000 software, the software's journal of update processing.

user file
in SYSTEM 2000 software, any of these files: Command File, Data File, Message
File, or Report File.

user view
in SYSTEM 2000 QueX software, the data and environment for a specific user. The
user view is the subset of items, record, record relationships, and options defined
from that user's perspective.

value stream
in SYSTEM 2000 software, values coded in a format the software can read in order
to update a database.

variable
See SAS variable.

178 Glossary

via-clause
in the SYSTEM 2000 PLEX facility, the part of a LINK command that states the
conditions for establishing a link between two subschema records.

view
a definition of a virtual data set that is named and stored for later use. A view
contains no data; it merely describes or defines data that is stored elsewhere.

view descriptor
a SAS/ACCESS file that defines part or all of the DBMS data that is described by an
access descriptor. See also access descriptor.

view descriptor path (path)
a reference in code to a particular record and all of its hierarchical ancestors in a
SYSTEM 2000 database. See also disjoint record.

W-authority
a code that is set by the holder of the master password and which gives the holder of
a secondary password the authority to use SYSTEM 2000 schema items or schema
records for selection criteria in a where-clause.

where-clause
a set of one or more conditions that users specify as selection criteria for SYSTEM
2000 updates or retrievals.

Glossary 179

180 Glossary

Index

A
ACCDESC= option

PROC ACCESS statement 20, 71
ACCDESC= statement 96

DBLOAD procedure 96
ACCESS 70
access descriptors 2, 19

creating 70, 80
creating view descriptors from 70, 71
dropping variables from 81
effects of changing database definitions

116
example data 139
identifying 71
libref and member name 63
listing items and item information 84
naming 96
passwords for 68, 71
selecting items for view descriptors 87

access mode 109
See also single-user mode
overriding 122
specifying 102
storing 89

ACCESS procedure 1, 68
ASSIGN= statement 79
BYKEY statement 80
CREATE statement 70, 80
creating descriptor files 20
data conversions 78
database specification 81
DATABASE statement 70, 81
database-description statements 68, 70
DROP statement 81
editing statements 68, 70
efficient use of view descriptors 78
FORMAT statement 82
INFORMAT statement 83
interface view engine and 115
LENGTH statement 84
LIST statement 84
ordering-clause 77
passwords for descriptor files 68
PROC ACCESS statement 71

QUIT statement 85
RENAME statement 86
RESET statement 86
S2KPW statement 89
SELECT statement 87
statements 70
SUBSET statement 88
terminating 85
UNIQUE statement 90
where-clause 72

aggregate functions 34
ALLOC command 93
alphanumeric values

blanks not removed 14
blanks removed 13

ambiguous inserts 47
ancestor records 9
AND operator

where-clause 75
APPEND procedure 52

appending data to data files 52
appending data to view descriptors 56
Version 7 (or later) files 55
WHERE statement 54

appending data 52
to data files 52
to view descriptors 56
Version 7 (or later) files 55

ASSIGN_statement 79
ASSIGN= statement

ACCESS procedure 79
AT operator

connecting strings 135
where-clause 76

attention interrupts, TSO
Multi-User mode 110
single-user mode 108

authorities 16
browsing and updating data 41

B
BASE= data set

appending data and 52

181

batch mode
DBLOAD procedure 92

binary bit-string data 14
binary operators

where-clause 75
BLANKS option

PROC QUEST statement 110
browsing data 41

authorities 41
directly from SAS 41
FSBROWSE procedure 42
FSVIEW procedure 42, 44
passwords 41
QUEST procedure 56
SAS/FSP procedures 42
SQL procedure 49
subsetting data 45
view descriptors for 44
WHERE clause and 45

BY clause 15
BY key 65, 123

examples 124
performance and 125

BY statement 77
BYKEY 47
BYKEY statement

ACCESS procedure 80
BYKEY_statement 79

C
C-numbers 8
calendar dates 13
CHARACTER item type 13
character item types 13
character width 84
CHART procedure 26
charting data 26
children records 10
CNTLLEV= data set option 119
column names

defaulting to labels 98
length of 101
resetting to default 101

columns
renaming 100

combining data
from various sources 31

Command File 107, 109
compatibility 35, 59
component names and numbers 8
concatenating data sets 52
connecting strings 133

AT operator 135
HAS operator 135
NON-KEY specification 135

NOT operator 132
omitting a WHERE clause 135
OR operator 135
syntax 134

CONTAINS operator
where-clause 75

CONTENTS procedure 24
control nodes 12
conversions

ACCESS procedure data 78
CREATE INDEX statement 14
CREATE statement 97

ACCESS procedure 70, 80
DBLOAD procedure 97

CREATE_statement 80
customized view descriptors 92

D
data

See also subsetting data
appending 52
binary bit-string 14
browsing 41
charting 26
extracting 38, 78
null data 12
printing 25
redundancy 61, 123
sorting 39
transaction data 35

data conversions 78
data files

appending data to 52
loading input data files 60
updating 35

data records 10
deleting 122
inserting 123
inserting and deleting 47
null records 12

data security 15, 117
SAS security 118
SYSTEM 2000 security 118

data set options
CNTLLEV= 119
overriding corresponding values 121
RENAME= 52
S2KMODE= 122
S2KPW= 122
WHERE= 54

data sets
appending data and 52
concatenating 52
creating and loading databases from 59

Data Table 16

182 Index

data types
formats based on 79
resetting to default 101
variable names based on 79

DATA= data set
appending data and 52

DATA= option
PROC DBLOAD statement 94

database administration
changing database definitions 116
changing passwords 116
data security 117
enabling rollback log 118
locking record levels 119
performance 120
SAS/ACCESS interface 113

database definitions 6
changing, effects on descriptors 116
creating 97
creating and loading databases 59
database names 7
DBLOAD procedure and 92
example data 137
labeling data 7
showing 60

database files 16
allocating 93

database names 7, 97
DATABASE statement

ACCESS procedure 70, 81
DATABASE_statement 81
databases 6

See also loading databases
accessing without view descriptor 56
column names defaulting to labels 98
creating 60, 91
creating and loading from data sets 59
database files 16
DBLOAD procedure 59
deleting data records 47, 122
descriptor files 19
grouping schema items 8
grouping schema records 8
inserting data records 47, 123
KEY/NON-KEY status 98
labeling data 7
length of column names 101
level number for variables 99
loading input data files 60
logical entries 10
logical entries, adding 65, 66
logical entries, updating 65
mapping data between SAS and

SYSTEM 2000 11
naming 7, 97
null data 12

passwords 103
relationships with descriptors 2
renaming columns 100
renaming variables 59
sorting output 15
specifying for ACCESS procedure 81
subsetting data 14, 62, 104

DATASETS procedure
getting information about variables 24
MODIFY statement 69
modifying passwords 69

DATE item type 13
date values 13
DBA passwords 16
DBLOAD 94
DBLOAD procedure 1, 59, 95

ACCDESC= statement 96
allocating database files 93
batch mode 92
CREATE statement 97
creating databases 60
customized view descriptors 92
database definitions and 92
DBN= statement 97
DELETE statement 97
disjoint schema records 94
INDEX statement 64, 98
interactive-line mode 92
interface view engine and 115
item types 92
LABEL statement 98
LEVEL statement 64, 99
LIST statement 99
LOAD statement 100
loading databases 63
loading input data files 60
loading one database from another 94
passwords 63
PROC DBLOAD statement 63, 94
processing mode for loading data 66
QUIT statement 100
RENAME statement 59, 64, 100
required statements 94
RESET statement 101
S2KLEN statement 101
S2KLOAD statement 65, 66, 102
S2KMODE= statement 102
S2KPW= statement 103
statements 94
terminating 100
Version 6 compatibility 59
VIEWDESC= statement 103
WHERE statement 104

DBMS= option
PROC ACCESS statement 71
PROC DBLOAD statement 94

Index 183

DBN statement 97
DBN= statement

DBLOAD procedure 97
DECIMAL item type 13
DELETE command 47, 122
DELETE statement 97

DBLOAD procedure 97
SQL procedure 49, 51, 52

deleting data records 47, 122
descendant records 9

deleting data and 47, 49
DESCRIBE statement

QUEST procedure 60
descriptor files

access descriptors 19
creating 20
defining 19
overview 19
passwords for 68
subsetting data in 19
view descriptors 19

descriptors 2
disjoint schema records 10, 94
Distinct Values Table 16
DOUBLE item type 13
double-precision numbers 13
double-word numbers 13
DROP statement

ACCESS procedure 81
DROP_statement 81

E
EBCDIC characters 14
echo of SYSTEM 2000 statements 107
ECHO ON/ECHO OFF statements

QUEST procedure 107
ENABLE ROLLBACK statement 118
END statement

DBLOAD procedure 100
engines

interface view engine 1
Version 6 35

example data 2, 137
execution environments 16
EXIT statement

ACCESS procedure 85
DBLOAD procedure 100

Extended Field Table 16
extracting data 38, 78

F
family of records 10
filtering, successive 45
FIRSTOBS= option

PRINT procedure 26
floating-point numbers 13
FORCE= option

concatenating data sets 52
FORMAT statement

ACCESS procedure 82
FORMAT_statement 82
formats 78, 82

based on item names and data types 79
conversions to SYSTEM 2000 item

types 92
FREQ procedure 27
FSBROWSE procedure

browsing data with 42
WHERE statement 45

FSEDIT procedure
updating data with 42, 43
WHERE statement 45

FSVIEW procedure
browsing and updating data with 42, 44
WHERE statement 45

fullword numbers 13
functions and strings, SYSTEM 2000 107

G
GROUP BY clause

SQL procedure 34
grouping

schema items 8
schema records 8

H
HAS operator

connecting strings 135
where-clause 76

Hierarchical Table 16

I
IF statement, subsetting

WHERE clause versus 45
incremental loads 59, 65

adding or updating logical entries 65
INDEX statement 98

DBLOAD procedure 64, 98
indexed items 64, 98
indexing 14, 78
INFORMAT statement

ACCESS procedure 83
INFORMAT_statement 83
informats 78, 83
input data files

loading 60
subsetting data 62, 104

184 Index

insert mode 66, 123
Insert mode 123
INSERT statement

SQL procedure 49, 51
inserting data records 47, 123
INTEGER item type 13
interactive-line mode

DBLOAD procedure 92
interface 1, 113
interface view engine 1, 114

ACCESS procedure and 115
DBLOAD procedure and 115
other SAS procedures and 116
QUEST procedure and 115

item names
formats based on 79
variable names based on 79

item types 12
character 13
date 13
default conversions 92
numeric 13

item width 84

J
JCL statements 63

K
key items 14, 64
KEY/NON-KEY status 98

L
LABEL statement 98

DBLOAD procedure 98
labels

column names defaulting to 98
labeling data 7

LENGTH statement
ACCESS procedure 84

LENGTH_statement 83
LEVEL statement 99

DBLOAD procedure 64, 99
levels

changing 64
grouping schema records into 8
level number for variables 99

LIST statement 84, 99
ACCESS procedure 84
DBLOAD procedure 99
QUEST procedure 61

LOAD statement 100
DBLOAD procedure 100

loading databases 63, 91

deleting specified variables 97
executing the load 100
from data sets 59
from different paths 94
incremental loads 59, 65
loading one database from another 94
optimized load mode 66, 102
processing mode for 66
subsetting input data 104

loading input data files 60
locking record levels 119
log

echo of SYSTEM 2000 statements 107
rollback log 16, 118
update log 16

logical entries 10, 92
adding data records to 66
adding to database 65, 66
null data in 12
subsetting data 14
updating 65

M
mapping data

between SAS and SYSTEM 2000 11
master passwords 15
Master Record and Definition Table 16
MCS (multiple command submission)

111
MCS [procedure statement 111
MCS statement

QUEST procedure 111
MEANS procedure 28
missing values 12, 47, 126

in selection criteria 127
retrieving 126
updating 126

MODIFY statement
DATASETS procedure 69

MONEY item type 13
Multi-User environment 16, 64
Multi-User mode 102, 109

Command File 109
temporary output file 109
TSO attention interrupts 110

multiple command submission (MCS)
111

Multiple Occurrence Table 16

N
NON-KEY specification 135
NON-KEY/KEY status 98
NOT operator

connecting strings 132

Index 185

WHERE clause 132
where-clause 76

null data 12
null items 12
null records 12
nulls 12, 126

from deleting records 47
in selection criteria 127
retrieving 126
updating 126

numeric item types 13

O
OBS= option

PRINT procedure 25
observations

terminology 23
optimized load mode 66, 102

inserting records 123
loading one database from another 94

options
overriding 121

OR operator
connecting strings 135
where-clause 75

order of processing
where-clause 76

ordering data 77
ordering-clause 15, 77

efficient use of 78
example 77
syntax 77

OUT= option
PROC ACCESS statement 71

output
showing database definitions 60
sorting 15

overriding
access modes 122
options 121
passwords 122

P
parent records 9
passwords 15

access descriptors 68, 71
assigning 69, 103
browsing and updating data 41
changing 69, 116
clearing 69
DBA passwords 16
DBLOAD procedure 63
descriptor files 68
master passwords 15

modifying 69
overriding 122
secondary passwords 16
storing 89

path of a record 10
performance

BY key and 125
maximizing 120
view descriptors and 38, 78

picture 12
PLEX commands 114
post-processing 46
PRINT procedure 25

FIRSTOBS= option 26
OBS= option 25

printing data 25
printing a sample 25

PROC ACCESS statement 71
ACCDESC= option 20, 71
DBMS= option 71
OUT= option 71
VIEWDESC= option 72

PROC DBLOAD statement 63, 94
DATA= option 94
DBMS= option 94

PROC QUEST statement 105
BLANKS option 110
S2KMODE= option 110

processing modes 66
processing order

where-clause 76

Q
QUEST interactive language 56
QUEST procedure 1, 105

browsing and updating data 56
Command File 107
DESCRIBE statement 60
ECHO ON/ECHO OFF statements 107
interface view engine and 115
LIST statement 61
MCS statement 111
Multi-User mode 109
PROC QUEST statement 105
QUIT statement 112
SCS statement 112
showing database definitions 60
single-user mode 108
statements 106
strings and functions 107
syntax 110
SYSTEM 2000 statements 106

QUEST_procedure 110
QUIT procedure 111
QUIT statement 85, 100

186 Index

ACCESS procedure 85
DBLOAD procedure 100
QUEST procedure 112

R
RANK procedure 29
REAL item type 13
record-level locking 119
records 10

See also schema records
ancestor records 9
children records 10
descendant records 9
family of 10
null records 12
parent records 9
path of 10

redundancy 61, 123
REMOVE INDEX statement 14
RENAME statement 85, 100

ACCESS procedure 86
DBLOAD procedure 59, 64, 100

RENAME= data set option
appending data and 52

RENAME= option
UPDATE statement 37

renaming
columns 100
variables 59, 64, 86

RESET statement 86, 101
ACCESS procedure 86
DBLOAD procedure 101

rollback log 16, 118

S
S2KLEN statement 101

DBLOAD procedure 101
S2KLOAD statement 102

DBLOAD procedure 65, 66, 102
S2KMD= data set option 122
S2KMODE statement 102
S2KMODE= data set option 122
S2KMODE= option

PROC QUEST statement 110
S2KMODE= statement

DBLOAD procedure 102
S2KPARMS file 108
S2KPW statement 89

ACCESS procedure 89
S2KPW= data set option 122
S2KPW= statement 103

DBLOAD procedure 103
SAS

browsing and updating data from 41

mapping data between SYSTEM 2000
and 11

security 118
SAS data views 19
SAS/ACCESS interface 113
SAS/FSP procedures

browsing and updating data 42
inserting and deleting data records 47
WHERE statement 45

schema components 8
schema items 7

grouping 8
indexing 14
item types 12
key items 14
null items 12
variable names created from schema

item names 8
schema records 8

disjoint records 10, 94
family of 10
grouping into levels 8
grouping schema items into 8
no schema items in 12
path of 10
relationships among 8
types of 9

SCS (single command submission) 112
SCS statement 112

QUEST procedure 112
secondary passwords 16
security

data security 15, 117
SAS security 118
SYSTEM 2000 118

SELECT statement 87
ACCESS procedure 87
SQL procedure 49

selection criteria 14, 78
nulls in 127
WHERE clause versus where-clause

133
SEPARATOR IS statement 108
single command submission (SCS) 112
single-precision numbers 13
single-statement queuing mode 112
single-user environment 16
single-user mode 102, 108

S2KPARMS file 108
TSO attention interrupts 108

sort keys 15, 80
SORT procedure 78
sorting

data 39
output 15

source data set

Index 187

appending data and 52
SQL procedure

browsing and updating data 49
combining data from various sources

31
creating new items 34
DELETE statement 49, 51, 52
GROUP BY clause 34
INSERT statement 49, 51
SELECT statement 49
subsetting data 50
UPDATE statement 49, 50
view descriptors 49
WHERE clause 30, 50, 52

statement-queuing mode 111
statistics 27
stored strings 136
strings and functions, SYSTEM 2000 107
strings, connecting

See connecting strings
SUBSET statement 88

ACCESS procedure 88
subsetting data 14

for view descriptors 88
in descriptor files 19
input data 62, 104
SAS/FSP procedures 45
SQL procedure 50

subsetting IF statement
WHERE clause versus 45

successive filtering 45
summary functions 34
SYSTEM 2000

access mode 102
database files 16
databases 6
default item types 92
execution environments 16
indexing 14
interface 1
item types 12
mapping data between SAS and 11
overview 5
passwords 15
security 118
strings and functions 107

SYSTEM 2000 statements
echo in log 107
QUEST procedure 106
strings and functions 107

T
target data set

appending data and 52
terminology 23

ternary operators
where-clause 75

TEXT item type 14
time values 13
transaction data 35
truncated variable names 59
TSO attention interrupts

Multi-User mode 110
single-user mode 108

U
unary operators

where-clause 74
UNDEFINED item type 14
UNIQUE statement 89

ACCESS procedure 90
update log 16
UPDATE statement

RENAME= option 37
SQL procedure 49, 50
updating data files 35

update types 126
updating data

appending data 52
authorities 41
data files 35
deleting data records 47
directly from SAS 41
FSEDIT procedure 42, 43
FSVIEW procedure 42, 44
inserting data records 47
nulls 126
passwords 41
QUEST procedure 56
SAS/FSP procedures 42
SQL procedure 49
subsetting data 45
Version 7 and later 37
view descriptors for 44
WHERE clause and 45

updating logical entries 65
USER statement 108, 109

V
variable names

based on data types 79
based on item names 79
created from schema item names 8
resetting to default 86
truncated 59
unique names 90

variables
appending data and 52
creating databases 59

188 Index

deleting from database load 97
dropping from access descriptors 81
getting information about 24
level number for 99
list of information about 99
renaming 59, 64, 86
reviewing 24
terminology 23

Version 6 (or later) files
DBLOAD procedure and 59

Version 6 compatibility engine 35
Version 7 (or later) files 37

appending data to 55
DBLOAD procedure and 59

view descriptors 2, 19
access mode for creating 89
accessing databases without 56
appending data to 56
browsing and updating data 44
BY key 65
character item types 14
creating 70, 80
creating, from access descriptors 70
customized 92
effects of changing database definitions

116
efficient use of 78
example data 141
getting information about 24
in SQL procedure 49
including items from access descriptors

87
libref and member name 64
listing items and item information 84
mapping data between SAS and

SYSTEM 2000 11
multiple 122
naming 103
ordering data 77
overriding data set option values 121
passwords for 68
selection criteria for 88
subsetting data for 88

VIEWDESC statement 103
VIEWDESC= option

PROC ACCESS statement 72
VIEWDESC= statement

DBLOAD procedure 103

W
WHERE clause 15

browsing data and 45
connecting strings 133
NOT operator 132
not translatable to SYSTEM 2000 131
omitting, with connecting strings 135
selection criteria 133
SQL procedure 30, 50, 52
subsetting IF statement versus 45
translating to where-clause 130
where-clause versus 127, 133

WHERE command 45
WHERE statement 104

APPEND procedure 54
DBLOAD procedure 104
SAS/FSP procedures 45
subsetting input data 62

where-clause 14, 45, 72
AND operator 75
AT operator 76
binary operators 75
combining conditions 75
connecting strings 133
CONTAINS operator 75
HAS operator 76
NOT operator 76, 132
nulls in selection criteria 127
OR operator 75
position in database 76
processing order 76
record types 76
selection criteria 133
stored strings 136
syntax 72
ternary operators 75
translating WHERE clause to 130
unary operators 74
unmatched conditions 76
WHERE clause versus 127, 133

WHERE= data set option
appending data and 54

whole numbers 13

Index 189

190 Index

	Contents
	The SAS/ACCESS Interface to SYSTEM 2000
	Overview of the SAS/ACCESS Interface to SYSTEM 2000
	Example Data in This Document

	SYSTEM 2000 Software
	Overview of SYSTEM 2000
	SYSTEM 2000 Databases
	Overview of Database Definition
	Database Names
	Labeling Data
	Grouping Schema Items
	Grouping Schema Records
	Logical Entries
	Mapping Data between SAS and SYSTEM 2000
	Null Data (Missing Values)

	SYSTEM 2000 Item Types
	Overview of Item Types
	Numeric Item Types
	Date Item Types
	Character Item Types

	SYSTEM 2000 Indexing
	Selecting a Subset of Data
	Sorting Output
	SYSTEM 2000 Passwords
	SYSTEM 2000 Execution Environments
	SYSTEM 2000 Database Files

	SAS/ACCESS Descriptor Files
	Overview of SAS/ACCESS Descriptor Files
	Defining SAS/ACCESS Descriptor Files
	Creating Descriptor Files

	SYSTEM 2000 Data in SAS Programs
	Using SYSTEM 2000 Data in SAS
	Reviewing Variables
	Printing Data
	Charting Data
	Calculating Statistics
	Selecting and Combining Data with the SQL Procedure
	Using the WHERE Clause
	Combining Data from Various Sources
	Creating New Items with the GROUP BY Clause in PROC SQL

	Updating SAS Data Files with SYSTEM 2000 Data
	Using the UPDATE Statement
	Updating Data Files in SAS 7 and Later

	Performance Considerations

	Browsing and Updating SYSTEM 2000 Data
	Browsing and Updating SYSTEM 2000 Data Directly from SAS
	Browsing and Updating with SAS/FSP
	Using SAS/FSP Procedures
	FSBROWSE Procedure
	FSEDIT Procedure
	FSVIEW Procedure
	WHERE Clauses in SAS
	Inserting and Deleting Data Records

	Browsing and Updating with the SQL Procedure
	Using the APPEND Procedure
	Appending Data Described by SAS/ACCESS View Descriptors and
 PROC SQL Views
	Appending Data to a SAS Data File
	Appending Data to SAS 7 or Later Data Files
	Appending SAS Data to a View Descriptor

	Browsing and Updating with the QUEST Procedure

	Creating and Loading SYSTEM 2000 Databases
	DBLOAD Procedure in SAS and SYSTEM 2000
	Using the DBLOAD Procedure
	Compatibility with SAS 6
	Creating a SYSTEM 2000 Database
	Loading the Input Data File
	Subsetting Input Data
	Subsetting Input Data
	Loading a SYSTEM 2000 Database
	Adding New Logical Entries versus Updating Existing Logical
Entries

	Selecting a Processing Mode for Loading Data

	SAS/ACCESS 9 for SYSTEM 2000: Reference
	ACCESS Procedure in SAS and SYSTEM 2000
	Types of Procedure Statements
	Passwords for Descriptor Files
	SAS Passwords

	ACCESS Procedure Statements
	ACCESS Procedure Syntax
	The PROC ACCESS Statement
	where-clause in SYSTEM 2000
	Using the where-clause (SYSTEM 2000)
	where-clause Syntax (SYSTEM 2000)
	where-clause Examples (SYSTEM 2000)

	ordering-clause in SYSTEM 2000
	Using the Ordering-clause (SYSTEM 2000)
	Ordering-clause Syntax (SYSTEM 2000)
	ordering-clause Example (SYSTEM 2000)

	Creating and Using View Descriptors Efficiently
	PROC ACCESS Data Conversions
	Dictionary
	ASSIGN= Statement (Optional)
	BYKEY Statement (Optional)
	CREATE Statement (Required)
	DATABASE Statement (Required)
	DROP Statement (Optional)
	FORMAT Statement (Optional)
	INFORMAT Statement (Optional)
	LENGTH Statement (Optional)
	LIST Statement (Optional)
	QUIT Statement (Optional)
	RENAME Statement (Optional)
	RESET Statement (Optional)
	SELECT Statement (Optional)
	SUBSET Statement (Optional)
	S2KPW Statement (Optional)
	UNIQUE Statement (Optional)

	DBLOAD Procedure Reference
	DBLOAD Procedure and SYSTEM 2000
	Creating Customized View Descriptors
	Default SYSTEM 2000 Item Types
	Allocating the Database Files
	Adding Disjoint Schema Records
	Loading One SYSTEM 2000 Database from Another
	DBLOAD Procedure Options Syntax
	The PROC DBLOAD Statement
	DBLOAD Procedure Statements

	Dictionary
	DBLOAD Procedure Statements Syntax
	ACCDESC= Statement (Optional)
	CREATE Statement (Required)
	DBN= Statement (Required)
	DELETE Statement (Optional)
	INDEX Statement (Optional)
	LABEL Statement (Optional)
	LEVEL Statement (Optional)
	LIST Statement (Optional)
	LOAD Statement (Required)
	QUIT Statement (Optional)
	RENAME Statement (Optional)
	RESET Statement (Optional)
	S2KLEN Statement (Optional)
	S2KLOAD Statement (Optional)
	S2KMODE= Statement (Optional)
	S2KPW= Statement (Required)
	VIEWDESC= Statement (Required) | (Optional)
	WHERE Statement (Optional)

	QUEST Procedure Reference
	QUEST Procedure in SAS with SYSTEM 2000
	Statements in PROC QUEST
	SYSTEM 2000 Statements and the QUEST Procedure
	Using the QUEST Procedure
	ECHO ON and ECHO OFF Statements
	SYSTEM 2000 Strings and Functions

	Single-User Mode
	Using Single-User Mode
	The S2KPARMS File
	Attention Interrupts in TSO

	Multi-User Mode
	Using Multi-User Mode
	Temporary Output File
	Command File
	Attention Interrupts in TSO

	Dictionary
	QUEST Procedure Syntax
	MCS Procedure Statement (Optional)
	QUIT Procedure Statement (Optional)
	SCS Procedure Statement (Optional)

	Topics for Database Administrators
	SYSTEM 2000 and the SAS/ACCESS Interface
	Overview for the Database Administrator
	SYSTEM 2000 Interface View Engine

	Changing a SYSTEM 2000 Database Password
	Changing a Database Definition
	Data Security
	Ensuring Data Security
	SYSTEM 2000 Security
	SAS System Security

	Enabling the Rollback Log
	Locking Record Levels
	Maximizing SYSTEM 2000 Performance

	Advanced Topics for Users
	Overriding Options
	Override Corresponding Values

	Using Multiple View Descriptors
	Deleting Data Records
	Inserting Data Records
	BY Key
	Using a BY Key
	Examples Using a BY Key
	BY-Key Effects on Performance

	Missing Values (Nulls)
	Retrieving Nulls
	Updating Nulls
	Nulls in Selection Criteria

	WHERE Clauses in SAS and where-clauses in SYSTEM 2000
	Overview of WHERE Clauses
	WHERE Clauses in SAS Translatable to SYSTEM 2000
	WHERE Clauses in SAS Not Translatable to SYSTEM 2000
	NOT Operator in SAS and SYSTEM 2000

	Specifying Selection Criteria
	Connecting Strings to Order Conditions
	Using Connecting Strings
	Syntax for Specifying a Connecting String
	Omitting a WHERE Clause in SAS
	Using the OR Operator
	Using HAS, AT, and NON-KEY

	Stored Strings in SYSTEM 2000

	Example Programs
	Using the Example Programs
	SYSTEM 2000 Database Definition for Database EMPLOYEE
	Access Descriptors
	Access Descriptor MYLIB.EMPLOYE

	View Descriptors
	Access Descriptor MYLIB.EMPLOYE
	View Descriptor VLIB.EMPBD
	View Descriptor VLIB.EMPEDUC
	View Descriptor VLIB.EMPPHON
	View Descriptor VLIB.EMPPOS
	View Descriptor VLIB.EMPSKIL
	View Descriptor VLIB.EMPVAC

	SAS Data Files
	Data File MYDATA.CLASSES
	Data File V6.BIRTHDY
	Data File V7.CONSULTING_BIRTHDAYS
	Data File MYDATA.CORPHON
	Data File Trans.Banking

	Recommended Reading
	Glossary
	Index

