
SAS/ACCESS® 9.2
Interface to IMS
Reference

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2008.
SAS/ACCESS ® 9.2 to IMS: Reference. Cary, NC: SAS Institute Inc.

SAS/ACCESS® 9.2 to IMS: Reference
Copyright © 2008, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59047-930-8
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, March 2008
1st printing, March 2008
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

P A R T 1 SAS/ACCESS Interface to IMS: Introduction 1

Chapter 1 � Overview of the SAS/ACCESS Interface to IMS 3
Introduction to the SAS/ACCESS Interface to IMS 3

Purpose of the SAS/ACCESS Interface to IMS 3

Using the SAS/ACCESS Interface to IMS 4

SAS/ACCESS Descriptor Files for IMS 6

Executing SAS/ACCESS Programs in Batch Mode 7

Executing SAS/ACCESS Programs under TSO 8

About the Example Data in the Document 9

Chapter 2 � IMS Essentials 11
Introduction to IMS Essentials 12

The IMS DBMS 12

Overview of IMS Databases 12

Physical Databases and Program Views 18

DL/I Calls 25

IMS Execution Modes 31

Shared IMS Database Access 34

P A R T 2 The IMS Engine Interface: Usage 39

Chapter 3 � Defining SAS/ACCESS Descriptor Files 41
Introduction to Defining SAS/ACCESS Descriptor Files 41

SAS/ACCESS Descriptor Files Essentials 41

Creating and Using Descriptor Files 42

Using View Descriptors in SAS Programs 45

Chapter 4 � IMS Data in SAS Programs 49
Introduction to Using IMS Data in SAS Programs 49

Charting IMS Data 50

Calculating Statistics with IMS Data 51

Selecting and Combining IMS Data 56

Updating a SAS Data File with IMS Data 64

Example of VALIDVARNAME=V7 66

Chapter 5 � Browsing and Updating IMS Data 69
Introduction to Browsing and Updating IMS Data 69

Browsing and Updating IMS Data with SAS/FSP Procedures 70

Browsing and Updating IMS Data with the SQL Procedure 76

Updating SAS Files with IMS Data 83

iv

Appending IMS Data with the APPEND Procedure 87

P A R T 3 SAS/ACCESS Interface to the IMS Engine: Reference 91

Chapter 6 � ACCESS Procedure Reference 93
Introduction to ACCESS Procedure Reference 93

ACCESS Procedure Syntax for IMS 94

Description 94

PROC ACCESS Statement Options 95

SAS Passwords for SAS/ACCESS Descriptors 95

Invoking the ACCESS Procedure 98

Database-Description Statements 99

Editing Statements 100

ACCESS Procedure Statements for IMS 100

Tools for Creating IMS Access Descriptors 121

Performance and Efficient View Descriptors 122

Chapter 7 � Advanced User Topics for the SAS/ACCESS Interface View Engine for
IMS 129
Introduction to Advanced Topics for the Interface View Engine 129

Changing an IMS Database and the Effects on Descriptors 130

Changes That Cause Existing View Descriptors to Fail 130

Understanding Character Set Encoding 130

Ensuring IMS Data Security 131

Maximizing IMS Performance 132

Understanding the IMS Interface 132

IMS Engine Calls to the Database 139

P A R T 4 The IMS DATA Step Interface: Reference 149

Chapter 8 � Overview of the IMS DATA Step Interface 151
Introduction to the IMS DATA Step Interface 151

DATA Step Statement Extensions 152

Example of Using DATA Step Views 157

The DL/I INFILE Statement 160

The DL/I INPUT Statement 170

The DL/I FILE Statement 176

The DL/I PUT Statement 176

IMS DATA Step Examples 182

Chapter 9 � How to Use the IMS DATA Step Interface 195
Introduction to Using the IMS DATA Step Interface 195

z/OS DL/I System Calls 196

Fast Path DL/I Database Access 197

Non-Database Access Calls 199

v

Chapter 10 � Advanced Topics for the IMS DATA Step Interface 217
Introduction to Advanced Topics for the IMS DATA Step Interface 217

Restarting an Update Program 217

SSAs in IMS DATA Step Programs 232

P A R T 5 Appendixes 237

Appendix 1 � SAS System Options for IMS Databases 239
Introduction to SAS System Options for IMS Databases 239

Specifying System Options 239

SAS System Options for IMS 241

Quick Reference for Options 258

Appendix 2 � Example Data 261
Introduction to IMS Example Data 261

Access Descriptors for IMS 262

View Descriptors Based on the Access Descriptors for IMS 266

Creating SAS Data Sets for IMS 269

SAS Statements for Loading DB2 Table BANKCHRG 286

Appendix 3 � Recommended Reading 289
Recommended Reading 289

Glossary 291

Index 301

vi

1

P A R T1

SAS/ACCESS Interface to IMS: Introduction

Chapter 1.Overview of the SAS/ACCESS Interface to IMS 3

Chapter 2.IMS Essentials 11

2

3

C H A P T E R

1
Overview of the SAS/ACCESS
Interface to IMS

Introduction to the SAS/ACCESS Interface to IMS 3
Purpose of the SAS/ACCESS Interface to IMS 3

Using the SAS/ACCESS Interface to IMS 4

Three Parts of the SAS/ACCESS Interface to IMS 4

How the IMS Engine and DATA Step Interfaces Differ 4

When to Use the IMS Engine Interface 5
When to Use the IMS DATA Step Interface 5

Features Not Supported by the IMS Engine Interface 5

Features Not Supported by the IMS DATA Step Interface 5

SAS/ACCESS Descriptor Files for IMS 6

Using SAS/ACCESS Descriptor Files 6

Access Descriptor Files 6
View Descriptor Files 7

Executing SAS/ACCESS Programs in Batch Mode 7

Executing a Cataloged Procedure 7

DD Statements 8

Executing SAS/ACCESS Programs under TSO 8
Overview of SAS/ACCESS Programs under TSO 8

Allocating Database Data Sets 8

About the Example Data in the Document 9

How to Use the Example Data 9

Running the Examples in This Document 9

Introduction to the SAS/ACCESS Interface to IMS

This section introduces you to SAS/ACCESS software and briefly describes how to
use the interface. This section also introduces the sample IMS data and SAS data files
used in this document.

Purpose of the SAS/ACCESS Interface to IMS

SAS/ACCESS software provides an interface between SAS and the IMS database
management system (DBMS). You can perform the following tasks with this
SAS/ACCESS interface:

� Create SAS/ACCESS descriptor files using the ACCESS procedure.

� Directly access data in IMS databases from a SAS program using the view
descriptor files created with the ACCESS procedure.

4 Using the SAS/ACCESS Interface to IMS � Chapter 1

� Extract data from IMS databases and place it in a SAS data file using the
ACCESS procedure, the DATA step, or other SAS procedures.

� Update, insert, or delete data in IMS databases using the SQL procedure,
SAS/FSP software, the APPEND procedure, or the MODIFY statement. The
MODIFY statement can be used with the IMS interface view engine, and supports
REPLACE, DELETE, and INSERT calls.

� Issue DL/I calls to update, insert, and delete data in IMS databases using the
DATA step interface’s INFILE, INPUT, FILE, and PUT statements.

Using the SAS/ACCESS Interface to IMS

Three Parts of the SAS/ACCESS Interface to IMS
The SAS/ACCESS interface to IMS consists of three parts:

� the ACCESS procedure, which you use to define the SAS/ACCESS descriptor files

� the IMS interface view engine, which enables you to use IMS descriptor files in
SAS programs in much the same way you use SAS data files

� the DATA step interface, which enables you to access information in IMS
databases using SAS programming statements

The ACCESS procedure enables you to describe an IMS database to SAS in an access
descriptor file. You can then create view descriptor files from the access descriptor file,
which you can use in SAS programs in much the same way as you would use SAS data
files. You can print, plot, and chart the data described by the view descriptor files, use
it to create other SAS data sets, and so on. Chapter 3, “Defining SAS/ACCESS
Descriptor Files,” on page 41 describes how to create and edit SAS/ACCESS descriptor
files. Chapter 4, “ IMS Data in SAS Programs,” on page 49 presents examples of using
IMS data in SAS programs, and Chapter 5, “Browsing and Updating IMS Data,” on
page 69 shows how to use the view descriptor files to update IMS data from within a
SAS program.

The interface view engine is an integral part of the SAS/ACCESS interface, but the
interface’s design is embedded in the software, so you are seldom aware of the engine.
SAS interacts automatically with the engine when you use SAS/ACCESS view
descriptors in your SAS programs, so you can use IMS data in your programs in much
the same way as you use SAS data.

The DATA step interface provides special extensions of standard SAS INFILE and
FILE statements to access IMS resources. Chapter 9, “How to Use the IMS DATA Step
Interface,” on page 195 describes these statement extensions in detail.

You might need to combine data from several sources, including IMS databases,
Version 6 SAS data sets, Version 7 SAS data sets, and other databases. With the
SAS/ACCESS interface, such combinations are not only possible, but easy to do. SAS
can differentiate among SAS data sets, SAS/ACCESS view descriptor files, and other
types of SAS files, and it can use the appropriate access method.

How the IMS Engine and DATA Step Interfaces Differ
When comparing the two interfaces, you can identify some obvious differences:

� The IMS interface view engine requires you to create descriptor files. The engine
uses information from the descriptor files to successfully attach IMS and retrieve

Overview of the SAS/ACCESS Interface to IMS � Features Not Supported by the IMS DATA Step Interface 5

or update the data being requested by the application. The DATA step interface
requires no such files since it is a programming interface.

� The engine access method provides access to IMS data. To access data, you simply
make reference to a descriptor file and you have access to the data defined by the
view. Coding DATA step programs requires in-depth knowledge of the database
that is being accessed, and the ability to code host level calls to retrieve or update
IMS data. You can, however, create SAS DATA step views from the DATA step
programs to provide users who are unfamiliar with the DL/I language access to
the data.

When to Use the IMS Engine Interface
Use the IMS engine interface for the following situations:
� access to IMS data.
� access to data that lies in a single database path. Performance is enhanced when

segment search arguments (SSAs) can be generated from WHERE statements.
� assignment of READ, WRITE and ALTER levels of protection with passwords.

When to Use the IMS DATA Step Interface
Use the IMS DATA step interface for the following situations:
� programs that need full control over DBMS access. The DATA step interface

provides total CHKP control in an update program as well as control over DBMS
calls and SSAs.

� transaction-style programs that need the capability of dynamically generating
SSAs from SAS variable values in transaction files.

� multi-path processing or accessing data from multiple databases in the same
application. Joining data can be more efficient when performed in the DATA step
as opposed to the engine interface.

� access to message queues in a BMP region.
� access to Fast Path databases.

Features Not Supported by the IMS Engine Interface
The engine does not support Fast Path, message queue access, or HSSR. The SLI

region type is also no longer supported; however, you can use the DBCTL feature of
IMS/ESA and CICS/ESA for those functions.

Features Not Supported by the IMS DATA Step Interface
The DATA step does not support the DLITEST procedure and HSSR. The SLI region

type is also no longer supported; however, you can use the DBCTL feature of IMS/ESA
and CICS/ESA for those functions.

6 SAS/ACCESS Descriptor Files for IMS � Chapter 1

SAS/ACCESS Descriptor Files for IMS

Using SAS/ACCESS Descriptor Files
SAS/ACCESS descriptor files are the tools that the SAS/ACCESS interface view

engine uses to establish a connection between SAS and IMS. To create these files, you
run the ACCESS procedure using one of three methods:

� batch mode
� interactive line mode
� noninteractive mode

There are two types of descriptor files: access descriptors and view descriptors. They
are discussed in the next two sections. The following figure illustrates the relationships
among an IMS database, an access descriptor, and view descriptors. Chapter 3,
“Defining SAS/ACCESS Descriptor Files,” on page 41 shows you how to create, browse,
and edit these files.

Figure 1.1 Relationships between an IMS Database, an Access Descriptor, and
View Descriptors

Access Descriptor Files
Access descriptor files are of member type ACCESS. Each access descriptor holds

essential information about the IMS database that you want to access, for example, the
name of the database; the names of segments, search fields, and key fields; segment

Overview of the SAS/ACCESS Interface to IMS � Executing a Cataloged Procedure 7

lengths; names of non-search fields in the database; and data types. An access descriptor
might also contain the corresponding SAS information, such as the SAS variable names
and formats. Typically, you have only one access descriptor for each IMS database.

Since an access descriptor describes only one IMS database, you cannot create a
single access descriptor that accesses multiple physical IMS databases; however, you
can create a single access descriptor for a logical IMS database that accesses multiple
physical databases.

View Descriptor Files
View descriptor files are sometimes called views because their member type is VIEW.

This document uses the term view descriptors to distinguish view descriptor files from
views created by the SAS SQL procedure or a DATA step.

Each view descriptor can define all the data in one path of the database, or a
particular subset of the data in one path of the database (see Chapter 2, “IMS
Essentials,” on page 11 for a discussion of paths and other IMS concepts). View
descriptors enable you to define all the data in one path of the database by selecting the
items that you want to use and specifying selection criteria for only the records that you
want. For example, you might want only records with a transaction date of July 3,
1995, and for customers who live in Richmond. You might have several view
descriptors, each selecting different paths of data in an access descriptor that you have
defined. You might also have view descriptors that select different subsets of data in
one path of an access descriptor.

You can join data by using SAS’s SQL procedure. With the SQL procedure, you can
create a view that joins and summarizes data from multiple view descriptors (based on
IMS databases), SAS data files, DATA step views, or other PROC SQL views. See
Chapter 4, “ IMS Data in SAS Programs,” on page 49 for a discussion and examples
that use the SQL procedure.

Executing SAS/ACCESS Programs in Batch Mode

Executing a Cataloged Procedure
The JCL (job control language) that is required to execute programs using the

SAS/ACCESS interface to IMS in z/OS batch mode is similar to that of other SAS jobs
in z/OS batch mode. Refer to the SAS Companion for z/OS for general information
about SAS jobs in z/OS batch environments.

The JCL for a batch job that accesses IMS data requires that you specify your site’s
designated cataloged procedure in the EXEC statement. So, instead of specifying your
site’s default SAS cataloged procedure (such as // EXEC SAS), you use the following
EXEC statement:

// EXEC your-cataloged-procedure

The name of the cataloged procedure that invokes SAS and supports the use of the
SAS/ACCESS interface to IMS differs at each installation, particularly if your
installation uses separate cataloged procedures for accessing test databases and
production DL/I databases. Be sure to check with your on-site SAS support personnel
for the correct procedure name. (SAS no longer supplies the Version 5 SASDLI
cataloged procedure.) The installation notes that are shipped with the SAS/ACCESS
interface to IMS explain to your database administrator how to create a cataloged
procedure for your site.

8 DD Statements � Chapter 1

The cataloged procedure for accessing IMS data contains all of the JCL statements
and parameters that the SAS cataloged procedure contains, plus JCL statements and
parameters necessary for the run-time execution of the IMS engine interface and IMS
DATA step programs. PROC ACCESS can use the standard SAS catalog if the only task
you are performing is creating descriptor files.

DD Statements
If you execute DL/I calls through a batch DL/I region (DLI or DBB), DD statements

for all the database and index data sets that are accessed must be included in the job
step JCL. Ddnames and DS names (names of database data sets) must be obtained
from the DBA staff at your site. Data sets that support the index must be allocated for
the HIDAM database type.

If you execute DL/I calls through an online DL/I access region (BMP), database data
sets are allocated to the DL/I control region or to the CICS control region. Therefore,
you do not need to include ddnames for them in the job step JCL.

When you execute a batch DL/I region and want to log updates, you need a DD
statement for a log data set. For information about using the IMSLOG option, on
pointing to the IMS resident libraries, and information about pointing to the DBD, PSB,
and ACBLIB, check with your DBA or refer to the installation instructions for the
SAS/ACCESS interface to IMS.

All other JCL considerations that are outlined in the SAS Companion for z/OS apply
to the IMS engine interface and IMS DATA step execution.

Executing SAS/ACCESS Programs under TSO

Overview of SAS/ACCESS Programs under TSO
The SAS/ACCESS Interface to IMS can run interactively if your site has installed

SAS under TSO. The TSO commands needed for the run-time execution of the IMS
engine interface and IMS DATA step programs are similar to those for other TSO SAS
jobs. (For general information about using SAS under TSO, see the SAS Companion for
z/OS and the installation instructions for the SAS/ACCESS interface to IMS). PROC
ACCESS can use the standard SAS CLIST if the only task that you are performing is
creating descriptor files.

Allocating Database Data Sets
If you access DL/I databases through a batch DL/I region (DLI or DBB), you must

first allocate the database data sets. You can allocate these database data sets from
within or outside of SAS.

From within a SAS session, you use the SAS FILENAME statement to associate
ddnames with database data sets and other z/OS files that might be accessed by the
interface view engine or a DATA step program. You can specify the FILENAME
statements in the SAS Program Editor or in an AUTOEXEC file.

From outside of a SAS session, you can use a TSO ALLOCATE command. You can
obtain the appropriate filerefs and data set names from the database administrator
(DBA) staff at your site.

Overview of the SAS/ACCESS Interface to IMS � Running the Examples in This Document 9

If you execute DL/I calls through an online DL/I access region (BMP), the database
data sets are allocated to the respective DL/I control regions. Therefore, you do not
need to allocate them with the TSO ALLOCATE command (or other means).

All other commands and TSO environment considerations are described in the SAS
Companion for z/OS.

About the Example Data in the Document

How to Use the Example Data

This document uses two HDAM IMS databases, the ACCTDBD database and the
WIRETRN database. These databases were created for a bank, and they contain data
about the bank’s customers and their checking and savings account transactions. The
seven ACCTDBD database segments are named CUSTOMER, CHCKACCT,
CHCKDEBT, CHCKCRDT, SAVEACCT, SAVEDEBT, and SAVECRDT. The WIRETRN
database has one segment, WIRETRAN, and includes only data pertaining to wire
transfers of money. All the data in the document is fictitious.

The document also uses one HIDAM database, EMPLINF2, in the examples.

Note: These databases are designed to show how the interface treats IMS-DL/I
data. They are not meant as an example for you to follow in designing databases for
any purpose. �

Appendix 2 gives more information about the ACCTDBD database and the data it
contains. Appendix 2 also includes definitions of all the view descriptors referenced in
this document and all the SAS data files and statements used to create them. Chapter
3, “Defining SAS/ACCESS Descriptor Files,” on page 41 provides information about the
WIRETRN database and definitions of the view descriptors used in the examples.

Running the Examples in This Document

To run the examples based on the ACCTDBD and WIRETRN databases, you must
first load the database files and define the access and view descriptors shown in
Appendix 2. Use the sample library files described here.

IMSLD
contains the source programs for loading the ACCTDBD, EMPLINF2, and
WIRETRN database files for both the engine interface and DATA step. It includes
the JCL used to allocate the IMS databases, to create DBDs and PSBs, and to
create needed flat files.

IMSEX
contains the example SAS programs that use the engine interface, as shown in
Chapter 4, “ IMS Data in SAS Programs,” on page 49 and Chapter 5, “Browsing
and Updating IMS Data,” on page 69.

IMSDS
contains the example SAS programs that use the DATA step interface, as shown in
Chapter 1, “Overview of the SAS/ACCESS Interface to IMS,” on page 3 and
Chapter 9, “How to Use the IMS DATA Step Interface,” on page 195.

10

11

C H A P T E R

2
IMS Essentials

Introduction to IMS Essentials 12
The IMS DBMS 12

Overview of IMS Databases 12

Using IMS Databases 12

Segment Occurrences 14

Segment Relationships 15
Path Navigation 16

Fields 17

Physical Databases and Program Views 18

Introduction of Physical Databases and Program Views 18

What You Need to Know to Create Descriptors 18

Database Description 19
DBD for the WIRETRAN Segment 19

IMS Database Types 20

IMS Data Types 21

IMS Data Types in SAS/ACCESS Descriptors 21

DBD for the ACCTDBD Database 23
Program Specification Block 24

Example of a PSB 24

Security Options 25

DL/I Calls 25

Specifying Information in DL/I Calls 25
DL/I Call Functions 26

Program Communication Block 26

Database Position 28

Segment Search Arguments 28

The IMSWHST= Option for Qualified SSAs 29

Multiple SSAs in the DATA Step Interface 30
Command Codes 30

IMS Execution Modes 31

DL/I Subsystems 31

Outline of a Batch DL/I Subsystem 31

Outline of an Online DL/I Subsystem 33
Summary of Region Types 34

Shared IMS Database Access 34

Sharing Resources 34

General Considerations for Sharing Resources 35

Database-Level Shared Access 36
Block-Level Shared Access 37

12 Introduction to IMS Essentials � Chapter 2

Introduction to IMS Essentials
This section introduces SAS users to IMS, a hierarchical database management

system by IBM. It focuses on the terms and concepts that will help you use the
SAS/ACCESS interface to IMS. It includes descriptions of the following:

� hierarchical database structure and elements
� IMS databases
� physical databases
� the elements of DL/I calls
� execution modes
� resource sharing

The IMS DBMS
IMS (Information Management System) is a program licensed by IBM. It is a

database management and data communication system that is used to manage intricate
databases and terminal networks. IMS enables you to define, reorganize, and load data
structures, and to relate data structures to an application.

With IMS, you can use the high-level language DL/I (Data Language/I) to operate on
the data that is controlled by the DBMS. DL/I calls are invoked from application
programs written in languages such as PL/I, COBOL, and C, or by subroutine calls
from assembler language programs.

Overview of IMS Databases

Using IMS Databases
An IMS database is a large, centralized collection of information comprising one or

more physical files that can be accessed by the SAS/ACCESS interface to IMS. An IMS
database is a hierarchical database. Information is structured in records that are
subdivided into a hierarchy of related segments.

A record is a root segment and all of its dependent segments. Segments are further
subdivided into fields. The data in any record relates to one entity. Ideally, information
in the database records is subdivided into segments and fields on some logical basis,
either by the inherent structure of the data or by consideration of the uses to which the
data will be put.

The term hierarchical implies that there are levels of data. You can think of a
hierarchical database as one that starts at the top with general information about the
item, individual, or case. As you progress from level to level down through the
hierarchy, more and more information related to the general information at the top
level is given. Each level in the hierarchy has one or more segments.

In some ways the structures of IMS databases and tabular files (such as SAS data
sets) are comparable, but in other ways they differ. For example, database fields and
data set variables are similar, and database records are like data set observations
because both contain data about one entity. At the same time, however, database
records differ from data set observations because subsets of records can be accessed
while you cannot access a subset of a data set observation. The observation is stored
and accessed as a unit.

IMS Essentials � Using IMS Databases 13

A tabular file has nothing comparable to a segment. The concept of data segments is
one of the things that makes a hierarchical database different from a SAS data set and
other tabular files.

Consider banking data as an example. Customer information maintained by a bank
might include the following:

name checking account debits

Social Security number checking account credits

address savings account number

home phone savings account balance

work phone savings account date of last statement

checking account number

checking account balance savings account balance at last statement

checking account date of last statement savings account debits

checking account balance at last statement savings account credits

If this information is stored in a tabular file, each item of information is a variable,
and all of the variables for any given person comprise one observation. You can
visualize the layout of banking data in a tabular file as shown in the following figure.

Figure 2.1 Tabular File Structure

ch
ec

kin
g

ba
la

nc
e

la
st

 s
ta

te
m

en
t

so
ci

al
 s

ec
ur

ity
 n

um
be

r

cu
st

om
er

 n
am

e

ad
dr

es
s

ho
m

e
ph

on
e

w
or

k
ph

on
e

ch
ec

ki
ng

 a
cc

ou
nt

 n
um

be
r

ch
ec

ki
ng

 c
ur

re
nt

 b
al

an
ce

ch
ec

ki
ng

 d
at

e
la

st
 s

ta
te

m
en

t

ch
ec

ki
ng

 d
eb

it

ch
ec

ki
ng

 d
eb

it

ch
ec

ki
ng

 d
eb

it
ch

ec
ki

ng
 c

re
di

t

ch
ec

ki
ng

 c
re

di
t

ch
ec

ki
ng

 c
re

di
t

sa
vi

ng
s

ba
la

nc
e

la
st

 s
ta

te
m

en
t

sa
vi

ng
s

ac
co

un
t n

um
be

r

sa
vi

ng
s

cu
rre

nt
 b

al
an

ce

sa
vi

ng
s

da
te

 la
st

 s
ta

te
m

en
t

sa
vi

ng
s

de
bi

t

sa
vi

ng
s

de
bi

t

sa
vi

ng
s

de
bi

t
sa

vi
ng

s
cr

ed
it

sa
vi

ng
s

cr
ed

it
sa

vi
ng

s
cr

ed
it

Observation
1
2
3

The rows in the table represent observations (customers), and the columns represent
variables. The structure of the file is such that a maximum number of variables for
debits and credits must be defined when the file is created. In the previous figure there
are variables for up to only three debits and three credits per customer, which presents
a problem if a customer has more than three debit or credit transactions.

The same data can also be stored in an IMS database but would be structured very
differently. For example, the following figure shows one way the banking information
could be structured in IMS. The sample database, called ACCTDBD, is used in this
document and described in “About the Example Data in the Document” on page 9 in
Chapter 1, "Introducing the SAS/ACCESS Interface to IMS."

14 Segment Occurrences � Chapter 2

Figure 2.2 Hierarchical File Structure

CUSTOMER

CHCKDEBT CHCKCRDT SAVEDEBT SAVECRDT

SAVEACCTCHCKACCT

Each block in the figure represents a segment type, which is a grouping of related
fields of data. There are three levels in the ACCTDBD database hierarchy and seven
segment types. For each database record, the top or first level has only one segment,
called the root segment. The root segment in the ACCTDBD database is called
CUSTOMER; it contains fields with these data: Social Security number, customer
name, address, city, state, country, ZIP code, home phone, and work phone. The
segments under the root segment are dependent segments called CHCKACCT,
CHCKDEBT, CHCKCRDT, SAVEACCT, SAVEDEBT, and SAVECRDT. Each of the
dependent segments contains fields of data, as shown in the following table.

Table 2.1 Dependent Segments and Corresponding Fields

Dependent Segment Fields

CHCKACCT checking account number,
current balance, last statement
date, last statement balance

CHCKDEBT checking account debit date and
time, amount, description

CHCKCRDT checking account credit date and
time, amount, description

SAVEACCT savings account number, current
balance, last statement date, last
statement balance

SAVEDEBT savings account debit date and
time, amount, description

SAVECRDT savings account credit date and
time, amount, description

Segment Occurrences
The hierarchical database structure is useful for storing multiple occurrences of any

given element of information, especially if there are varying numbers of occurrences of
the data for each record.

Consider the dependent segment SAVEACCT, which contains the following fields:
� savings account number
� savings account balance

IMS Essentials � Segment Relationships 15

� date of last statement
� savings account balance at last statement

Different customers can have different numbers of savings accounts; some might
have none, others might have two or three. If the data is not segmented, there must be
space in each customer’s record for the maximum number of savings accounts per
customer. With the segmented structure, however, it is possible to have one SAVEACCT
segment occurrence for each savings account a customer has. Any segment type can
have an unlimited number of segment occurrences. Although the segment types are
predefined, the number of segment occurrences is not predefined. Note that each
occurrence of a root segment represents a separate record.

Here is an example of how a segment type can have an unlimited number of segment
occurrences. A certain customer has two savings accounts. In one month, the customer
has two deposits for account number 111 and one deposit and two withdrawals for
account number 222. The following figure shows the customer’s record.

Figure 2.3 Sample Record

The figure shows seven segment occurrences within three (shaded) segment types.

Segment Relationships
The information in a hierarchical database is subdivided or segmented according to a

logical scheme. Moving from top to bottom through the database, there is a relationship
between the segments. A segment that is hierarchically dependent on a segment one
level up in the hierarchy is said to be the child. The segment on which it is dependent
is the parent. CUSTOMER is a parent segment with two children, CHCKACCT and
SAVEACCT. CHCKACCT, in turn, is the parent of CHCKDEBT and CHCKCRDT, and
SAVEACCT is the parent of SAVEDEBT and SAVECRDT. Segments that share a
parent are called siblings; for example, CHCKACCT and SAVEACCT are siblings.
Multiple segment occurrences of one segment type with the same parent occurrence are
called twins. For example, SAVEACCT 111 and SAVEACCT 222 are twins.

All dependent segments are children but are not necessarily parents. The root
segment (CUSTOMER), on the other hand, is a parent if any dependent segments exist,
but it is never a child. (It is possible to have a database with no dependent segments,
that is, with only one level, the root segment.) In a hierarchical structure, there can be
only one parent segment for a child segment.

Segments can also be grouped by paths. Two segments belong to the same path if
one is a dependent of the other. You can access multiple segments in a path at the same
time. These relationships are shown in the following figure.

16 Path Navigation � Chapter 2

Figure 2.4 Segment Relationships

Parents:
A, B, E1, E2

Children:
B, E1, E2, C1, C2, D, F1, F2, G, H

Twins:
C1 and C2, E1 and E2, F1 and F2

Siblings:
B, E1, and E2; C1, C2, and D; G and H

Paths:
A, B, and C1; A, B, and C2; A, B, and D; A, E1, and F1; A, E1, and F2; A, E2, and
G; A, E2, and H

Path Navigation
You can navigate one path of an IMS database at a time with the interface view

engine in Version 7 and later of SAS. That is, you can select items in one path of the
database when creating a view descriptor. Consider Figure 2.5 on page 17, which shows
one path of data shaded. The SAS/ACCESS interface processes each record occurrence
from top to bottom and from left to right following these rules:

1 The first occurrence of a root segment is processed first.
2 Then, the first child of a root segment in the defined path is processed before twins

of the root segment.
3 Twins are processed after a child (if any) down that path. Twins are processed in

order of occurrence. Any child of a twin is processed according to this rule.
4 After the child and twins are processed for that one path, the next eligible root

segment in the path is processed.

Note: No siblings are processed. �

The following figure illustrates a path of data in a particular program view. The
numbering indicates the order of processing.

IMS Essentials � Fields 17

Figure 2.5 A Database Path

B

3

2

1

5

4

Fields
There are three types of fields in the segments of an IMS database:
� A sequence field (or key field) is a field that identifies and provides access to

segments in a database. A sequence field is defined to IMS in the database
description (DBD), which specifies characteristics of a database. In some cases, a
sequence field sequences twin segment occurrences in ascending order, according
to their sequence field values. For example, if the sequence field of the
CHCKACCT segment is ACNUMBER, twin CHCKACCT occurrences in a given
customer’s record are ordered from the lowest to highest account number. Root
segments usually have a sequence field, but dependent segments do not
necessarily have them.

In a root segment, the sequence field also uniquely identifies the record. In
dependent segments, the sequence field can provide unique identification, but this
is not required. Root segments might or might not be sequenced by the sequence
field, depending on the IMS access method used to store the database.

� A search field is defined to IMS in the DBD and is used to search through the
database for particular values. For example, CUSTZIP is defined as a search field
in the CUSTOMER segment, permitting the SAS/ACCESS interface to IMS to
search the database for records containing a specific ZIP code.

� An undefined field is not defined to IMS. All fields other than sequence fields and
search fields do not have to be defined in the DBD. IMS does not know the format
of an undefined field and cannot search for segments based on values in an
undefined field. The format of an undefined field is determined by the program
that loads the database initially.

The CUSTOMER segment of the ACCTDBD database contains examples of two kinds
of fields. There are fields for Social Security number, name, city, state, country, ZIP
code, address, home phone, and work phone. The Social Security number field is
defined as the sequence field, meaning that it uniquely identifies the record. The name
field of CUSTOMER does not uniquely identify a record because customer names might
be duplicated. However, because names can be used to search through the database, the
name field is defined as a search field, as are the address, city, state, country, ZIP code,
home phone, and work phone fields.

The sequence field of a root segment enables direct access to the root segment. The
sequence field of a dependent segment does not enable direct access to the record, but
IMS finds segments faster when searching on sequence fields rather than search fields.

18 Physical Databases and Program Views � Chapter 2

Physical Databases and Program Views

Introduction of Physical Databases and Program Views
A physical database is defined to IMS in one DBD, which is described later in this

section. A physical database is limited to 15 hierarchical levels and 255 segment types
(up to 254 dependent segments organized over 14 levels, plus the root segment). There
is no limit to the number of segment occurrences, however. Chapter 9, “How to Use the
IMS DATA Step Interface,” on page 195, illustrates the physical database ACCTDBD.

A program view of a database consists of the hierarchically structured segments
used in a program or application. A particular program view can be composed of all
segments in a database or a subset of the segments, depending on the program’s
requirements. Program views are defined to IMS in program communication blocks
(PCBs), which are contained in program specification blocks (PSBs). (See the next
several sections for more information about DBDs, PCBs, and PSBs.)

The following figure illustrates a program view that consists of some segments from
the ACCTDBD database. This program view might be used by a program that prints
monthly checking account statements. However, a SAS/ACCESS view descriptor can
access data in only one path in the database. Therefore, in one invocation, the view
descriptor can retrieve data in either the CHCKDEBT segment or the CHCKCRDT
segment.*

Figure 2.6 Sample Program View

CUSTOMER

CHCKACCT

CHCKDEBT CHCKCRDT

In order for the SAS/ACCESS interface to access an IMS database, certain
information about the database must be defined. These definitions are contained in
DBDs and PSBs.

What You Need to Know to Create Descriptors
Typically, DBDs and PSBs are generated by the database administration staff, not

by application programmers or users. Users do not need to know how to create DBDs,

* With the SAS/ACCESS DATA step interface, the view shown can be processed in a single DATA step execution. See Chapter
8, “Overview of the IMS DATA Step Interface,” on page 151 for more information.

IMS Essentials � DBD for the WIRETRAN Segment 19

PSBs, or PCBs in order to use the SAS/ACCESS interface to IMS. If you will be creating
access descriptors and view descriptors, you need to know the following information:

� the name of the database you want to use (DBD name).
� the ddnames and names of database data sets (and for HIDAM, the index data

sets).
� the name of the PSB that contains the PCBs to be used for your database.
� which fields are sequence or search fields (as defined in the DBD).
� standard segment descriptions, such as field name, field length, and data type.

You might need a copybook, segment layout, or some other detailed description of
the database if this information is not in the DBD.

� what type of access is permitted (as defined in the PCBs in the PSB).
� the sensitive segments (as defined in the PCBs in the PSB) and their names and

lengths. A sensitive segment is a segment in the database that can be accessed
only by using a PCB that permits read or update access.

� the order of the PCBs in the PSB, and which PCBs your program needs to access.
� the order in which fields are defined in the segment.

You can get all of this information from your installation’s database administrator
(DBA).

The descriptions of DBDs and PSBs that follow do not need to be understood in
detail. They are included here for readers who want this additional information.

Database Description
The database description (DBD) is usually created by the DBA at an installation.

The DBD specifies characteristics of a database, including the following:

u the name of the DBD, which is also used as a shorthand name for
the IMS database (1–8 characters).

v the type and access method for the database (DEDB, MSDB, HDAM,
HIDAM, HSAM, HISAM, GSAM, SHISAM, or SHSAM). These
database types are defined in the next section.

w the randomizing method to assign an address to each record’s key
(HDAM only).

x the ddname for the database.

y the device type.

U the block size.

V the name, parent, and length of each segment type in the database.
The parent information enables IMS to determine the segment’s
position in the hierarchy.

W the name, length, starting position, and type of data for each
sequence and search field in each segment. (In the following
example, the code that specifies these characteristics is highlighted.)

Note: It is not necessary to specify every field in a segment in the DBD. Only those
fields to be used as sequence and search fields are specified in the DBD. �

DBD for the WIRETRAN Segment
The following is the DBD for the WIRETRAN segment of the WIRETRN database.

20 IMS Database Types � Chapter 2

DBD NAME=WIRETRN,ACCESS=(HDAM,OSAM), X
RMNAME=(DFSHDC40,3,71)

DATASET DD1=WIREDD,DEVICE=3380, BLOCK=2400
SEGM NAME=WIRETRAN,PARENT=0,BYTES=100
FIELD NAME=(SSNACCT,SEQ,M),BYTES=23,START=1, X
TYPE=C
FIELD NAME=ACCTTYPE,BYTES=1,START=24,TYPE=C
FIELD NAME=WIREDATE,BYTES=8,START=25,TYPE=C
FIELD NAME=WIRETIME,BYTES=8,START=33,TYPE=C
FIELD NAME=WIREAMMT,BYTES=5,START=41,TYPE=X
FIELD NAME=WIREDESC,BYTES=40,START=46,TYPE=C
DBDGEN

IMS Database Types
During installation, the database administrator (DBA) chooses the type of database

to use for the IMS databases. The DBA decides which type of database to use based on
how most of the programs that use an IMS database will access the data in the
database. The following is a list of database types that the DBA can use to define an
IMS database that is supported by the SAS/ACCESS interface to IMS in Version 7 and
later of SAS:

Data Entry Database (DEDB)
is a direct-access database that consists of one or more areas, with each area
containing both root segments and dependent segments. The database is accessed
using VSAM improved control interval processing (ICIP). This database type can
only be used with the SAS/ACCESS DATA step interface.

Main Storage Database (MSDB)
is a root-segment database, residing in main storage, which can be accessed to a
field level. This database type can only be used with the SAS/ACCESS DATA step
interface.

Hierarchical Direct Access Method (HDAM)
is one of the DL/I language’s two direct-access methods. A direct-access method
enables DL/I to locate any database record, regardless of the record sequence in
the database, by using a randomizing routine or an index. HDAM provides direct
access to data through a randomizing routine. Sequentially accessing an HDAM
database, DL/I retrieves data in the order that the data is physically stored in the
database.

Hierarchical Indexed Direct Access Method (HIDAM)
is one of DL/I language’s two direct-access methods. HIDAM provides direct access
to data through an index.

Hierarchical Sequential Access Method (HSAM)
is one of DL/I language’s sequential-access methods. In a sequential-access
database, segments are stored in a hierarchical sequence, one segment after
another. HSAM provides sequential access to root segments and dependent
segments. You can access data in HSAM databases, but you cannot update any of
the data.

Hierarchical Indexed Sequential Access Method (HISAM)
processes data sequentially, but has an index that enables you to directly access
records in the database.

IMS Essentials � IMS Data Types in SAS/ACCESS Descriptors 21

Generalized Sequential Access Method (GSAM)
enables IMS/ESA batch application programs to access a sequential z/OS data set
record that is defined as a database record. This database record is handled as one
unit, with no segments, fields, or hierarchical structure. Any records to be added
are inserted at the end of the database. GSAM does not enable you to update or
delete records in the database.

Simple Hierarchical Sequential Access Method (SHSAM)
is an HSAM database that contains only one segment type, a root segment. Only
two types of calls are valid with SHSAM databases: Get calls to read a database
and Insert calls to load a database. You must reload a database in order to update
it.

Simple Hierarchical Indexed Sequential Access Method (SHISAM)
is a HISAM database with only one segment type, a root segment.

IMS Data Types
When specifying the characteristics of the physical database in the DBD, the DBA

identifies for each segment in the database the fields that IMS can use to search or
sequence a segment. The DBA can define each individual field, define the entire
segment as one field and assign a generic data type, or define some fields individually
and other fields as a group. The DBA can define fields in an IMS database segment
using the following data types:

Table 2.2 Data Type Codes and Corresponding Data Types

Data Type Code Data Type

X hexadecimal

P packed decimal

C alphanumeric character

F binary fullword

H binary halfword

Z zoned decimal

E short floating point

D long floating point

L extended floating point

Note: All COBOL and PL/I data types are supported as hexadecimal data types. �

IMS Data Types in SAS/ACCESS Descriptors
To create access and view descriptors to be used by the SAS/ACCESS interface to

IMS, you need to know how the DBA has defined the database fields. You also need to
know how the fields are initialized and the order of all the fields in each segment to be
accessed. You can get this information from a layout of the database or a COBOL
copybook.

The following table shows the DBFORMAT= value that you specify in an access
descriptor for some common COBOL and PL/I data types. This table also shows the

22 IMS Data Types in SAS/ACCESS Descriptors � Chapter 2

SAS variable formats that the SAS/ACCESS interface generates from the IMS
DBFORMAT= value.

Table 2.3 Recommended DBFORMAT= Values to Use for Common COBOL and PL/I Data Types

IMS Type COBOL PL/I Description
Standard Length
in Bytes

Recommended
DBFORMAT=

SAS Format
Generated

C PIC A Pic ’A’ Alphabetic <=200

>200

$w.

$200.

$w.

$200.

C PIC X Char or Pic ’X’ Alphanumeric <=200

>200

$w.

$200.

$w.

$200.

Z PIC 9 Pic ’9’ Numeric Edited w.d

Z PIC S9 Pic ’99T’ Zoned-Decimal ZDw.d w.d

H PIC 9(4)
COMP

Fixed Bin (15) Fixed-Point Binary 2 IB2. 7.0

F PIC 9(8)
COMP

Fixed Bin (31) Fixed-Point Binary 4 IB4. 10.0

E COMP-1 Float Bin (21) Floating-Point 4 Rb4. E13.0

D COMP-2 Float Bin(53) Floating-Point 8 RB8. E22.0

P COMP-3 Fixed Decimal Packed-Decimal <=16 PDw.d w.d

When you create an access descriptor, you use the ITEM= statement to describe the
IMS DBD. When you need to specify a SAS informat that corresponds to a COBOL data
description, refer to PICTURE and USAGE. If the USAGE is COMP-1 or COMP-2,
there is no PICTURE. If no USAGE is specified, it defaults to DISPLAY.

Use the following information to make the conversions:
� pictures that include either A or X represent character values.
� pictures that include numbers use 9 to represent digits. They might use an S to

mean signed and a V to show the location of an implied decimal point.

The number of characters or digits is specified either by the number of As, Xs, or 9s
in the picture or by the number in parentheses immediately after the A, X, or 9. For
example, AAAA is the same as A(4).

The following table shows other conversions.

Table 2.4 COBOL Conversions

USAGE PICTURE SAS Informat Width Decimal

COMP-1 None RB4.

COMP-2 None RB8.

DISPLAY 9(int)V9(fract) ZDw.d (int + fract) (fract)

COMP-3 9(int)V9(fract) PDw.d CEIL((int+fract+1)/2) (fract)

COMP 9(int)V9(fract) IBw.d *

* If the (int + fract) is 1-4, the width is 2 and decimal is a fraction. If the (int + fract) is 5-9, the width is 4 and
decimal is a fraction. If the (int + fract) is 10-18, the width is 8 and decimal is a fraction.

Use SAS formats to print the fractional part read with the IBw.d and RBw.d SAS
informats.

IMS Essentials � DBD for the ACCTDBD Database 23

DBD for the ACCTDBD Database

The following is the DBD for the ACCTDBD database.

DBD u NAME=ACCTDBD, v ACCESS=(HDAM,OSAM), X
w RMNAME=(DFSHDC40,3,71)

DATASET x DD1=ACCTDD, y DEVICE=3380, X
U BLOCK=2400
V SEGM NAME=CUSTOMER,PARENT=0,BYTES=225
W FIELD NAME=(SSNUMBER,SEQ,U),BYTES=11,START=1, X

TYPE=C
FIELD NAME=CUSTNAME,BYTES=40,START=12,TYPE=C
FIELD NAME=CUSTADD1,BYTES=30,START=52,TYPE=C
FIELD NAME=CUSTADD2,BYTES=30,START=82,TYPE=C
FIELD NAME=CUSTCITY,BYTES=28,START=112,TYPE=C
FIELD NAME=CUSTSTAT,BYTES=2,START=140,TYPE=C
FIELD NAME=CUSTLAND,BYTES=20,START=142,TYPE=C
FIELD NAME=CUSTZIP,BYTES=10,START=162,TYPE=C
FIELD NAME=CUSTHPHN,BYTES=12,START=172,TYPE=C
FIELD NAME=CUSTOPHN,BYTES=12,START=184,TYPE=C

V SEGM NAME=CHCKACCT,BYTES=40,PARENT=CUSTOMER
W FIELD NAME=(ACNUMBER,SEQ,U),BYTES=12,START=1, X
TYPE=X
FIELD NAME=STMTAMT,BYTES=5,START=13,TYPE=P
FIELD NAME=STMTDATE,BYTES=6,START=18,TYPE=X
FIELD NAME=STMTBAL,BYTES=5,START=26,TYPE=P

V SEGM NAME=CHCKDEBT,BYTES=80, X
PARENT=((CHCKACCT,DBLE)),RULES=(,LAST)

W FIELD NAME=DEBTAMT,BYTES=5,START=1,TYPE=P
FIELD NAME=DEBTDATE,BYTES=6,START=6,TYPE=X
FIELD NAME=DEBTBLNK,BYTES=2,START=12,TYPE=X
FIELD NAME=DEBTTIME,BYTES=8,START=14,TYPE=C
FIELD NAME=DEBTDESC,BYTES=59,START=22,TYPE=C

V SEGM NAME=CHCKCRDT,BYTES=80, X
PARENT=((CHCKACCT,DBLE)),RULES=(,LAST)

W FIELD NAME=CRDTAMT,BYTES=5,START=1,TYPE=P
FIELD NAME=CRDTDATE,BYTES=6,START=6,TYPE=X
FIELD NAME=CRDTBLNK,BYTES=2,START=12,TYPE=X
FIELD NAME=CRDTTIME,BYTES=8,START=14,TYPE=C
FIELD NAME=CRDTDESC,BYTES=59,START=22,TYPE=C

V SEGM NAME=SAVEACCT,BYTES=40,PARENT=CUSTOMER
W FIELD NAME=(ACNUMBER,SEQ,U),BYTES=12,START=1, X
TYPE=X
FIELD NAME=STMTAMT,BYTES=5,START=13,TYPE=P
FIELD NAME=STMTDATE,BYTES=6,START=18,TYPE=X
FIELD NAME=STMTBAL,BYTES=5,START=26,TYPE=P

V SEGM NAME=SAVEDEBT,BYTES=80, X
PARENT=((SAVEACCT,DBLE)),RULES=(,LAST)

W FIELD NAME=DEBTAMT,BYTES=5,START=1,TYPE=P
FIELD NAME=DEBTDATE,BYTES=6,START=6,TYPE=X
FIELD NAME=DEBTBLNK,BYTES=2,START=12,TYPE=X
FIELD NAME=DEBTTIME,BYTES=8,START=14,TYPE=C
FIELD NAME=DEBTDESC,BYTES=59,START=22,TYPE=C

V SEGM NAME=SAVECRDT,BYTES=80, X

24 Program Specification Block � Chapter 2

PARENT=((SAVEACCT,DBLE)),RULES=(,LAST)
W FIELD NAME=CRDTAMT,BYTES=5,START=1,TYPE=P
FIELD NAME=CRDTDATE,BYTES=6,START=6,TYPE=X
FIELD NAME=CRDTBLNK,BYTES=2,START=12,TYPE=X
FIELD NAME=CRDTTIME,BYTES=8,START=14,TYPE=C
FIELD NAME=CRDTDESC,BYTES=59,START=22,TYPE=C
DBDGEN

Program Specification Block
A program specification block (PSB) is generally created by the DBA at an

installation. A PSB consists of one or more program views of one or more databases. A
SAS task using the SAS/ACCESS interface to access an IMS database must reference
one and only one PSB. Information specified in the PSB includes the following items:

� at least one program view for each database that is accessed by the SAS/ACCESS
interface in the executing task. A program view is defined in a PCB; in fact, you
can use the terms program view and PCB interchangeably. Each PCB provides
these specifications:

� the database to be accessed.
� the processing options (read-only or various updating options).
� the maximum length of the concatenated key fields (sequence fields) in any

path.
� the database segments that can be accessed. These segments are called

sensitive segments. The name, parent segment, and access mode for each
sensitive segment are given.

� the programming language the PSB supports. The SAS/ACCESS interface to IMS
uses a PSB regardless of the specified programming language. This flexibility
means that no additional PSBs are required for the SAS/ACCESS interface.

� the name of the PSB.

Example of a PSB
Here is a sample of a PSB called ACCTSAM, which contains some database PCBs

for the ACCTDBD database and one PCB for the WIRETRN database:

PCB TYPE=DB,DBDNAME=ACCTDBD,PROCOPT=G, X
KEYLEN=11

SENSEG NAME=CUSTOMER,PARENT=0,PROCOPT=G
PCB TYPE=DB,DBDNAME=ACCTDBD,PROCOPT=G, X

KEYLEN=23
SENSEG NAME=CUSTOMER,PARENT=0,PROCOPT=GP
SENSEG NAME=CHCKACCT,PARENT=CUSTOMER,PROCOPT=G
SENSEG NAME=SAVEACCT,PARENT=CUSTOMER,PROCOPT=G
PCB TYPE=DB,DBDNAME=ACCTDBD,PROCOPT=A, X

KEYLEN=23
SENSEG NAME=CUSTOMER,PARENT=0,PROCOPT=AP
SENSEG NAME=CHCKACCT,PARENT=CUSTOMER,PROCOPT=AP
SENSEG NAME=CHCKDEBT,PARENT=CHCKACCT,PROCOPT=A
SENSEG NAME=CHCKCRDT,PARENT=CHCKACCT,PROCOPT=A
SENSEG NAME=SAVEACCT,PARENT=CUSTOMER,PROCOPT=AP
SENSEG NAME=SAVEDEBT,PARENT=SAVEACCT,PROCOPT=A
SENSEG NAME=SAVECRDT,PARENT=SAVEACCT,PROCOPT=A

IMS Essentials � Specifying Information in DL/I Calls 25

PCB TYPE=DB,DBDNAME=WIRETRN,PROCOPT=A, X
KEYLEN=23

SENSEG NAME=WIRETRAN,PARENT=0,PROCOPT=A
PSBGEN LANG=ASSEM,IOASIZE=500,PSBNAME=ACCTSAM, X
CMPAT=YES

END

Security Options
IMS provides security for databases through data sensitivity, a way of controlling

which data the SAS/ACCESS interface to IMS can access. The SAS/ACCESS interface
is used to access only data to which it is sensitive. There are three levels of data
sensitivity:

segment sensitivity
enables the IMS interface to access only certain segments in a particular hierarchy.

field-level sensitivity
enables the IMS interface to access only certain fields in a particular segment.

key sensitivity
enables the IMS interface to access only segments below a particular segment in a
hierarchy. It does not enable the IMS interface to access that particular segment,
and returns only the segment’s key to the interface.

The DBA can specify data sensitivity for an IMS database in each database PCB in
the PSB.

DL/I Calls

Specifying Information in DL/I Calls
The SAS/ACCESS interface to IMS accesses IMS database segments by issuing DL/I

calls. A DL/I call is a request made by the interface to DL/I to access one or more
segments of a database or message queue, or to perform some system function. Certain
information must be specified in the DL/I call to communicate the SAS/ACCESS
interface’s request to DL/I. The normal information specified in a call is as follows:

� a call function specifying the action DL/I is to perform (get, insert, replace, and so
on)

� a program view (PCB) in the PSB to use when performing the function. The PSB
to be used has been specified earlier in your view descriptor or in your DL/I
INFILE statement (for an IMS DATA step program).

� an I/O area to use for transferring segment data between DL/I and the
SAS/ACCESS interface to IMS.

� up to 15 segment search arguments (SSAs). An SSA is a set of formatted search
criteria that specifies the segment type or occurrence on which to perform the
function.

Normally, a DL/I call accesses one segment at a time. However, by using a special
command code in an SSA, the SAS/ACCESS interface to IMS can access multiple
segments along a hierarchical path in the database. This type of call is a path call.

26 DL/I Call Functions � Chapter 2

The following descriptions of the elements of a DL/I call do not need to be understood
in detail by most users. They are included here for readers who want this additional
information.

DL/I Call Functions
DL/I calls are categorized as Get calls or Update calls. A Get call is a call that

retrieves (reads) a segment or segments. An Update call performs some kind of write
function, such as inserting a new segment or replacing or deleting an existing segment.

The basic DL/I database call functions are listed here. Some of the descriptions refer
to SSAs (segment search arguments), qualified calls, and unqualified calls. These are
described in “Segment Search Arguments” on page 28.

GU get-unique. If unqualified, this call retrieves (reads) the first
segment in the PCB view (program view) of the database. If SSAs
are specified, the call retrieves the first segment that satisfies
qualifications specified by the SSAs.

GN get-next. If unqualified, this call retrieves the next segment in the
hierarchical sequence of the database. If SSAs are specified, the call
retrieves the next segment that satisfies qualifications specified by
the SSAs.

GNP get-next-within-parent. This call is like the GN call but is restricted
to the subtree of the current parent. (The parent is described in the
PCB.)

GHU get-hold-unique. This call is like the GU call but also holds the
segment for the next update call that uses the same PCB.

GHN get-hold-next. This call is like the GN call but also holds the
retrieved segment for the next update call that uses the same PCB.

GHNP get-hold-next-within-parent. This call is like the GNP call but also
holds the segment for the next update call that uses the same PCB.

DLET delete. This call deletes the segment retrieved by the last get-hold
call using the same PCB.

REPL replace. This call replaces the segment held from the last get-hold
call using the same PCB with an updated segment that you provide.
The get-hold call must be the last DL/I call that used the same PCB.

ISRT insert. This call adds new segments using the PCB specified.

Program Communication Block
The SAS/ACCESS interface to IMS consists of two distinct interfaces: the IMS engine

interface and the DATA step interface. The IMS DATA step interface can use any PCB.
You can use DL/I INFILE statement extensions to specify the PCB. The DATA step
interface also offers limited support for TP PCBs and message queue processing.

The IMS engine interface (that is, where you use view descriptors) uses only two
types of PCBs: the Database (DB) PCB and the Input/Output (I/O) PCB. The engine
interface uses the first DB PCB that matches the database you specify in the access
descriptor, unless you specify otherwise in the PCB index field of the view descriptor.
For updating, the engine interface to IMS uses the I/O PCB for checkpointing. The I/O
PCB is also used if the kind of DL/I processing environment, or region type, is BMP. An
I/O PCB is created when you enter CMPAT=YES in the PSBGEN statement.

IMS Essentials � Program Communication Block 27

Using a program view of the database (that is, using the appropriate PCB), a call can
selectively access only the segments that are required by the SAS/ACCESS interface.
For example, you might need the interface to retrieve savings account data from the
ACCTDBD database without retrieving savings debit segments. The PCB defines as
sensitive segments only those segments needed by the SAS/ACCESS interface.

A PCB to be used by the SAS/ACCESS interface that accumulates savings account
credit information might use the program view shown in the following figure.

Figure 2.7 Program View of Savings Account Segments

CUSTOMER

SAVEACCT

SAVECRDT

In addition to defining a program view of the database by specifying sensitive
segments, the PCB also accumulates information about the results of a call. This
information, called the PCB mask data, includes the following elements:

segment level
is the hierarchical level of the last segment successfully retrieved or processed.

DL/I status code
is a return code that indicates whether the call was successful.

DL/I processing option
is a code that indicates what kind of access to the database is used. The
processing option might be one of the following:

G for Get

D for Delete, includes G

I for Insert

R for Replace, includes G

A for All of the above

E for Exclusive use, in conjunction with G,D,I,R,A

L for Loading database, excludes HISAM

LS for Loading sequentially, required for HISAM

O for inhibiting program isolation, must be used with G

P for Path calls

GS for getting segments in ascending sequence

28 Database Position � Chapter 2

segment name
is the name of the last segment type successfully retrieved or processed by the call.

key feedback data
is the concatenated key (sequence) field values of all segments in the path between
the root segment and the last segment that was successfully retrieved or processed.

The PCB mask data also contains other information not described here. *

Database Position
For each PCB, DL/I maintains a current position indicator. The position indicator

points to the last segment accessed or to the top of the database, if no DL/I call has
been issued or if the last call failed. The position determines which segment should be
processed next, that is, by the current DL/I call.

Suppose your DATA step program uses a PCB that defines the CUSTOMER,
CHCKACCT, and SAVEACCT segments as sensitive segments. The program is a
read-only program and unqualified GN (get-next) calls are issued. Therefore, the
program uses sequential processing. The program view is shown in the following figure.

Figure 2.8 Program View of Account Segments

CHCKACCT

CUSTOMER

SAVEACCT

When the first GN call is issued, DL/I is positioned at the front of the database and
the call retrieves the first occurrence of a CUSTOMER segment. When the next call is
issued, DL/I uses the current position to determine which segment is retrieved next. In
this case, CHCKACCT is retrieved before SAVEACCT because the default search
sequence for sequential access is top to bottom, left to right.

Note: The database position is influenced by considerations that are not described
here, such as the type of call issued and certain command codes. �

Segment Search Arguments
A DL/I call can be qualified or unqualified. A qualified call is one that specifies one

or more SSAs (segment search arguments). An SSA provides additional information for
the DL/I call. The simplest SSA identifies a segment type for the call to access. Other
SSAs not only identify the segment type, but they also specify a value or a set of values
to select a particular segment occurrence. An unqualified call does not have any SSAs
and, therefore does not specify a particular segment or set of segments.

If an SSA describes only the segment type to be accessed, it is an unqualified SSA.
(The call is still a qualified call, but the SSA itself is unqualified.) In an unqualified

* The IMS DATA step programs can return PCB mask data to the user, but the SAS/ACCESS engine interface cannot.

IMS Essentials � The IMSWHST= Option for Qualified SSAs 29

SSA, you can also specify an optional command code, which might affect how the call
function is performed or it might affect the qualification of a segment. See “Command
Codes” on page 30 for more information.

An unqualified SSA has the form

segment-name <command code>

where segment-name is an 8-byte field specifying the segment type, followed by a blank.
A blank follows because the minimum SSA length for a DL/I call is 9 bytes. Command
codes consist of an asterisk (*) followed by a letter, such as *U or *D.

If an SSA provides a field name and specific value for that field, it is a qualified SSA.
A qualified SSA has the form

segment-name <command code> (field-name operator value . . .)

where segment-name is the 8-byte segment type, field-name is the 8-byte name of a
sequence or search field for that segment as defined in the DBD, and operator is a
2-byte field that contains a comparison operator. Value is a value that is compared to
the specified field in the segment. The values for each of the segment type, field name,
operator, and value must be padded to represent the total number of bytes used by the
particular field in the DBD. IMS requires the padding.

The first segment occurrence that satisfies the qualification or qualifications is
retrieved.

For example, to retrieve a CUSTOMER segment for Hooper J. Walls, the Get
(retrieve) call would be qualified with this qualified SSA:

CUSTOMER(CUSTNAME =WALLS, HOOPER J.)

The comparison operators that IMS uses in a qualified SSA, along with their
alternate forms, are listed in the following table.

Table 2.5 Comparison Operators and Their Equivalents

Operator Alternate Form

= = or EQ*

> > or GT

< < or LT

>= => or GE

<= =< or LE

= = or NE

& or AND (dependent AND)

| + or OR (logical OR)

* Pad the =, >, and < operators with blanks on the right or left.

The IMSWHST= Option for Qualified SSAs
The SAS/ACCESS interface provides certain system and configuration options to use

with IMS. One such configuration option, IMSWHST=, affects qualified SSAs and
applies only to the IMS engine interface.

IMSWHST=Y makes sure that any specified WHERE criteria have been incorporated
into the SSAs that are generated by the IMS engine. Doing so limits the amount of
data that the database returns.

30 Multiple SSAs in the DATA Step Interface � Chapter 2

If qualified SSAs are not generated by the view descriptor’s or application’s WHERE
statement (or there is no WHERE data set option), the software issues an error
message, no IMS records are retrieved, and processing stops.

The default, IMSWHST=N, specifies that IMS records are retrieved for processing
regardless of whether qualified SSAs are passed to IMS by a view descriptor’s or
application’s WHERE statement.

Multiple SSAs in the DATA Step Interface
If you use the IMS DATA step interface and specify more than one SSA for a call,

you must specify them in hierarchical order. You can specify as many as 15 SSAs. The
segment specified in the last SSA, the target segment, is the segment accessed.

For example, if you want to issue a GN (get-next) call to retrieve a CHCKDEBT
segment with a DEBTDATE of 28 March 1995 for banking customer Mary T. Summers,
you would qualify the GN call with these SSAs:

CUSTOMER*U-(CUSTNAME =SUMMERS, MARY T.)
CHCKDEBT(DEBTDATE =032895)

The target segment for the call is CHCKDEBT. It is the only segment returned.
To access more than one segment in one call, you must set up a path call, as

explained in "Command Codes."

Command Codes
Any SSA, qualified or unqualified, can include a command code. A command code

provides still more information for the call. It might affect how the call function is
performed, or it might affect the qualification of a segment. Command codes consist of
an asterisk (*) followed by a letter.

One commonly used command code is *D, which signifies a path call. For a DL/I
GET call, this means that the segment named in the SSA with the *D code is returned,
even if it is not the target segment (the segment named in the last SSA). The segments
retrieved with SSAs that specify *D are returned to the I/O area in hierarchical
sequence. The target segment is placed in the I/O area behind the segments whose
SSAs specified *D. (This has no effect on what is returned in the key feedback area; it
affects only the I/O area.)

For example, one PCB defines CUSTOMER, CHCKACCT, and CHCKDEBT as
sensitive segments. (Figure 2.5 on page 17 shows this program view.) In the IMS DATA
step interface, you specify these SSAs and a GU (get-unique) call function. Two
segments are returned to the I/O area: CUSTOMER and CHCKDEBT.

CUSTOMER*D-(CUSTNAME =WALLS, HOOPER J.)
CHCKACCT
CHCKDEBT(DEBTDATE =030594)

The PCB mask data will contain CHCKDEBT as the name of the last segment
successfully retrieved, and the key feedback data contains the concatenated key fields of
the CUSTOMER and CHCKACCT segments. The CHCKDEBT segment has only a
search field and no sequence field, and therefore no data for CHCKDEBT is in the key
feedback area.

IMS Essentials � Outline of a Batch DL/I Subsystem 31

IMS Execution Modes

DL/I Subsystems
When the SAS/ACCESS interface to IMS accesses DL/I databases, it executes within

a DL/I subsystem. DL/I subsystems are either batch or online:
� Usually, an online DL/I subsystem is used by multiple terminals or programs at

the same time, and databases are shared by the users. The terminal users (for
example, bank tellers or airline reservation agents) execute preprogrammed
applications to access DL/I databases. These users might be executing the same
SAS program or different SAS programs.

� In a batch DL/I subsystem, only one program executes at a time, and it has
exclusive use of the databases. Batch subsystems are typically used when one or
more functions must be executed repetitively (for example, printing customers’
monthly bank statements), and the database is not required for concurrent access
by another subsystem.

Batch and online DL/I subsystems can execute concurrently. For example, a bank
might run an online subsystem to which all the bank teller terminals are connected. As
customers make deposits and withdrawals during the day, the tellers use checking and
savings application functions to record these transactions and update a database such
as the ACCTDBD database. Simultaneously, a batch DL/I subsystem might execute a
SAS program to print a report of all loans with overdue payments from a loan database.

It is important to know how the SAS system options for the SAS/ACCESS interface to
IMS are set at your site. These SAS system options determine the execution mode of the
SAS/ACCESS interface, which must be consistent with your IMS system configuration.

Outline of a Batch DL/I Subsystem
In a batch DL/I subsystem, a batch region is a processing environment for running

batch mode jobs using a local batch control program. The batch region is initialized by
a region controller, which is the primary entry point for all DL/I executions. The region
controller initializes the batch region according to JCL (job control language)
specifications made when the user’s SAS program is submitted.

When the program runs in the batch region, the SAS/ACCESS interface to IMS
communicates with DL/I to access DL/I databases and to issue calls against databases.
DL/I also handles the DL/I log, which contains information that is needed to recover
changes to the database if the program terminates abnormally.

The batch region in which the SAS/ACCESS interface executes is either a DLI
region or DBB region. The use of these regions depends on the operating system.
Under z/OS, a DBB region uses the Application Control Block library (ACBLIB) to get
the DBDs and PSBs. A DLI region uses the Database Description library (DBDLIB)
and Program Specification Block library (PSBLIB) to get the DBDs and PSBs. The
following figure shows the typical batch DL/I subsystem.

32 Outline of a Batch DL/I Subsystem � Chapter 2

Figure 2.9 Typical Batch DL/I Subsystem

Operating System

DL/I

DL/I log

ba
tc

h
D

L/
I r

eg
io

n
SAS System

region controller

The following steps are performed when a SAS program is executed in the batch DL/I
subsystem:

1 The operating system passes control to SAS. When the SAS/ACCESS interface
initializes, it attaches a subtask to execute the DL/I region controller. Parameters
that are passed to the region controller specify the type of batch region to execute
(DLI or DBB), the name of the program (IMSEXEC under z/OS), PSB to use, and
other execution options.

2 The region controller establishes the DL/I region environment and passes control
to the SAS/ACCESS interface.

3 The SAS/ACCESS interface receives pointers to the PCBs in the PSB. It uses
these PCBs in DL/I calls.

4 The SAS/ACCESS interface formats a DL/I call and passes control to DL/I to
access DL/I databases.

5 DL/I accesses the database data sets, performs the requested call function, and
logs any information required for recovery in the DL/I log.

6 A return code and other information for the PCB mask are placed in the PCB, and
control returns to the SAS/ACCESS interface.

IMS Essentials � Outline of an Online DL/I Subsystem 33

7 Steps 4 through 6 are repeated until the SAS procedure or SAS DATA step is
completed. The region controller subtask is detached and SAS continues to process
the other SAS PROC or DATA steps.

Outline of an Online DL/I Subsystem
In an online DL/I subsystem, an online control region is initialized and uses JCL

specifications to set up the environment in which user programs execute. Under z/OS,
types of online control regions include IMS/ESA DB/DC regions or CICS regions.

An online control region also allocates and controls access to DL/I database data sets
for multiple-user programs, ensuring the integrity of the databases being used by many
programs. Normally, the online control region obtains exclusive control of the database
data sets so that other DL/I subsystems do not update the database data sets
concurrently. This preserves database integrity within the overall system.

When the online control region allocates a database, it is referred to as an online
database. The ACCTDBD database is an online database when it is allocated to an
online subsystem. When the online control region is terminated, any associated
databases can be used in a batch processing region. Databases can be freed to access by
a batch program concurrent with online control region execution. Alternatively, batch
and online processing can concurrently share access to databases by using IMS/ESA
data sharing support.

The SAS/ACCESS interface to IMS interacts with an online control region through a
DL/I online access region. The online access region is used when a batch program
requires access to a database allocated by the online control region, that is, to an online
database. There are two types of online access regions under z/OS:

� a BMP region is used to access an IMS/ESA DB/DC online control region
� a BMP region is used to access a CICS region (the DBCTL facility of IMS/ESA

provides this functionality).

For example, the ACCTDBD database must be updated periodically with another
database, which contains information about transactions using automated teller
machines (ATMs). There is a batch program to read this transactions database and
update the ACCTDBD database. However, because the ACCTDBD and transaction
database data sets are allocated exclusively to the online subsystem for the tellers, a
batch subsystem cannot allocate the data sets. This kind of conflict is resolved by an
online access region, in which a batch program executes but issues the DL/I calls under
the control of the online control region. This method preserves the integrity of the
online databases.

The typical online access region and online control region interaction is depicted in
the following figure.

34 Summary of Region Types � Chapter 2

Figure 2.10 Typical Online DL/I Subsystem

on
-li

ne
 a

cc
es

s
re

gi
on

DL/I log

terminals

region controller

supervisor

data
communications

database
DL/I

region controller

sas system

Operating System

co
nt

ro
l r

eg
io

n

Summary of Region Types
The following table summarizes the region types that are used in the various DL/I

subsystems discussed in this section.

Table 2.6 Summary of Region Types

IBM Product Type of Subsystem Database Controlled by Batch Region Online Access Region

IMS/ESA DB batch region controller DLI or DBB

IMS/ESA DB/DC online control region BMP

CICS online control region BMP

Shared IMS Database Access

Sharing Resources
Each of the IBM IMS products provides some capability for sharing IMS resources.

Two general categories of sharing exist:

IMS Essentials � General Considerations for Sharing Resources 35

� sharing resources within one IMS subsystem
� sharing resources between multiple IMS subsystems

The concepts of read integrity and update integrity are important in a description of
resource sharing. Read integrity means that two programs cannot access a record
simultaneously if one has update intent. Read integrity guarantees that the data is
current when reading a record. Update integrity means that two programs cannot
access a record simultaneously if both have update intent. Update integrity guarantees
that data accessed for update is current, but it does not guarantee that data accessed
for reading is current.

Resource sharing within one subsystem is the most common form of resource sharing
and is available with an online IMS subsystem. In the online IMS subsystem, the online
IMS control region allocates the database data sets and controls concurrent access to
the databases by multiple programs. Read integrity is guaranteed when sharing within
an online subsystem unless the processing option GO has been specified in the PCB.
For more information about the GO option, see Chapter 2, "Program Specification Block
(PSB) Generation," in the IMS/ESA Utilities Reference Manual, or DL/I Resource
Definition and Utilities. Update integrity is always guaranteed in an online subsystem.

In the second form of sharing, sharing resources between multiple IMS subsystems,
there are two subcategories:

� Database-level sharing enables multiple IMS subsystems to access a database
concurrently. Both online and batch regions can be used.

One subsystem can update a database while other subsystems access the same
database in read-only mode. When sharing takes this form, update integrity is
guaranteed, but read integrity is not guaranteed. Read integrity is guaranteed
only if all subsystems use read-only access.

Database-level sharing is available in IMS/ESA DB and IMS/ESA DB/DC
systems.

� Block-level sharing enables multiple IMS subsystems to have concurrent update
access to a database.

When sharing resources, IMS preserves both read and update integrity.

Note: GSAM databases cannot be shared. �

General Considerations for Sharing Resources
When resources are shared, whether within a subsystem or between subsystems,

many users can access a given database at the same time. Consequently, one invocation
of the SAS/ACCESS interface to IMS can have an impact on the performance of several
users’ programs.

When read integrity is guaranteed, the SAS/ACCESS interface has read-only access
and owns (has exclusive access to) the last database record it accessed. Even under
these circumstances, the SAS/ACCESS interface with read-only access does not
normally affect the performance of other programs. However, if the SAS/ACCESS
interface is positioned on one database record for a long time, it affects other programs
by preventing them from accessing that record. If read integrity is not guaranteed, the
SAS/ACCESS interface does not own records and, therefore, does not affect other
programs.

The SAS/ACCESS interface is more likely to affect the performance of other
programs if it updates database records. When the SAS/ACCESS interface updates
records, it owns any record that has been updated since the interface’s last
synchronization point. A synchronization point occurs when the SAS/ACCESS interface
issues a CHKP (checkpoint) call. This synchronization point saves the changes the

36 Database-Level Shared Access � Chapter 2

SAS/ACCESS interface has made since the last CHKP call it issued to the database. By
default, the SAS/ACCESS interface issues CHKP calls at the beginning and end of
processing. With SAS/FSP software, use the AUTOSAVE option to increase the
frequency of issuing CHKP calls.

Synchronization points are important because they cause IMS to release some
resources allocated to the SAS/ACCESS interface. These resources include the database
records owned by the interface, the IMS enqueue table entries that mark this
ownership, and the dynamic log records required to back out (cancel) updates since the
prior synchronization point. When IMS releases the SAS/ACCESS interface’s ownership
of updated database records, other programs can access the record with the updated
information.

Database-Level Shared Access
In database-level shared access, multiple IMS subsystems (batch or online or both)

allocate the database data sets concurrently. Concurrent allocation is possible in a
single operating system with shared disposition allocation. It might be possible between
multiple operating systems, regardless of the allocation disposition, if the database data
sets reside on shared Direct Access Storage Device (DASD).

CAUTION:
If the IMS requirements for database-level sharing are not followed closely, IMS database
integrity can be compromised by multiple allocations. Make sure that database-level
sharing or block-level sharing is implemented for a database before you allocate a
database data set with shared disposition. �

In database-level sharing, one subsystem can have update access to a database while
other subsystems have read access to the same database. In this case, update integrity
is guaranteed, but read integrity is not guaranteed. Alternatively, all subsystems can
be restricted to read access, in which case read integrity is guaranteed because there is
no danger of a record being updated. The remainder of this section on database-level
sharing discusses sharing when one subsystem has update access and other systems
have read access.

When one subsystem has update access and the others have read access, it is
possible for a read-access invocation of the SAS/ACCESS interface to obtain
uncommitted update data from a program that later backs out the updates.

If the subsystem with update access is a batch subsystem, only one program or
invocation of the SAS/ACCESS interface has update access to the database (since only
one program executes in a batch subsystem). No other program or invocation of the
interface with update intent (indicated in the PCB) can execute until the first
subsystem completes, so there is no contention for the database records. (Remember
that read integrity is not guaranteed in this situation and programs with read access do
not own records.) Since other executing programs are not waiting for records, you do
not have to be concerned about releasing records for other programs to use.

If the subsystem with update access is an online subsystem, other subsystems
(whether batch or online) are still restricted to read access. However, unlike a batch
subsystem, multiple programs in the update-access online subsystem can update the
database. In other words, two forms of sharing occur at once:

� database-level sharing between subsystems, with one updating and others reading
� sharing within one online subsystem, with multiple programs sharing the

databases

Database-level sharing is specified by completing the following tasks:
� registering the database with Database Recovery Control (DBRC) for

database-level sharing

IMS Essentials � Block-Level Shared Access 37

� ensuring that DBRC is used in the IMS/ESA IMS region
� specifying a share option of (2,3) or (3,3) when the VSAM data set is defined

Under z/OS, if DBRC is not used, database integrity is compromised. DBRC is active
in SAS executions of application regions as long as the value of the SAS system option
IMSDLDBR= is not N.

Block-Level Shared Access
In block-level shared access, multiple IMS subsystems allocate the database data

sets concurrently. This shared allocation is possible in a single operating system with
shared disposition allocation. Block-level shared access is possible between multiple
operating systems regardless of the allocation disposition if the database data sets
reside on shared DASD.

If the IMS requirements for block-level sharing are not followed completely, the IMS
database integrity might be compromised by this multiple allocation. Make sure that
you implement block-level sharing for a database before you allocate a database data
set with shared disposition.

Block-level shared access differs from database-level shared access in that it
guarantees both read and update integrity for the shared database. It is not possible for
the SAS/ACCESS interface to IMS to obtain uncommitted update data that is later
backed out.

A disadvantage of block-level sharing is that different subsystems must contend for
database records. Therefore, synchronization-point processing becomes essential when
updating a database that is shared at the block level with other IMS subsystems.

An advantage of block-level sharing over database-level sharing is that the
SAS/ACCESS interface that updates does not have to wait to obtain exclusive update
control of the database.

Block-level sharing is specified by completing the following tasks:

� registering the database with DBRC for block-level sharing
� ensuring that DBRC is used in the application region
� establishing communication with an IMS/ESA Resource Lock Manager (IRLM),

which is executing under the same operating system as the IMS region
� specifying (for VSAM data sets) a share option of (3,3) when the VSAM data set is

defined

If DBRC is not active, database integrity is compromised. If DBRC was included in
IMS/ESA during operating system generation, DBRC is active in SAS executions of
application regions as long as the SAS system option IMSDLDBR= does not have a
value of N.

Similarly, if communication with the IRLM is not established, database integrity is
compromised. The IMS region establishes communication with the IRLM specified by
the SAS system option IMSDLIRN= as long as the IRLM is active and the SAS system
option IMSDLIRL= does not have a value of N.

38

39

P A R T2

The IMS Engine Interface: Usage

Chapter 3.Defining SAS/ACCESS Descriptor Files 41

Chapter 4. IMS Data in SAS Programs 49

Chapter 5.Browsing and Updating IMS Data 69

40

41

C H A P T E R

3
Defining SAS/ACCESS Descriptor
Files

Introduction to Defining SAS/ACCESS Descriptor Files 41
SAS/ACCESS Descriptor Files Essentials 41

Creating and Using Descriptor Files 42

Creating Access and View Descriptors in One PROC Step 42

Creating Access and View Descriptors in Separate PROC Steps 44

Using View Descriptors in SAS Programs 45
Example 1: Printing Data 45

Example 2: Reviewing Variables 47

Introduction to Defining SAS/ACCESS Descriptor Files
To use the SAS/ACCESS to IMS interface view engine, you must define special files

that describe IMS databases and data to SAS. These files are called SAS/ACCESS
descriptor files. This section uses examples to show you how to create and edit
descriptor files.

The examples in this section are based on the IMS database WIRETRN. Complete
information about the WIRETRN database is provided later in this section. From this
database, the examples create an access descriptor. Then, the examples create a view
descriptor based on the access descriptor. For complete reference information about the
ACCESS procedure, see Chapter 6, “ACCESS Procedure Reference,” on page 93.

SAS/ACCESS Descriptor Files Essentials
One way that SAS interacts with IMS databases is through an interface view engine

that makes use of SAS/ACCESS descriptor files created with the ACCESS procedure.
There are two types of descriptor files:

� access descriptors
� view descriptors

An access descriptor contains information about the IMS database that you want to
use. The information includes the IMS database name, the IMS field names and their
default SAS formats, database formats, segment names and lengths, and key fields. An
access descriptor also contains any special handling considerations for a field and
indicates if an item occurs multiple times in a database segment. You use the access
descriptor to create view descriptors. An access descriptor is like a master descriptor file
for a single IMS database because it contains a complete description of that database (if
you choose to enter all the data). Because IMS does not store descriptive information
about a database, you must enter the database definition in the access descriptor.

42 Creating and Using Descriptor Files � Chapter 3

A view descriptor defines a subset of the data that is described by an access
descriptor.

Note: This subset must contain data from only one path in the database on which
the access descriptor is based. You choose this subset by selecting particular items and
specifying criteria that the data must meet. �

For example, you might want to select two items, CUSTOMER_NAME and STATE,
and specify that the value stored in item STATE must equal NC.

A view descriptor is a SAS data set of member type VIEW. After you create your view
descriptors, you can use them in a SAS program to read or write the data directly from
and to an IMS database, or you can extract IMS data and place it in a SAS data file.
Typically, you have several view descriptors (each selecting a different path of data in
the database) for each access descriptor that you have defined.

Creating and Using Descriptor Files

Creating Access and View Descriptors in One PROC Step
You can use the ACCESS procedure in batch mode to create the access descriptor

MYLIB.WIRETRN and the view descriptor VLIB.WIREDATA. Because IMS does not
have a dictionary or store descriptive information about IMS databases, you must
provide the database definition in the SAS statements following the procedure
statement. You can also create view descriptors in the same PROC ACCESS execution
after the access descriptor statements are entered. (See Chapter 6, “ACCESS Procedure
Reference,” on page 93 for a list of valid options that you can use with PROC ACCESS.)
Here is the general format for creating descriptors:

proc access options;
statements;

run;

Perhaps the most common way to use the ACCESS procedure is to create an access
descriptor and one or more view descriptors during a single PROC ACCESS execution.

The following example shows how to create the access descriptor MYLIB.WIRETRN
based on the IMS database WIRETRN. The view descriptor VLIB.WIREDATA is based
on this access descriptor. After the following example, each SAS/ACCESS statement is
explained in the order of appearance in the program:

JCL statements;

libname mylib ’access-descriptor libref’;
libname vlib ’view-descriptor libref’;

proc access dbms=ims;
create mylib.wiretrn.access;

database=wiretrn dbtype=hdam;
record=’wire transaction’ segment=wiretran

seglng=100;
item=’ssn - account’ level=2 dbformat=$23.

search=ssnacc key=y;
item=’account type’ level=2 dbformat=$1.

search=accttype;

Defining SAS/ACCESS Descriptor Files � Creating Access and View Descriptors in One PROC Step 43

item=’wire date’ level=2 dbformat=$8.
search=wiredate;

item=’wire time’ level=2 dbformat=$8.
search=wiretime;

item=’wire amount’ level=2 dbformat=pd5.2
search=wireammt
dbcontent=l;

item=’wire descript’ level=2 dbformat=$40.
search=wiredesc;

an=y;
list all;

create vlib.wiredata.view psbname=acctsam
pcbindex=5;
select ’wire transaction’;

list view;
run;

Here is an explanation of the statements in this example. See “Invoking the ACCESS
Procedure” on page 98 for complete reference information about these statements.

JCL statements;
included for batch and noninteractive line modes.

libname mylib=’access-descriptor libref’;
libname vlib=’view-descriptor libref’;

reference the SAS library in which you will store the access descriptor (MYLIB)
and the SAS library in which you will store the view descriptors (VLIB). You must
associate a libref with its library before you can use it in another SAS statement
or procedure.

proc access dbms=ims;
invokes the ACCESS procedure for the SAS/ACCESS interface to IMS.

create mylib.wiretrn.access;
identifies the access descriptor, MYLIB.WIRETRN, that you want to create.

database=wiretrn dbtype=hdam;
specifies the IMS database named WIRETRN on which the access descriptor is to
be created. The database type is HDAM.

record=’wire transaction’ segment=wiretran seglng=100;
specifies the user-specified record name, as well as the segment name and segment
length, as specified in the IMS DBD for the WIRETRN database.

item=’ssn - account’ level=2 dbformat=$23. search=ssnacc key=y;
identifies the item SSN - ACCOUNT. It has an internal format of type character,
length 23 bytes. SSNACC is specified as a search field name. KEY=Y indicates
that SSN - ACCOUNT is listed in the DBD as a key field for the WIRETRAN
segment.

item=’account type’ level=2 dbformat=$1. search=accttype;
identifies the item ACCOUNT TYPE with an internal format of type character,
length 1 byte. ACCTTYPE is specified as a search field in the DBD.

item=’wire date’ level=2 dbformat=$8. search=wiredate;
identifies the item WIRE DATE with an internal format of type character, length 8
bytes. The search field WIREDATE is specified.

item=’wire time’ level=2 dbformat=$8. search=wiretime;
identifies the item WIRE TIME with the same attributes as WIRE DATE except it
has the search field name WIRETIME.

44 Creating Access and View Descriptors in Separate PROC Steps � Chapter 3

item=’wire amount’ level=2 dbformat=pd5.2 search=wireammt
dbcontent=l;

identifies the item WIRE AMOUNT with a packed decimal database format of 5
bytes with 2 decimal places. DBCONTENT=L indicates that SAS should display a
missing value when it finds low values (hexadecimal zeros) for this item. The
search field is WIREAMMT.

item=’wire descript’ level=2 dbformat=$40. search=wiredesc;
identifies the item WIRE DESCRIPT with an internal format of type character,
length 40 bytes. The search field is WIREDESC.

an=y;
generates unique SAS variable names and default formats based on the name of
the IMS item and its DBFORMAT= value. Using AN=Y in an access descriptor
means no changes can be made to the SAS names and formats in any view
descriptors that use the access descriptor.

list all;
lists all the items in the access descriptor and SAS information for each item. The
output is displayed in the SAS log.

create vlib.wiredata.view psbname=acctsam pcbindex=5;
creates a view descriptor called WIREDATA which references PSB ACCTSAM. The
PCBINDEX=5 statement refers to the specific PCB in the PSB to be used at
execution time.

select ’wire transaction’;
selects the WIRETRAN segment of the IMS database to be included in the view, as
defined in the access descriptor.

list view;
lists the SAS information about the record WIRE TRANSACTION you selected for
this view. Output from this statement is shown in the SAS log.

run;
forces the execution of the ACCESS procedure.

Creating Access and View Descriptors in Separate PROC Steps
You can create view descriptors and access descriptors in separate PROC ACCESS

steps. In the first PROC ACCESS step in the following example, you create the access
descriptor MYLIB.WIRETRN, which is based on the WIRETRN database. In the second
PROC ACCESS step, you create a view descriptor, VLIB.WIREDATA, which is based on
the access descriptor MYLIB.WIRETRN.

proc access dbms=ims;
create mylib.wiretrn.access;

database=wiretrn dbtype=hdam;
record=’wire transaction’ segment=wiretran

seglng=100;
item=’ssn - account’ level=2 dbformat=$23.

search=ssnacc
key=y;

item=’account type’ level=2 dbformat=$1.
search=accttype;

item=’wire date’ level=2 dbformat=$8.
search=wiredate;

Defining SAS/ACCESS Descriptor Files � Example 1: Printing Data 45

item=’wire time’ level=2 dbformat=$8.
search=wiretime;

item=’wire amount’ level=2 dbformat=pd5.2
search=wireammt
dbcontent=l;

item=’wire descript’ level=2 dbformat=$40.
search=wiredesc;

an=y;
list all;

run;

proc access dbms=ims accdesc=mylib.wiretrn;
create vlib.wiredata.view psbname=acctsam

pcbindex=5;
select ’wire transaction’;

list view;
run;

Note that the statement proc access dbms=ims is repeated in this example. See
“Creating Access and View Descriptors in One PROC Step” on page 42 for complete
reference information about this statement.

Using View Descriptors in SAS Programs

Example 1: Printing Data
Printing IMS data that is described by a view descriptor is like printing any other

SAS data set, as shown in the following example:

options nodate linesize=120;

proc print data=vlib.wiredata;
title2 ’Wire Transactions’;

run;

46 Example 1: Printing Data � Chapter 3

The following output shows the output for the VLIB.WIREDATA view descriptor.

Output 3.1 Results of the PRINT Procedure

The SAS System

Wire Transactions

OBS SSN_ACCOUNT ACCOUNT_TYPE WIRE_DATE WIRE_TIME WIRE_AMOUNT WIRE_DESCRIPT

1 335-45-3451345620145345 C 03/31/95 15:42:43 1563.23 BAD CUST_SSN

2 434-62-1224345656336366 L 03/30/95 23:45:32 424.87 WIRED FROM SCNB 37262849393

3 156-45-5672345689435776 S 04/06/95 12:23:42 -150.00 WIRED TO BOA 9383627274

4 456-45-3462345620134522 C 04/06/95 13:12:34 -245.73 WIRED TO WELLS FARGO CHICAGO

5 234-74-4612345689413263 S 04/06/95 15:45:42 -238.73 WIRED TO WELLS FARGO SAN FRANCISCO

6 667-73-8275345620154633 S 03/31/95 15:42:43 1563.23 BAD ACCT_NUM

7 234-74-4612345620113263 C 04/06/95 11:12:42 1175.00 WIRED FROM SCNB 73653728343

8 156-45-5672345620123456 C 04/06/94 10:23:53 -136.29 WIRED TO SCNB 53472019836

9 156-45-5672345620123456 C 04/06/95 9:35:53 1923.87 WIRED FROM CIBN 37284839328

10 434-62-1224345620134564 C 04/06/95 13:23:52 -284.42 WIRED TO TVNB 837362636438

11 667-73-8275345689454633 C 03/28/95 15:42:43 1563.23 BAD ACCT_NUM

When you use the PRINT procedure, you might want to take advantage of the OBS=
and FIRSTOBS= data set options. The OBS= option enables you to specify the last
observation to be processed; the FIRSTOBS= option enables you to specify the first. The
options are not valid with any form of the WHERE expression. The OBS= option
improves performance when the view descriptor describes a large amount of data and
you just want to see an example of the output. Because each record must still be read
and its position calculated, using the FIRSTOBS= option does not improve performance
significantly. The POINT= and KEY= options of the MODIFY and SET statements are
not currently supported by the IMS engine.

The following example uses the OBS= data set option to print the first five
observations of data described by the view descriptor VLIB.WIREDATA, which
describes the WIRETRAN segment of the IMS database WIRETRN:

options nodate linesize=120;

proc print data=vlib.wiredata(obs=5);
title2 ’First Five Observations Described by

VLIB.WIREDATA’;
run;

Defining SAS/ACCESS Descriptor Files � Example 2: Reviewing Variables 47

The following table shows the result of this example.

Output 3.2 Results of Using the FIRSTOBS= Option

The SAS System

First Five Observations Described by VLIB.WIREDATA

OBS SSN_ACCOUNT ACCOUNT_TYPE WIRE_DATE WIRE_TIME WIRE_AMOUNT WIRE_DESCRIPT

1 335-45-3451345620145345 C 03/31/95 15:42:43 1563.23 BAD CUST_SSN

2 434-62-1224345656336366 L 03/30/95 23:45:32 424.87 WIRED FROM SCNB 37262849393

3 156-45-5672345689435776 S 04/06/95 12:23:42 -150.00 WIRED TO BOA 9383627274

4 456-45-3462345620134522 C 04/06/95 13:12:34 -245.73 WIRED TO WELLS FARGO CHICAGO

5 234-74-4612345689413263 S 04/06/95 15:45:42 -238.73 WIRED TO WELLS FARGO SAN FRANCISCO

For more information about the PRINT procedure, see SAS Language Reference:
Concepts and Base SAS Procedures Guide. For more information about the OBS= and
FIRSTOBS= options, see SAS Language Reference: Dictionary.

Example 2: Reviewing Variables
If you want to use IMS data that is described by a view descriptor in your SAS

program, you can use the CONTENTS or DATASETS procedure to display the view’s
variable and format information. You use these procedures with view descriptors in the
same way you use them with other SAS data sets.

The following example uses the DATASETS procedure to give you information about
the view descriptor VLIB.WIREDATA, which describes the data in the WIRETRAN
segment of the IMS database WIRETRN:

options nodate linesize=132;

proc datasets library=vlib memtype=view;
contents data=wiredata;
title2 ’ ’;

run;

48 Example 2: Reviewing Variables � Chapter 3

The following output shows the first display of the information for this example.

Output 3.3 Results of Using the DATASETS Procedure with a View Descriptor

DATASETS PROCEDURE

Data Set Name: VLIB.WIREDATA Observations: .
Member Type: VIEW Variables: 6
Engine: SASIOIMS Indexes: 0
Created: . Observation Length: 88
Last Modified: . Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:

-----Engine/Host Dependent Information-----

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Informat Label
--
2 ACCOUNT_TYPE Char 1 23 $1. $1. ACCOUNT TYPE
1 SSN_ACCOUNT Char 23 0 $23. $23. SSN - ACCOUNT
5 WIRE_AMOUNT Num 8 40 12.2 12.2 WIRE AMOUNT
3 WIRE_DATE Char 8 24 $8. $8. WIRE DATE
6 WIRE_DESCRIPT Char 40 48 $40. $40. WIRE DESCRIPT
4 WIRE_TIME Char 8 32 $8. $8. WIRE TIME

As you can see from the output produced by the DATASETS procedure, the
VLIB.WIREDATA view descriptor has six variables: ACCOUNT_TYPE,
SSN_ACCOUNT, WIRE_AMOUNT, WIRE_DATE, WIRE_DESCRIPT, and
WIRE_TIME. The variables are listed in alphabetic order, and the column labeled with
a # (pound sign) in the listing shows the order of each variable as it appears in the
WIRETRAN database segment. You cannot change a view descriptor’s variable labels
using the DATASETS procedure. The labels are generated from the IMS item names
when the view descriptor is created.

For more information about the DATASETS procedure, see SAS Language Reference:
Concepts and the Base SAS Procedures Guide.

49

C H A P T E R

4
IMS Data in SAS Programs

Introduction to Using IMS Data in SAS Programs 49
Charting IMS Data 50

Calculating Statistics with IMS Data 51

Calculating Statistics Using the FREQ Procedure 51

Calculating Statistics Using the MEANS Procedure 51

Calculating Statistics Using the RANK Procedure 55
Selecting and Combining IMS Data 56

Methods to Selecting and Combining IMS Data 56

Selecting and Combining Data Using the WHERE Statement 56

Selecting and Combining Data Using the SAS SQL Procedure 60

Combining Data from Various Sources 60

Creating New Items with the GROUP BY Clause 63
Updating a SAS Data File with IMS Data 64

Using a DATA Step to Update a SAS Data File 64

Example of VALIDVARNAME=V6 64

Example of VALIDVARNAME=V7 66

Introduction to Using IMS Data in SAS Programs
An advantage of the SAS/ACCESS to IMS interface view engine is that it enables

SAS to read and write IMS data directly from SAS programs without having to code
DL/I calls. This section presents examples that use IMS data that is described by view
descriptors as input data for SAS programs. Throughout the examples, the SAS terms
variable and observation are used instead of the IMS terms field and segment because
this section illustrates using SAS procedures and the DATA step. The examples include
charting data using the Version 7 SQL procedure to combine data from various sources,
and updating a Version 6 SAS data file with data from IMS.

READ, WRITE, ALTER, or PW passwords can be assigned to a view descriptor,
access descriptor, PROC SQL view, DATA step view, or SAS data file. See Chapter 6,
“ACCESS Procedure Reference,” on page 93 and “SAS Passwords for SAS/ACCESS
Descriptors” on page 95 for information about assigning passwords.

Appendix 2 includes definitions of all the view descriptors referenced in this section.
Appendix 2 also includes the IMS database data, SAS data files, and a DB2 table used
in some of the examples.

50 Charting IMS Data � Chapter 4

Charting IMS Data
GCHART procedure programs work with data that is described by view descriptors

just as they do with other SAS data sets. The following example creates a horizontal
bar chart of the number of checking account withdrawals per day. This example uses
the view descriptor VLIB.CDBTDATE to describe the CHCKDEBT segment of the
ACCTDBD database:

options nodate linesize=132;
goptions device=chardrvw;

proc gchart data=vlib.cdbtdate;
vbar check_date / discrete;
title2 ’Checking Account Withdrawals Per Day’;

run;

The following graphic shows the output for this example. CDBTDATE represents the
date of each checking account withdrawal; the number of checking account withdrawals
is represented by the length of the bar. For more information about the GCHART
procedure, see SAS Language Reference: Concepts and the SAS/GRAPH Software:
Reference, Volumes 1 and 2.

Display 4.1 Results of Charting IMS Data

If you have SAS/GRAPH software, you can create colored block charts, plots, and
other graphics based on IMS data. See SAS/GRAPH Software: Reference, Volumes 1
and 2 for more information about the kinds of graphics that you can produce with this
SAS product.

IMS Data in SAS Programs � Calculating Statistics Using the MEANS Procedure 51

Calculating Statistics with IMS Data

Calculating Statistics Using the FREQ Procedure
Suppose you want to find the percentages of your accounts in each city where you

have a bank so that you can decide where to increase your marketing. The following
example calculates the percentages of customers for each city appearing in the IMS
database ACCTDBD using the view descriptor VLIB.CUSTINFO:

options nodate linesize=80;

proc freq data=vlib.custinfo;
table city;
title2 ’Cities in the ACCTDBD Database’;

run;

The following output shows the one-way frequency table that this example generates.

Output 4.1 Results of Calculating Statistics Using the FREQ Procedure

The SAS System
Cities in the ACCTDBD Database

CITY

Cumulative Cumulative
CITY Frequency Percent Frequency Percent
--
CHARLOTTESVILLE 2 20.0 2 20.0
GORDONSVILLE 3 30.0 5 50.0
ORANGE 2 20.0 7 70.0
RAPIDAN 1 10.0 8 80.0
RICHMOND 2 20.0 10 100.0

For more information about the FREQ procedure, see SAS Language Reference:
Concepts and the Base SAS Procedures Guide.

Calculating Statistics Using the MEANS Procedure
In an analysis of recent accounts, suppose that you also want to determine some

statistics by customer. In the following example, PROC MEANS is used to generate the
mean debit amount for each customer (including the number of observations (N) and
the number of missing values (NMISS)):

proc sort data=vlib.trans out=mydata.trandata;
by soc_sec_number;

run;

options nodate linesize=80;

proc means data=mydata.trandata mean
sum n nmiss maxdec=0;

52 Calculating Statistics Using the MEANS Procedure � Chapter 4

by soc_sec_number;
var check_debit_amount;
title2 ’Mean Debit Amount Per Customer’;

run;

In the example, the view descriptor VLIB.TRANS selects CUSTOMER, CHCKACCT,
and CHCKDEBT segment data from the IMS database ACCTDBD. Since the
ACCTDBD database is an HDAM and therefore is not indexed, the data that is
described by the view descriptor must be sorted before using PROC MEANS. The sorted
data is stored in a SAS data file called MYDATA.TRANDATA, which is then used as
input to PROC MEANS.

If your database is indexed, you can use a SAS BY statement for the indexed field so
that data is returned as if it is sorted. Database access methods HIDAM, HISAM, and
SHISAM are indexed. If your database is not indexed, you need to sort the IMS data
before using the MEANS procedure with a BY statement. Because you cannot sort data
in an IMS database, you must use the OUT= option to extract data from the database
so that you can pass it to the MEANS procedure.

Note: You can store the sorted data in a temporary data set if space is a concern. �

Note: If the view descriptor describes a path of data that includes segments from
multiple hierarchical levels, the parent segment information is repeated for each SAS
observation. This can cause misleading statistical results. To avoid misleading results,
perform mathematical operations using only the data in the segment at the lowest
hierarchical level. You can also avoid misleading results by creating a view descriptor
that describes only the data in the segment at the lowest hierarchical level. �

The following output shows the output for this example.

IMS Data in SAS Programs � Calculating Statistics Using the MEANS Procedure 53

Output 4.2 Results of Calculating Statistics Using the MEANS Procedure

The SAS System
Mean Debit Amount Per Customer

-------------------------- SOC_SEC_NUMBER=156-45-5672 --------------------------

The MEANS Procedure

Analysis Variable : CHECK_DEBIT_AMOUNT CHECK_DEBIT_AMOUNT

N
Mean Sum N Miss

--
27 110 4 0

--

-------------------------- SOC_SEC_NUMBER=178-42-6534 --------------------------

Analysis Variable : CHECK_DEBIT_AMOUNT CHECK_DEBIT_AMOUNT

N
Mean Sum N Miss

--
26 26 1 0

--

-------------------------- SOC_SEC_NUMBER=234-74-4612 --------------------------

Analysis Variable : CHECK_DEBIT_AMOUNT CHECK_DEBIT_AMOUNT

N
Mean Sum N Miss

--
. . 0 1

--

-------------------------- SOC_SEC_NUMBER=434-62-1224 --------------------------

Analysis Variable : CHECK_DEBIT_AMOUNT CHECK_DEBIT_AMOUNT

N
Mean Sum N Miss

--
162 1620 10 0

--

54 Calculating Statistics Using the MEANS Procedure � Chapter 4

The SAS System
Mean Debit Amount Per Customer

-------------------------- SOC_SEC_NUMBER=434-62-1234 --------------------------

The MEANS Procedure

Analysis Variable : CHECK_DEBIT_AMOUNT CHECK_DEBIT_AMOUNT

N
Mean Sum N Miss

--
. . 0 1

--

-------------------------- SOC_SEC_NUMBER=436-42-6394 --------------------------

Analysis Variable : CHECK_DEBIT_AMOUNT CHECK_DEBIT_AMOUNT

N
Mean Sum N Miss

--
. . 0 1

--

-------------------------- SOC_SEC_NUMBER=456-45-3462 --------------------------

Analysis Variable : CHECK_DEBIT_AMOUNT CHECK_DEBIT_AMOUNT

N
Mean Sum N Miss

--
66 263 4 0

--

-------------------------- SOC_SEC_NUMBER=657-34-3245 --------------------------

Analysis Variable : CHECK_DEBIT_AMOUNT CHECK_DEBIT_AMOUNT

N
Mean Sum N Miss

--
. . 0 1

--

-------------------------- SOC_SEC_NUMBER=667-73-8275 --------------------------

The MEANS Procedure

Analysis Variable : CHECK_DEBIT_AMOUNT CHECK_DEBIT_AMOUNT

N
Mean Sum N Miss

--
355 1065 3 2

--

-------------------------- SOC_SEC_NUMBER=667-82-8275 --------------------------

Analysis Variable : CHECK_DEBIT_AMOUNT CHECK_DEBIT_AMOUNT

N
Mean Sum N Miss

--
. . 0 1

--

IMS Data in SAS Programs � Calculating Statistics Using the RANK Procedure 55

For more information about PROC MEANS, see SAS Language Reference: Concepts and
the Base SAS Procedures Guide.

Calculating Statistics Using the RANK Procedure
You can use advanced statistical procedures on IMS data that is described by a view

descriptor just as you would using a SAS data file. The following example uses the
RANK procedure to rank checking account deposits by amount. It also assigns the
variable name CRDRANK to the new item created by the RANK procedure, extracts
and sorts the data, and prints the sorted output data. The view descriptor
VLIB.CREDITS describes the CUSTOMER, CHCKACCT, and CHCKCRDT segments in
the ACCTDBD database.

proc rank data=vlib.credits out=mydata.rankcred;
var check_credit_amount;
ranks crdrank;

run;

proc sort data=mydata.rankcred;
by crdrank;

run;

options nodate linesize=132;

proc print data=mydata.rankcred;
title2 ’Deposits in Ascending Order’;

run;

The following output shows the result of this example.

Output 4.3 Results of Calculating Statistics using the RANK Procedure

The SAS System

Deposits in Ascending Order

CHECK_ CHECK_ CHECK_ CHECK_

SOC_SEC_ CHECK_ACCOUNT_ CREDIT_ CREDIT_ CREDIT_ CREDIT_

OBS NUMBER NUMBER AMOUNT DATE TIME DESC

1 436-42-6394 345620135872 50.00 02APR95 12:16:34 ACH DEPOSIT

2 456-45-3462 345620134522 50.00 05APR95 12:14:52 ACH DEPOSIT

3 156-45-5672 345620123456 100.00 01APR95 12:24:34 ATM DEPOSIT

4 667-82-8275 382957492811 100.00 16APR95 09:21:14 ACH DEPOSIT

5 434-62-1224 345620134663 120.00 28MAR95 10:26:45 ACH DEPOSIT

6 657-34-3245 345620131455 230.00 04APR95 14:24:11 ACH DEPOSIT

7 434-62-1234 345620104732 400.00 02APR95 10:23:46 ACH DEPOSIT

8 234-74-4612 345620113263 672.32 31MAR95 ATM DEPOSIT

9 178-42-6534 745920057114 1300.00 12JUN95 14:34:12 ACH DEPOSIT

10 434-62-1224 345620134564 1342.42 22MAR95 23:23:52 ACH DEPOSIT

11 667-73-8275 345620145345 1563.23 31MAR95 15:42:43 MAIN ST BRANCH DEPOSIT

12 667-73-8275 345620154633 1563.23 31MAR95 15:42:43 BAD ACCT_NUM

For more information about PROC RANK and other advanced statistics procedures, see
the Base SAS Procedures Guide.

56 Selecting and Combining IMS Data � Chapter 4

Selecting and Combining IMS Data

Methods to Selecting and Combining IMS Data
A great majority of SAS programs select and combine data from various sources. The

method you use depends on the configuration of the data. The next three examples show
you how to select and combine data using two different methods: the WHERE statement
used in a DATA step and the SQL procedure. When choosing between these methods,
you should first read the performance considerations discussed in Chapter 7, “Advanced
User Topics for the SAS/ACCESS Interface View Engine for IMS,” on page 129.

Selecting and Combining Data Using the WHERE Statement
Suppose you have two view descriptors, VLIB.CHKCRD and VLIB.CHKDEB, that

contain information about the checking accounts of customers. The view descriptor
VLIB.CHKCRD describes the checking credit data in the CUSTOMER, CHCKACCT,
and CHCKCRDT segments, and the view descriptor VLIB.CHKDEB describes the
checking debit data in the CUSTOMER, CHCKACCT, and CHCKDEBT segments. You
could use the SET statement to concatenate the data in these files and create a SAS
data file that contains information about checking account transactions by customer.
Since you are accessing the same database more than once, you need to reference the
same PSB in both view descriptors, but use different PCB index values, where each
value references an ACCTDBD PCB that is sensitive to the segments defined in the
view. In this example, VLIB.CHKCRD uses a PCB index value of 2, and
VLIB.CHKDEB uses a PCB index value of 3 in the ACCUPSB PSB.

The PROC SORT statement orders the accounts by Social Security number and
checking account number.

data chktrans (keep=soc_sec_number
check_account_number trantype date amount);
length trantype $ 6;
format date date9. amount dollar12.2;
set vlib.chkcrd(in=crd) vlib.chkdeb(in=dbt);
where check_balance>0;
if crd then do;

trantype=’Credit’;
date=check_credit_date;
amount=check_credit_amount;

end;
else if dbt then do;

trantype=’Debit’;
date=check_debit_date;
amount=check_debit_amount;

end
run;
proc sort;

by soc_sec_number check_account_number;
run;

options nodate linesize=80;

proc print data=chktrans;

IMS Data in SAS Programs � Selecting and Combining Data Using the WHERE Statement 57

by soc_sec_number;
var check_account_number trantype date amount;
title2 ’Checking Account Transactions by SSN’;
run;

In the SAS WHERE statement, be sure to use the IMS item name as the search
criteria when VALIDVARNAME=V7 and the SAS variable name when
VALIDVARNAME=V6. The following output shows the result of the new temporary
SAS data file WORK.CHKTRANS.

58 Selecting and Combining Data Using the WHERE Statement � Chapter 4

Output 4.4 Results of Selecting and Combining Data Using the WHERE Statement

Checking Account Transactions by SSN

---------------------- SOC_SEC_NUMBER=156-45-5672 --------------------

CHECK_ACCOUNT_
OBS NUMBER TRANTYPE DATE AMOUNT

1 345620123456 Credit 01APR1991 $100.00
2 345620123456 Debit 28MAR1991 $13.29
3 345620123456 Debit 31MAR1991 $32.87
4 345620123456 Debit 02APR1991 $50.00
5 345620123456 Debit 31MAR1991 $13.42

---------------------- SOC_SEC_NUMBER=178-42-6534 --------------------

CHECK_ACCOUNT_
OBS NUMBER TRANTYPE DATE AMOUNT

6 745920057114 Credit 12JUN1991 $1,300.00
7 745920057114 Debit 10JUN1991 $25.89

---------------------- SOC_SEC_NUMBER=234-74-4612 --------------------

CHECK_ACCOUNT_
OBS NUMBER TRANTYPE DATE AMOUNT

8 345620113263 Credit 31MAR1991 $672.32
9 345620113263 Debit . .

---------------------- SOC_SEC_NUMBER=434-62-1224 --------------------

CHECK_ACCOUNT_
OBS NUMBER TRANTYPE DATE AMOUNT

10 345620134564 Credit 22MAR1991 $1,342.42
11 345620134564 Debit 18MAR1991 $432.87
12 345620134564 Debit 18MAR1991 $19.23
13 345620134564 Debit 22MAR1991 $723.23
14 345620134564 Debit 22MAR1991 $82.32
15 345620134564 Debit 26MAR1991 $73.62
16 345620134564 Debit 26MAR1991 $31.23
17 345620134564 Debit 29MAR1990 $162.87
18 345620134564 Debit 29MAR1991 $7.12
19 345620134564 Debit 31MAR1991 $62.34
20 345620134663 Credit 28MAR1991 $120.00
21 345620134663 Debit 28MAR1991 $25.00

---------------------- SOC_SEC_NUMBER=434-62-1234 --------------------

CHECK_ACCOUNT_
OBS NUMBER TRANTYPE DATE AMOUNT

22 345620104732 Credit 02APR1991 $400.00
23 345620104732 Debit . .

IMS Data in SAS Programs � Selecting and Combining Data Using the WHERE Statement 59

Checking Account Transactions by SSN

---------------------- SOC_SEC_NUMBER=436-42-6394 --------------------

CHECK_ACCOUNT_
OBS NUMBER TRANTYPE DATE AMOUNT

24 345620135872 Credit 02APR1991 $50.00
25 345620135872 Debit 30MAR1990 .

---------------------- SOC_SEC_NUMBER=456-45-3462 --------------------

CHECK_ACCOUNT_
OBS NUMBER TRANTYPE DATE AMOUNT

26 345620134522 Credit 05APR1991 $50.00
27 345620134522 Debit 29MAR1991 $42.73
28 345620134522 Debit 29MAR1991 $172.45
29 345620134522 Debit 30MAR1991 $38.23
30 345620134522 Debit 02APR1991 $10.00

---------------------- SOC_SEC_NUMBER=657-34-3245 --------------------

CHECK_ACCOUNT_
OBS NUMBER TRANTYPE DATE AMOUNT

31 345620131455 Credit 04APR1991 $230.00
32 345620131455 Debit . .

---------------------- SOC_SEC_NUMBER=667-73-8275 --------------------

CHECK_ACCOUNT_
OBS NUMBER TRANTYPE DATE AMOUNT

33 345620145345 Credit 31MAR1991 $1,563.23
34 345620145345 Debit 19MAR1990 .
35 345620145345 Debit 23MAR1991 $820.00
36 345620145345 Debit 23MAR1991 $52.00
37 345620145345 Debit 28MAR1991 $193.00
38 345620154633 Credit 31MAR1991 $1,563.23
39 345620154633 Debit . .

---------------------- SOC_SEC_NUMBER=667-82-8275 --------------------

CHECK_ACCOUNT_
OBS NUMBER TRANTYPE DATE AMOUNT

40 382957492811 Credit 16APR1991 $100.00
41 382957492811 Debit . .

The first line of the DATA step uses the KEEP= data set option. This option works with
view descriptors just as it works with other SAS data sets. The KEEP= option specifies
that you want only the listed variables included in the new SAS data file
WORK.CHKTRANS, although you can use the other variables in the view descriptor
within the DATA step. Note that the KEEP= option does not reduce the number of
variables mapped by the view descriptor and, therefore, does not reduce the amount of
data read by the engine.

When you reference a view descriptor in a SAS procedure or DATA step, it is more
efficient to use a SAS WHERE statement than a subsetting IF statement because an IF
statement does not reduce the amount of data read. A DATA step or SAS procedure
passes the SAS WHERE statement to the interface view engine, which attempts to

60 Selecting and Combining Data Using the SAS SQL Procedure � Chapter 4

create SSAs from the WHERE statement. If the engine can create the SSAs, it
processes the SAS WHERE statement and returns to SAS only the data that satisfies
the WHERE statement. Otherwise, all the data referenced by the view descriptor is
returned to SAS for processing. Processing IMS data using a WHERE statement that
the IMS engine can turn into SSAs reduces the amount of data read and retrieved by
the engine. This improves engine performance significantly. For more information
about how IMS handles WHERE statements, see “Performance and Efficient View
Descriptors” on page 122.

For more information about the SAS WHERE statement, refer to SAS Language
Reference: Dictionary.

Selecting and Combining Data Using the SAS SQL Procedure
This section provides two examples of using the SAS SQL procedure on IMS data.

The SQL procedure implements the Structured Query Language (SQL) in Version 7 and
later of SAS. The SQL procedure is a good way to perform SQL operations with IMS,
which by itself has no SQL capabilities. The first example illustrates how to use PROC
SQL to combine data from three sources. The second example shows how to use the
GROUP BY clause to create new items from data that is described by a view descriptor.

Combining Data from Various Sources
Suppose you have the following items:

� a view descriptor, VLIB.CUSTACCT, that is based on the CUSTOMER and
CHCKACCT segments of the IMS database ACCTDBD.

� a SAS data file, MYDATA.CHGDATA, which contains checking account numbers
and checking fees.

� a view descriptor, MYDATA.BANKCHRG, that is based on data in a DB2 table
that contains additional banking fees. (The MYDATA.BANKCHRG view descriptor
has been created using the SAS/ACCESS interface to DB2.)

You can use PROC SQL to create a view that joins all these sources of data. When
you use the PROC SQL view in your SAS program, the joined data is presented in a
single output table. In this example, using the SAS WHERE or subsetting IF
statements would not be an appropriate way of presenting data from various sources
because you want to compare variables from several sources rather than simply merge
or concatenate the data. For more information about the DB2 table that is used in this
example, see Appendix 2, “Example Data,” on page 261.

CAUTION:
When you use PROC SQL to access more than one IMS database, the view descriptors for
each database must use the same PSB. In addition, a PCB must be included in that
PSB for each database you want to access. If you are accessing the same database
multiple times, each view descriptor must specify a different PCB using the PCB
index field. �

The following code prints the view descriptors and the SAS data file:

options nodate linesize=120;

proc print data=vlib.custacct;
title2 ’Data Described by VLIB.CUSTACCT’;

run;

IMS Data in SAS Programs � Combining Data from Various Sources 61

options nodate linesize=80;

proc print data=mydata.bankchrg;
title2 ’Data Described by MYDATA.BANKCHRG’;

run;

proc print data=mydata.chgdata;
title2 ’SAS Data File MYDATA.CHGDATA’;

run;

The following three outputs show the results of the PRINT procedure performed on
the VLIB.CUSTACCT view descriptor (based on IMS data), the MYDATA.BANKCHRG
view descriptor (based on DB2 data), and the MYDATA.CHGDATA data file.

Output 4.5 Data That is Described by VLIB.CUSTACCT

The SAS System
Data Described by VLIB.CUSTACCT

SOC_SEC_ CHECK_ACCOUNT_
OBS NUMBER CUSTOMER_NAME NUMBER

1 667-73-8275 WALLS, HOOPER J. 345620145345
2 667-73-8275 WALLS, HOOPER J. 345620154633
3 434-62-1234 SUMMERS, MARY T. 345620104732
4 436-42-6394 BOOKER, APRIL M. 345620135872
5 434-62-1224 SMITH, JAMES MARTIN 345620134564
6 434-62-1224 SMITH, JAMES MARTIN 345620134663
7 178-42-6534 PATTILLO, RODRIGUES 745920057114
8 156-45-5672 O’CONNOR, JOSEPH 345620123456
9 657-34-3245 BARNHARDT, PAMELA S. 345620131455
10 667-82-8275 COHEN, ABRAHAM 382957492811
11 456-45-3462 LITTLE, NANCY M. 345620134522
12 234-74-4612 WIKOWSKI, JONATHAN S. 345620113263

62 Combining Data from Various Sources � Chapter 4

Output 4.6 Data That is Described by MYDATA.BANKCHRG

The SAS System
Data Described by MYDATA.BANKCHRG

OBS ssn accountn chckchrg atmfee loanchrg

1 667-73-8275 345620145345 3.75 5.00 2.00
2 434-62-1234 345620104732 15.00 25.00 552.23
3 436-42-6394 345620135872 1.50 7.50 332.15
4 434-62-1224 345620134564 9.50 0.00 0.00
5 178-42-6534 . 0.50 15.00 223.77
6 156-45-5672 345620123456 0.00 0.00 0.00
7 657-34-3245 345620132455 10.25 10.00 100.00
8 667-82-8275 . 7.50 7.50 175.75
9 456-45-3462 345620134522 23.00 30.00 673.23

10 234-74-4612 345620113262 4.50 7.00 0.00

Output 4.7 Data in the SAS Data File MYDATA.CHGDATA

The SAS System
SAS Data File MYDATA.CHGDATA

OBS account charge

1 345620135872 $10
2 345620134522 $7
3 345620123456 $12
4 382957492811 $3
5 345620134663 $8
6 345620131455 $6
7 345620104732 $9

The following SAS statements select and combine data from these three sources to
create a PROC SQL view, SQL.CHARGES. The SQL.CHARGES view retrieves checking
fee information so that the bank can charge customers for checking services.

options nodate linesize=132;
libname sql ’SAS-data-library’;

proc sql;
create view sql.charges as

select distinct custacct.soc_sec_number,
custacct.customer_name,
custacct.check_account_number,
chgdata.charge,
bankchrg.chckchrg,
bankchrg.atmfee,
bankchrg.loanchrg

from vlib.custacct,
mydata.bankchrg,
mydata.chgdata

where custacct.soc_sec_number=bankchrg.ssn and
custacct.check_account_number=chgdata.account;

title2 ’Banking Charges for the Month’;
select * from sql.charges;

IMS Data in SAS Programs � Creating New Items with the GROUP BY Clause 63

The CREATE statement incorporates a WHERE clause along with the SELECT
clause. The last SELECT statement retrieves and displays the PROC SQL view
SQL.CHARGES. To select all the items from the view, use an asterisk (*) in place of
item names. When an asterisk is used, the order of the items displayed matches the
order of the items as specified in the SQL.CHARGES view definition. Notice that PROC
SQL prints the output automatically to the display using the IMS item names instead
of the SAS variable names. It also executes without a RUN statement when the
procedure is submitted. The following output shows the data that is described by the
PROC SQL view SQL.CHARGES.

Output 4.8 Results of Combining Data From Various Sources

The SAS System

Banking Charges for the Month

SOC_SEC_ CHECK_ACCOUNT_

NUMBER CUSTOMER_NAME NUMBER charge chckchrg atmfee loanchrg

--

156-45-5672 O’CONNOR, JOSEPH 345620123456 $12 0.00 0.00 0.00

434-62-1224 SMITH, JAMES MARTIN 345620134663 $8 9.50 0.00 0.00

434-62-1234 SUMMERS, MARY T. 345620104732 $9 15.00 25.00 552.23

436-42-6394 BOOKER, APRIL M. 345620135872 $10 1.50 7.50 332.15

456-45-3462 LITTLE, NANCY M. 345620134522 $7 23.00 30.00 673.23

657-34-3245 BARNHARDT, PAMELA S. 345620131455 $6 10.25 10.00 100.00

667-82-8275 COHEN, ABRAHAM 382957492811 $3 7.50 7.50 175.75

Creating New Items with the GROUP BY Clause
It is often useful to create new items with summary or aggregate functions such as

the SUM function. Although you cannot use the ACCESS procedure to create new
items, you can easily use the SQL procedure with data that is described by a view
descriptor to display output that contains new items.

This example uses PROC SQL to retrieve and manipulate data from the view
descriptor VLIB.SAVEBAL, which is based on the CUSTOMER and SAVEACCT
segments in the ACCTDBD database. When this query (as a SELECT statement is
often called) is submitted, it calculates and displays the average savings account
balance for each city.

options nodate linesize=80;

proc sql;
title2 ’Average Savings Balance Per City’;
select distinct city,

avg(savings_balance) label=’Average Balance’
format=dollar12.2

from vlib.savebal
where city is not missing
group by city;

64 Updating a SAS Data File with IMS Data � Chapter 4

The following output shows the query’s result.

Output 4.9 Results of Creating New Items with the GROUP BY Clause

The SAS System
Average Savings Balance Per City

Average
CITY Balance
--
CHARLOTTESVILLE $1,673.35
GORDONSVILLE $4,758.26
ORANGE $615.60
RAPIDAN $672.63
RICHMOND $924.62

For more information about the SQL procedure, refer to the SAS SQL Procedure
User’s Guide.

Updating a SAS Data File with IMS Data

Using a DATA Step to Update a SAS Data File
You can update a SAS data file with IMS data that is described by a view descriptor

just as you can update a SAS data file using another SAS data file: by using a DATA
step UPDATE statement. In this section, the term transaction data refers to the new
data that is to be added to the original file.

You can even perform updates when the file to be updated is a Version 6 data file
with user-defined, 8-byte SAS variable names and the transaction data is from Version
7 and later data sets containing generated variable names of up to 32 bytes.

You have two choices when you update a Version 6 SAS data file with data from later
releases:

� operate the current release in default mode. Your Version 6 program will run, but
WHERE processing will not be available.

� set the VALIDVARNAME system option to V6 to operate in Version 6 mode. The
V6 option offers functionality comparable to Version 6 of the interface view engine,
including WHERE processing. The VALIDVARNAME system option controls what
type of variable names will be used in the SAS session by converting any
nonconforming names to the specified format. For more information about the
VALIDVARNAME system, see SAS Language Reference: Dictionary.

Example of VALIDVARNAME=V6
Suppose you have a Version 6 SAS data set, VER6.SSNUMS, which contains some

customer names and Social Security numbers. You want to update this data set with
data that is described by VLIB.SSNAME, a view descriptor based on the CUSTOMER
segment of the IMS database ACCTDBD. Since this will require you to first sort the
data then create an output data set with the sorted data, this is a good situation for
using VALIDVARNAME=V6.

To perform the update, you would enter the following SAS statements:

IMS Data in SAS Programs � Example of VALIDVARNAME=V6 65

options validvarname=V6;
options nodate linesize=80;
libname ver6 ’SAS-data-library’;

proc sort data=ver6.ssnums;
by ssnumb;

run;

proc print data=ver6.ssnums;
title2 ’VER6.SSNUMS Data File’;

run;

proc sort data=vlib.ssname out=mydata.newnums;
by ssnumb;

run;

proc print data=mydata.newnums;
title2 ’Data Described by MYDATA.NEWNUMS’;

run;

data mydata.newnames;
update ver6.ssnums mydata.newnums;
by ssnumb;

run;

proc print data=mydata.newnames;
title2 ’MYDATA.NEWNAMES Data File’;

run;

The new SAS data file MYDATA.NEWNAMES is a Version 6 data file stored in a
Version 6 library associated with the libref MYDATA.

The following three outputs show the results of PRINT procedures for the original
data file, the transaction data, and the updated data file.

Output 4.10 Data in the Data File to Be Updated, VER6.SSNUMS

The SAS System
VER6.SSNUMS Data File

OBS SSNUMB NAME

1 267-83-2241 GORDIEVSKY, OLEG
2 276-44-6885 MIFUNE, YUKIO
3 352-44-2151 SHIEKELESLAM, SHALA
4 436-46-1931 NISHIMATSU-LYNCH, CAROL

66 Example of VALIDVARNAME=V7 � Chapter 4

Output 4.11 Data That is Described by Updated Data File MYDATA.NEWNUMS

The SAS System
Data Described by MYDATA.NEWNUMS

OBS SSNUMB NAME

1 156-45-5672 O’CONNOR, JOSEPH
2 178-42-6534 PATTILLO, RODRIGUES
3 234-74-4612 WIKOWSKI, JONATHAN S.
4 434-62-1224 SMITH, JAMES MARTIN
5 434-62-1234 SUMMERS, MARY T.
6 436-42-6394 BOOKER, APRIL M.
7 456-45-3462 LITTLE, NANCY M.
8 657-34-3245 BARNHARDT, PAMELA S.
9 667-73-8275 WALLS, HOOPER J.

10 667-82-8275 COHEN, ABRAHAM

Output 4.12 Results of Updating a Version 6 SAS Data File with IMS Data

The SAS System
MYDATA.NEWNAMES Data File

OBS SSNUMB NAME

1 156-45-5672 O’CONNOR, JOSEPH
2 178-42-6534 PATTILLO, RODRIGUES
3 234-74-4612 WIKOWSKI, JONATHAN S.

4 267-83-2241 GORDIEVSKY, OLEG

5 276-44-6885 MIFUNE, YUKIO
6 352-44-2151 SHIEKELESLAM, SHALA
7 434-62-1224 SMITH, JAMES MARTIN
8 434-62-1234 SUMMERS, MARY T.
9 436-42-6394 BOOKER, APRIL M.
10 436-46-1931 NISHIMATSU-LYNCH, CAROL
11 456-45-3462 LITTLE, NANCY M.
12 657-34-3245 BARNHARDT, PAMELA S.
13 667-73-8275 WALLS, HOOPER J.
14 667-82-8275 COHEN, ABRAHAM

For more information about the UPDATE statement, see SAS Language Reference:
Dictionary.

Example of VALIDVARNAME=V7

The following is an example of a Version 7 or later update of data. The Version 7 or
later data set, MYDATA.SSNUMS, is updated with data that is described by the view
descriptor VLIB.SSNAME. Both the data in the data set and in the view descriptor are
sorted by Social Security number before the output data set is used to update the
existing data set.

To perform the update, you would enter the following statements:

proc sort data=mydata.ssnums;
by soc_sec_number;

run;

IMS Data in SAS Programs � Example of VALIDVARNAME=V7 67

proc print data=mydata.ssnums;
title2 ’MYDATA.SSNUMS Data Set’;

run;

proc sort data=vlib.ssname out=mydata.newnums;
by soc_sec_number;

run;

proc print data=mydata.newnums;
title2 ’Data Described by MYDATA.NEWNUMS’;

run;

data mydata.newnames;
update mydata.ssnums mydata.newnums;
by soc_sec_number;
run;

proc print data=mydata.newnames;
title2 ’MYDATA.NEWNAMES Data Set’;
run;

The new SAS data file MYDATA.NEWNAMES is a Version 7 or later data file that is
stored in a Version 7 or later library associated with the libref MYDATA. The following
three outputs show the results of the PRINT procedures for the original data file, the
transaction data, and the updated data file.

Output 4.13 Data in the Data File to be Updated, MYDATA.SSNUMS

The SAS System
MYDATA.SSNUMS Data Set

soc_sec_
OBS number customer_name

1 267-83-2241 GORDIEVSKY, OLEG
2 276-44-6885 MIFUNE, YUKIO
3 352-44-2151 SHIEKELESLAM, SHALA
4 436-46-1931 NISHIMATSU-LYNCH, CAROL

Output 4.14 Data That is Described by Updated Data File MYDATA.NEWNUMS

The SAS System
Data Described by MYDATA.NEWNUMS

SOC_SEC_
OBS NUMBER CUSTOMER_NAME

1 156-45-5672 O’CONNOR, JOSEPH
2 178-42-6534 PATTILLO, RODRIGUES
3 234-74-4612 WIKOWSKI, JONATHAN S.
4 434-62-1224 SMITH, JAMES MARTIN
5 434-62-1234 SUMMERS, MARY T.
6 436-42-6394 BOOKER, APRIL M.
7 456-45-3462 LITTLE, NANCY M.
8 657-34-3245 BARNHARDT, PAMELA S.
9 667-73-8275 WALLS, HOOPER J.
10 667-82-8275 COHEN, ABRAHAM

68 Example of VALIDVARNAME=V7 � Chapter 4

Output 4.15 Results of Updating a Version 7 or Later SAS Data File with IMS Data

The SAS System
MYDATA.NEWNAMES Data Set

soc_sec_
OBS number customer_name

1 156-45-5672 O’CONNOR, JOSEPH
2 178-42-6534 PATTILLO, RODRIGUES
3 234-74-4612 WIKOWSKI, JONATHAN S.
4 267-83-2241 GORDIEVSKY, OLEG
5 276-44-6885 MIFUNE, YUKIO
6 352-44-2151 SHIEKELESLAM, SHALA
7 434-62-1224 SMITH, JAMES MARTIN
8 434-62-1234 SUMMERS, MARY T.
9 436-42-6394 BOOKER, APRIL M.
10 436-46-1931 NISHIMATSU-LYNCH, CAROL
11 456-45-3462 LITTLE, NANCY M.
12 657-34-3245 BARNHARDT, PAMELA S.
13 667-73-8275 WALLS, HOOPER J.
14 667-82-8275 COHEN, ABRAHAM

69

C H A P T E R

5
Browsing and Updating IMS Data

Introduction to Browsing and Updating IMS Data 69
Browsing and Updating IMS Data with SAS/FSP Procedures 70

Using the SAS/FSP Procedures 70

Browsing Data Using the FSBROWSE Procedure 70

Updating Data Using the FSEDIT Procedure 71

Browsing Data Using the FSVIEW Procedure 72
Updating Data Using the FSVIEW Procedure 72

Specifying a SAS WHERE Statement While Browsing or Updating Data 73

Scrolling with SAS/FSP Procedures 74

Inserting and Deleting Segments with SAS/FSP Procedures 74

Browsing and Updating IMS Data with the SQL Procedure 76

Using the SQL Procedure 76
Retrieving and Updating Data with the SQL Procedure 77

Updating Data with the SQL Procedure 79

Inserting and Deleting Data with the SQL Procedure 80

Updating Data with the MODIFY Statement 81

Updating SAS Files with IMS Data 83
Appending IMS Data with the APPEND Procedure 87

Introduction to Browsing and Updating IMS Data

The SAS/ACCESS interface to IMS enables you to browse and update your IMS data
directly from a SAS session or program. This section shows you how to use SAS
procedures to review and update IMS data that is described by SAS/ACCESS view
descriptors. The examples in this section use the view descriptors VLIB.CUSTINFO
and VLIB.CHCKACCT. See Appendix 2, “Example Data,” on page 261 for definitions of
all the view descriptors referenced in this section. Appendix 2, “Example Data,” on page
261 also includes the IMS database and SAS data files and data sets.

To browse or update IMS data, you must use a Program Specification Block (PSB)
that contains a Program Communication Block (PCB) with the level of access desired.
You need to have this desired level of access to the database, to the segments in that
database, and to the fields in those segments. The types of access that a PCB enables
are included in the following:

G get

I insert

R replace

70 Browsing and Updating IMS Data with SAS/FSP Procedures � Chapter 5

D delete

A all

Refer to Chapter 2, “IMS Essentials,” on page 11 and “Program Specification Block”
on page 24 for more information about accessing IMS data.

READ, WRITE, ALTER, or PW passwords can be assigned to a view descriptor,
access descriptor, PROC SQL view, DATA step view, or SAS data file. See Chapter 6,
“ACCESS Procedure Reference,” on page 93 and “SAS Passwords for SAS/ACCESS
Descriptors” on page 95 for more information about assigning passwords.

Browsing and Updating IMS Data with SAS/FSP Procedures

Using the SAS/FSP Procedures
If your site has SAS/FSP software as well as SAS/ACCESS software, you can browse

and update IMS data that is described by a view descriptor from within a SAS/FSP
procedure.

You can use any of three SAS/FSP procedures: FSBROWSE, FSEDIT, and FSVIEW.
The FSBROWSE and FSEDIT procedures display one observation at a time, while the
FSVIEW procedure produces multiple observations in a tabular format, similar to the
PRINT procedure. PROC FSVIEW enables you both to browse and update IMS data,
depending on which option you choose. The FSBROWSE, FSEDIT, or FSVIEW
procedures can be used only with data that is accessed by a view descriptor, a PROC
SQL view, a DATA step view, or a SAS data file. You cannot reference an access
descriptor with any SAS procedure or in the SAS DATA step.

Note: The formats assigned by the ACCESS procedure are by default used as
informats by the SAS/FSP procedures when you add or update a path of data. �

Browsing Data Using the FSBROWSE Procedure
The FSBROWSE procedure enables you to look at IMS data but does not enable you

to change it. For example, the following SAS statements enable you to browse one
record of VLIB.CUSTINFO at a time:

proc fsbrowse data=vlib.custinfo;
run;

The following graphic shows the last observation of the data that is described by the
VLIB.CUSTINFO view descriptor. To browse each observation, issue the FORWARD
and BACKWARD commands. Because a view descriptor can describe only one path of
data in an IMS database, you can browse observations in only one path of data.

Browsing and Updating IMS Data � Updating Data Using the FSEDIT Procedure 71

Display 5.1 Browsing IMS Data in the FSBROWSE Window

For more information about the FSBROWSE procedure, see "The FSBROWSE
Procedure" in SAS/FSP Procedures Guide.

Note: Accessing observations by observation number is not supported for IMS view
descriptors within the FSBROWSE procedure, but a WHERE command can be used to
view a subset of the data. �

Updating Data Using the FSEDIT Procedure
The FSEDIT procedure enables you to update the IMS data that is described by a

view descriptor if the view descriptor specifies in your PSB a PCB that provides you
with the appropriate level of update access (insert, replace, delete, or all) for the
database segments. For example, if the area codes used in HOME_PHONE and
OFFICE_PHONE are incorrect for Richmond, you can correct them with the FSEDIT
procedure.

For example, the following statements enable you to edit one record of
VLIN.CUSTINFO at a time:

proc fsedit data=vlib.custinfo;
run;

An FSEDIT window appears that looks like the FSBROWSE window. Scroll to the
observation you want, or enter a WHERE statement to display the correct observation.
You can then add or further update the information about customer , as shown in the
following display.

72 Browsing Data Using the FSVIEW Procedure � Chapter 5

Display 5.2 Updating IMS Data in the FSEDIT Window

For more information about the FSEDIT procedure, see "The FSEDIT Procedure" in
SAS/FSP Procedures Guide.

Browsing Data Using the FSVIEW Procedure
The FSVIEW procedure enables you to browse or update IMS data that is described

by a view descriptor, depending on how you invoke the procedure.
For example, to browse IMS data in a tabular format, you could submit the following

PROC FSVIEW statements in the Program Editor:

proc fsview data=vlib.custinfo;
run;

Browse mode is the default for the FSVIEW procedure. The statements produce the
window shown in the following display.

Display 5.3 Browsing IMS Data in the FSVIEW Window

Updating Data Using the FSVIEW Procedure
To edit IMS data in a tabular format, you must add the EDIT or MODIFY option to

the PROC FSVIEW statement, as shown here:

proc fsview data=vlib.custinfo edit;
run;

Browsing and Updating IMS Data � Specifying a SAS WHERE Statement While Browsing or Updating Data 73

Note: The CANCEL command in the FSVIEW window does not cancel your
changes; it ends the browse or edit session. �

Specifying a SAS WHERE Statement While Browsing or Updating Data
If the IMS engine can generate SSAs from the WHERE statement, it then retrieves

a subset of the IMS data. If the engine cannot generate SSAs from the WHERE
statement, the WHERE statement is passed to SAS for processing. You can also use a
SAS WHERE command to retrieve a subset of IMS data after you have invoked one of
the SAS/FSP procedures using the PROC statements.

If you use a SAS WHERE statement, only the observations specified by that SAS
WHERE statement are available. The other observations are not available until you
exit the procedure. This is called a permanent WHERE clause.

If you use the SAS WHERE command, you can clear the command to make all the
observations available. This is called a temporary WHERE clause.

In the following example, the FSEDIT procedure uses a SAS WHERE statement to
retrieve a subset of customers from Richmond.

proc fsedit data=vlib.custinfo;
where city=’RICHMOND’;

run;

The following graphic shows the FSEDIT window after the statements have been
submitted.

Display 5.4 Submitting a SAS WHERE Statement While Invoking PROC FSEDIT

Only the two observations with a CITY value of RICHMOND are retrieved for editing;
you must scroll forward to see the second observation. The word (Subset) appears
after VLIB.CUSTINFO in the window title to remind you that the retrieved data is a
subset of the data that is described by the view descriptor. You can then edit each
observation by typing over any incorrect information. Issue the END command to end
your editing session. If you want to cancel changes to an observation, you can issue the
CANCEL command before you scroll to another observation. Once you scroll, the
changes are saved.

You can also enter a SAS WHERE command to display a subset of your data. A SAS
WHERE command is a SAS WHERE expression that you enter on the command line.
For example, to begin the FSEDIT procedure, you can submit the following statements
in the Program Editor:

74 Scrolling with SAS/FSP Procedures � Chapter 5

proc fsedit data=vlib.custinfo;
run;

The following graphic shows what the FSEDIT display looks like when the following
command-line command is entered within the FSEDIT window:

where city=’RICHMOND’

Display 5.5 Entering a SAS WHERE Command in an FSEDIT Window

Only the two observations with a CITY value of RICHMOND are retrieved for editing;
you must scroll forward to see the second observation. You can then edit each
observation, as described earlier.

Although these examples have shown how to use a SAS WHERE statement and
command with the FSEDIT procedure, you can use a SAS WHERE statement and
command in the same way with the FSBROWSE and FSVIEW procedures. For more
information about the SAS WHERE statement, refer to SAS Language Reference:
Dictionary. For more information about the SAS WHERE command within the
SAS/FSP procedures, refer to SAS/FSP Procedures Guide.

Scrolling with SAS/FSP Procedures
Scrolling through data using the FSEDIT, FSBROWSE, or FSVIEW procedures is

different when you are using view descriptors instead of SAS data files. While the
FORWARD command works identically in both cases, the BACKWARD command does
not.

Scrolling backward with SAS/FSP procedures can be slow when you are working with
a large database, particularly when you are looking at a path of data in a record near
the end of the database. To scroll backward through an IMS database, the IMS engine
must read forward in the database from the beginning until it reaches the observation
preceding the one that is displayed when the BACKWARD command was issued. For
example, suppose the view defines 5,000 observations, and the current observation is
3,400. To scroll backward to observation 3,399, the FSEDIT procedure must sequentially
read observations 1 through 3,398. This can be expensive and time consuming.

Inserting and Deleting Segments with SAS/FSP Procedures
Inserting and deleting database segments with SAS/FSP procedures is also different

when you are using view descriptors rather than SAS data files.

Browsing and Updating IMS Data � Inserting and Deleting Segments with SAS/FSP Procedures 75

You can use the FSEDIT and FSVIEW procedures to insert segments into one path of
an IMS database on which a view descriptor is based, assuming you are using a PCB
that enables you insert access to the database segments. There are two ways to add a
new segment to an IMS database using SAS/FSP procedures:

� To insert one path of data, type ADD on the command line and press ENTER. You
can then enter an entire path of data, which the IMS engine inserts in the
database using a path call.

� To insert a path of data under an existing parent segment, use a WHERE
statement or scroll to the parent segment under which you want to insert the path
of data. If there are no child segments under the parent segment, enter the path
of data and press ENTER. The IMS engine inserts the new segments under the
existing parent segment. If child segments do exist, display one of the paths of
data and type the new data over the old path of data, making sure that you
change the key field value in the segments to be inserted. The IMS engine then
inserts the new segment.

If the view descriptor you are using does not include all the variables defined in the
access descriptor for the segment to be inserted, low values (hexadecimal zeros) are
placed in those fields in the new segment occurrence inserted into the database. For
more information about inserting segments when the SAS observations contain missing
values, see “Handling Missing Values” on page 134 in Chapter 7, “Advanced User Topics
for the SAS/ACCESS Interface View Engine for IMS,” on page 129. Refer to SAS/FSP
Procedures Guide for more information about how to use the ADD and DUP commands
in the FSEDIT procedure and the AUTOADD and DUP commands in the FSVIEW
procedure.

When the DELETE command is used while the FSEDIT or FSVIEW procedure is
referencing a view descriptor, the lowest-level existing database segment referenced in
the view descriptor is removed permanently from the IMS database. Refer to SAS/FSP
Procedures Guide for more information about this command.

CAUTION:
If you delete segments using a view descriptor that references only the upper hierarchical
level segments in the database, any children of these segments will also be deleted,
even though those child segments are not included in the view descriptor. �

For example, consider a database consisting of a root segment, a child segment under
the root, and another child segment under that child. If you delete a segment in that
database using a view descriptor that references only the root and one child, the
DELETE command will delete the entire path of data below the root segment. There
are two ways you can delete an entire database record:

� Use the DELETE command with a view descriptor that references the root
segment only.

� Use the DELETE command multiple times with a view descriptor that references
an entire path of data in the database. Each time you use the DELETE command,
only the lowest existing segment in the path is deleted.

See “Delete Processing” on page 146 in Chapter 7, “Advanced User Topics for the
SAS/ACCESS Interface View Engine for IMS,” on page 129 for more information about
deleting segments.

The following example illustrates how to use the DELETE command in the FSEDIT
procedure. Suppose you want to edit the IMS data that is described by
VLIB.CUSTINFO to eliminate customers who have closed their bank accounts. If you
are using a PCB that provides you with delete authority, you can perform this function
by using the FSEDIT procedure from the ACCESS window or with a PROC FSEDIT
statement. Scroll forward to the observations to be deleted and enter DELETE on the
command line, as shown in the following display.

76 Browsing and Updating IMS Data with the SQL Procedure � Chapter 5

Display 5.6 Deleting an IMS Segment in an FSEDIT Window

The DELETE command deletes this root segment from the IMS database that is
described by VLIB.CUSTINFO and any child segments under it, and displays a
message to that effect, as shown in the following display.

Display 5.7 Using the DELETE Command in the FSEDIT Window

For more information about using SAS/FSP procedures, see SAS/FSP Procedures
Guide.

Browsing and Updating IMS Data with the SQL Procedure

Using the SQL Procedure
The SQL procedure enables you to retrieve and update data from IMS databases.

You can retrieve and browse IMS data by specifying a view descriptor in the SQL
procedure’s SELECT statement.

To update the data, you can specify view descriptors in the SQL procedure’s INSERT,
DELETE, and UPDATE statements. The specified view descriptor can access data from
only one IMS database path. You must use a PCB that provides you with the
appropriate level of access (insert, replace, delete, or all) for the segments that you
want to update before you can edit the IMS data.

Browsing and Updating IMS Data � Retrieving and Updating Data with the SQL Procedure 77

The following list summarizes these SQL procedure statements:

SELECT retrieves, manipulates, and displays data from IMS databases. A
SELECT statement is usually referred to as a query because it
queries the database for information.

DELETE deletes segments from an IMS database.

INSERT inserts segments in an IMS database.

UPDATE updates the data values in an IMS database.

If you want to use the SQL procedure to join or access more than one IMS database,
you must use a PSB in your view descriptors that includes a PCB for each database to
be accessed. Each view descriptor to be joined must use the same PSB. If you join two
view descriptors that reference different paths in the same database, each view
descriptor must reference in the PSB (that refers to the same database) a different PCB
by using the PCB Index field. That is, to access the same database using different view
descriptors in any SAS procedure, you must include multiple PCBs for that database.

When using PROC SQL, notice that the data is displayed in the SAS Output window
in the SAS windowing environment and written to the SASLIST ddname in batch
mode, interactive line mode, and noninteractive mode. This procedure displays output
data automatically without the PRINT procedure and executes without a RUN
statement when a SQL procedure statement is submitted.

Retrieving and Updating Data with the SQL Procedure
Note: The following PROC SQL examples assume the ACCTDBD database has not

been updated by the earlier SAS/FSP examples. �

You can use the SELECT statement to browse IMS data that is described by a view
descriptor. The query in the following example retrieves all the observations in the IMS
ACCTDBD database that are described by the VLIB.CUSTINFO view descriptor.

options linesize=132;

proc sql;
title2 ’IMS Data Retrieved by a PROC SQL query’;
select * /* An asterisk means select all variables */

from vlib.custinfo;

The OPTIONS statement is used to reset the default output width to 132 columns.
The following output displays the query’s output. Note that PROC SQL displays labels,
which are the IMS item names. In Version 7 and later, the item names are also the
SAS variable names, as shown here.

78 Retrieving and Updating Data with the SQL Procedure � Chapter 5

Output 5.1 Results of Retrieving IMS Data with a PROC SQL Query

The SAS System

IMS Data Retrieved by a PROC SQL query

SOC_SEC_

NUMBER CUSTOMER_NAME ADDR_LINE_1 ADDR_LINE_2

CITY STATE COUNTRY ZIP_CODE HOME_PHONE OFFICE_PHONE

--

667-73-8275 WALLS, HOOPER J. 4525 CLARENDON RD

RAPIDAN VA USA 22215-5600 803-657-3098 803-645-4418

434-62-1234 SUMMERS, MARY T. 4322 LEON ST.

GORDONSVILLE VA USA 26001-0670 803-657-1687

436-42-6394 BOOKER, APRIL M. 9712 WALLINGFORD PL.

GORDONSVILLE VA USA 26001-0670 803-657-1346

434-62-1224 SMITH, JAMES MARTIN 133 TOWNSEND ST.

GORDONSVILLE VA USA 26001-0670 803-657-3437

178-42-6534 PATTILLO, RODRIGUES 9712 COOK RD.

ORANGE VA USA 26042-1650 803-657-1346 803-657-1345

156-45-5672 O’CONNOR, JOSEPH 235 MAIN ST.

ORANGE VA USA 26042-1650 803-657-5656 803-623-4257

657-34-3245 BARNHARDT, PAMELA S. RT 2 BOX 324

CHARLOTTESVILLE VA USA 25804-0997 803-345-4346 803-355-2543

667-82-8275 COHEN, ABRAHAM 2345 DUKE ST.

CHARLOTTESVILLE VA USA 25804-0997 803-657-7435 803-645-4234

456-45-3462 LITTLE, NANCY M. 4543 ELGIN AVE.

RICHMOND VA USA 26502-3317 803-657-3566

234-74-4612 WIKOWSKI, JONATHAN S. 4356 CAMPUS DRIVE

RICHMOND VA USA 26502-5317 803-467-4587 803-654-7238

You can specify a WHERE clause as part of the SQL procedure’s SELECT statement to
retrieve a subset of the database data. The following example displays a list of
customers who have accounts with the Richmond branch of the bank:

title2 ’IMS Data Retrieved by a WHERE Statement’;
select *

from vlib.custinfo
where city=’RICHMOND’;

Notice that the PROC SQL statement is not repeated in this query. With the SQL
procedure, you do not need to repeat the PROC SQL statement unless you submit
another SAS procedure, a DATA step, or a QUIT statement between PROC SQL
statements. The following output displays the customers of the Richmond branch who
are described by VLIB.CUSTINFO.

Browsing and Updating IMS Data � Updating Data with the SQL Procedure 79

Output 5.2 Results of Retrieving IMS Data Using a WHERE Statement

The SAS System

IMS Data Retrieved Using a WHERE Statement

SOC_SEC_

NUMBER CUSTOMER_NAME ADDR_LINE_1 ADDR_LINE_2

CITY STATE COUNTRY ZIP_CODE HOME_PHONE OFFICE_PHONE

--

456-45-3462 LITTLE, NANCY M. 4543 ELGIN AVE.

RICHMOND VA USA 26502-3317 803-657-3566

234-74-4612 WIKOWSKI, JONATHAN S. 4356 CAMPUS DRIVE

RICHMOND VA USA 26502-5317 803-467-4587 803-654-7238

Updating Data with the SQL Procedure

You can use the UPDATE statement to update the data in an IMS database as was
done earlier in this section using the FSEDIT procedure. Remember that when you
reference a view descriptor in a SQL procedure statement, you are updating the IMS
data that is described by the view descriptor, not the view descriptor itself. Use the
WHERE clause to position the IMS engine on the database segment to be updated by
specifying values for the key fields of parent segments.

The following UPDATE statements update the values that are contained in the last
observation of VLIB.CUSTINFO:

update vlib.custinfo
set zip_code = ’27702-3317’
where soc_sec_number = ’234-74-4612’;

update vlib.custinfo
set addr_line_2 = ’151 Knox St.’
where soc_sec_number = ’234-74-4612’;

title2 ’Updated Data in IMS ACCTDBD Database’;
select *
from vlib.custinfo
where soc_sec_number = ’234-74-4612’;

The SELECT statement in this example retrieves and displays the updated data in
the following output. (Because you are referencing a view descriptor, you use the SAS
names for items in the UPDATE statement; the SQL procedure displays the variable
labels as stored in the view.)

Output 5.3 Results of Updating IMS Data with the UPDATE Statement

The SAS System

Updated Data in IMS ACCTDBD Database

SOC_SEC_

NUMBER CUSTOMER_NAME ADDR_LINE_1 ADDR_LINE_2

CITY STATE COUNTRY ZIP_CODE HOME_PHONE OFFICE_PHONE

--

234-74-4612 WIKOWSKI, JONATHAN S. 151 Knox St.

RICHMOND VA USA 27702-3317 803-467-4587 803-654-7238

80 Inserting and Deleting Data with the SQL Procedure � Chapter 5

Inserting and Deleting Data with the SQL Procedure

You can use the INSERT statement to add segments to an IMS database or use the
DELETE statement to remove segments from an IMS database, as you did earlier in
this section with the FSEDIT procedure. When inserting children under a parent
segment, you must indicate the key values of the parent segments in the SET=
statement. Use a view descriptor that describes the entire path of data down to the
lowest segment to be inserted. In the following example, the root segment that contains
the value 234-74-4612 for the SOC_SEC_NUMBER variable is deleted from the
ACCTDBD database. Note that any child segments that exist under the parent
segment in this example will also be deleted.

options linesize=132;

proc sql;
delete from vlib.custinfo

where soc_sec_number = ’234-74-4612’;

title2 ’Observation Deleted from IMS
ACCTDBD Database’;

select *
from vlib.custinfo;

The SELECT statement then displays the data for VLIB.CUSTINFO in the
following output.

Output 5.4 Results of Deleting IMS Data with the DELETE Statement

The SAS System

Observation Deleted from IMS ACCTDBD Database

SOC_SEC_

NUMBER CUSTOMER_NAME ADDR_LINE_1 ADDR_LINE_2

CITY STATE COUNTRY ZIP_CODE HOME_PHONE OFFICE_PHONE

--

667-73-8275 WALLS, HOOPER J. 4525 CLARENDON RD

RAPIDAN VA USA 22215-5600 803-657-3098 803-645-4418

434-62-1234 SUMMERS, MARY T. 4322 LEON ST.

GORDONSVILLE VA USA 26001-0670 803-657-1687

436-42-6394 BOOKER, APRIL M. 9712 WALLINGFORD PL.

GORDONSVILLE VA USA 26001-0670 803-657-1346

434-62-1224 SMITH, JAMES MARTIN 133 TOWNSEND ST.

GORDONSVILLE VA USA 26001-0670 803-657-3437

178-42-6534 PATTILLO, RODRIGUES 9712 COOK RD.

ORANGE VA USA 26042-1650 803-657-1346 803-657-1345

156-45-5672 O’CONNOR, JOSEPH 235 MAIN ST.

ORANGE VA USA 26042-1650 803-657-5656 803-623-4257

657-34-3245 BARNHARDT, PAMELA S. RT 2 BOX 324

CHARLOTTESVILLE VA USA 25804-0997 803-345-4346 803-355-2543

667-82-8275 COHEN, ABRAHAM 2345 DUKE ST.

CHARLOTTESVILLE VA USA 25804-0997 803-657-7435 803-645-4234

456-45-3462 LITTLE, NANCY M. 4543 ELGIN AVE.

RICHMOND VA USA 26502-3317 803-657-3566

Browsing and Updating IMS Data � Updating Data with the MODIFY Statement 81

CAUTION:
Use a WHERE clause in a DELETE statement in the SQL procedure. If you omit the
WHERE clause from the DELETE statement in the SQL procedure, you delete the
lowest level segment for each database path that is defined by the view descriptor in
the IMS database. If the view descriptor describes only the root segment, the entire
database will be deleted. �

For more information about the SQL procedure, see the SAS SQL Procedure User’s
Guide.

Updating Data with the MODIFY Statement
The MODIFY statement extends the capabilities of the DATA step by enabling you

to modify IMS data that is accessed by a view descriptor or a SAS data file without
creating an additional copy of the file. To use the MODIFY statement with a view
descriptor, you must have update privileges defined in the PCB associated with the
view, even if your program doesn’t intend to modify the data.

You can specify either a view descriptor or a SAS data file as the data set to be
opened for update by using the MODIFY statement. In the following example, the data
set to be opened for update is the view descriptor VLIB.CUSTINFO, which describes
data in the IMS sample database ACCTDBD. See Appendix 2, “Example Data,” on page
261 for the code used to generate this view descriptor and the access descriptor
MYLIB.ACCOUNT. The updates made to VLIB.CUSTINFO will be used to change the
data in the ACCTDBD database. In order to update VLIB.CUSTINFO, you create a
SAS data set, MYDATA.PHONENUM, to supply transaction information.

The MODIFY statement updates the ACCTDBD database with data from the
MYDATA.PHONENUM data set in the following example:

data vlib.custinfo
work.phoneupd (keep=soc_sec_number home_phone

office_phone)
work.nossnumb (keep=soc_sec_number home_phone

office_phone);
modify vlib.custinfo mydata.phonenum;
by soc_sec_number;
select (_iorc_);

when (%sysrc(_sok))
/* soc_sec_number found in ACCTDBD */

do;
replace vlib.custinfo;
output phoneupd;

end;
when (%sysrc(_dsenmr))

/* soc_sec_number not found in ACCTDBD */
do;
error=0;
output nossnumb;

/* stores misses in NOSSNUMB */
end;

otherwise
/* traps unexpected outcomes */

do;
put ’Unexpected error condition:

iorc = ’ _iorc_;

82 Updating Data with the MODIFY Statement � Chapter 5

put ’for SOC_SEC_NUMBER=’ soc_sec_number
’. DATA step continuing.’;

error=0;
end;

end;
run;

For each iteration of the DATA step, SAS attempts to read one observation (or
record) of the ACCTDBD database as defined by VLIB.CUSTINFO, based on
SOC_SEC_NUMBER values supplied by MYDATA.PHONENUM. If a match on
SOC_SEC_NUMBER values is found, the current segment data in ACCTDBD is
replaced with the updated information in MYDATA.PHONENUM, then
SOC_SEC_NUMBER, HOME_PHONE and OFFICE_PHONE are stored in the
PHONEUPD data file. If the SOC_SEC_NUMBER value supplied by
MYDATA.PHONENUM has no match in VLIB.CUSTINFO, the transaction information
is written to the data file NOSSNUMB.

To further understand this type of processing, be aware that for each iteration of the
DATA step (that is, each execution of the MODIFY statement), MYDATA.PHONENUM
is processed sequentially. For each iteration, the current value of SOC_SEC_NUMBER
is used to attach a WHERE clause to a request for an observation from
VLIB.CUSTINFO as defined by the view. The engine then tries to generate a retrieval
request with a qualified SSA from the WHERE clause. If the engine generates a
qualified SSA, a GET UNIQUE call is issued, and data that is defined by the view is
accessed directly. If the engine cannot generate a qualified SSA from the WHERE
clause, a sequential pass of the database is required for each transaction observation in
MYDATA.PHONENUM.

To print the PHONEUPD data file to see the SOC_SEC_NUMBER items that were
updated, submit the following statements.

/* Print data set named phoneupd */
proc print data=work.phoneupd nodate;

title2 ’SSNs updated.’;
run;

The results are shown in the following output:

Output 5.5 Contents of the PHONEUPD Data File

The SAS System
SSNs updated.

SOC_SEC_
OBS NUMBER HOME_PHONE OFFICE_PHONE

1 667-73-8275 703-657-3098 703-645-4418
2 434-62-1234 703-645-441
3 178-42-6534 703-657-1346 703-657-1345
4 156-45-5672 703-657-5656 703-623-4257
5 657-34-3245 703-345-4346 703-355-5438
6 456-45-3462 703-657-3566 703-645-1212

Browsing and Updating IMS Data � Updating SAS Files with IMS Data 83

To print the NOSSNUMB data set to see the SOC_SEC_NUMBER items that were not
updated submit the following statements.

/* Print data set named nossnumb */
proc print data=work.nossnumb nodate;

title2 ’SSNs not updated.’;
run;

The results produced are shown in the following output:

Output 5.6 Contents of the NOSSUNUMB Data File

The SAS System
SSNs not updated.

SOC_SEC_
OBS NUMBER HOME_PHONE OFFICE_PHONE

1 416-41-3162 703-657-3166 703-615-1212

Updating SAS Files with IMS Data
You can update a SAS data file or data set with IMS data that is described by a view

descriptor just as you can update a SAS data file with data from another SAS data file.
Suppose you have a SAS data set, MYDATA.BIRTHDAY, that contains employee ID

numbers, last names, and birthdays. (See Appendix 2, “Example Data,” on page 261 for
a description of MYDATA.BIRTHDAY.) You want to update this data set with data that
is described by VLIB.EMPBDAY, a view descriptor that is based on the IMS EMPLINF2
database. To perform this update, enter the following SAS statements:

libname vlib ’sas-data-library’;
libname mydata ’sas-data-library’;
options nodate;

/*---*/
/* Update the BIRTHDAY SAS data set */
/* with data from IMS */
/* EMPLINF2 database */
/*---*/
options linesize=80;
proc sort data=mydata.birthday;
by employee_id;

run;

84 Updating SAS Files with IMS Data � Chapter 5

proc print data=mydata.birthday;
title2 ’Sorted SAS Data Set MYDATA.BIRTHDAY’;

run;

proc print data=vlib.empbday;
title2 ’Data Described by VLIB.EMPBDAY’;

run;

data mydata.newbday;
update mydata.birthday vlib.empbday;
by employee_id;

run;

proc print data=mydata.newbday;
title2 ’SAS Data Set MYDATA.NEWBDAY’;

run;

The EMPLINF2 database is a HIDAM database whose root segment is sequenced by
the key field EMPID, so when the UPDATE statement references the view descriptor
VLIB.EMPBDAY, the data is presented to SAS for updating in sorted order by
EMPLOYEE_ID. However, the SAS data set MYDATA.BIRTHDAY must be sorted
before the update because the UPDATE statement expects both the original file and the
transaction file to be sorted by the same BY variable.

The following three outputs show the results of the print procedures.

Output 5.7 Data Set to be Updated, MYDATA.BIRTHDAY, in EMPID Order

The SAS System
Sorted SAS Data Set MYDATA.BIRTHDAY

employee_
OBS id last_name birthday

1 1005 Knapp 06OCT38
2 1024 Mueller 17JUN53
3 1078 Gibson 23APR36
4 1247 Garcia 04APR54

Browsing and Updating IMS Data � Updating SAS Files with IMS Data 85

Output 5.8 IMS Data That is Described by the View Descriptor VLIB.EMPBDAY

The SAS System
Data Described by VLIB.EMPBDAY

EMPLOYEE_ PHONE_
OBS ID LAST_NAME FIRST_NAME BIRTHDAY EXTENSION

1 1001 Waterhouse Clifton P. 01JAN48 X5109
2 1002 Bowman Hugh E. 14JUL31 X5901
3 1003 Salazar Yolanda 12DEC40 X5169
4 1004 Knight Althea 09APR50 X5218
5 1005 Knapp Patrice R. 04OCT37 X5012
6 1006 Garrett Olan M. 23JAN35 X5208
7 1007 Brown Virgina P. 24MAY46 X5258
8 1008 Hernandez Jesse L. 26MAR33 X5448
9 1009 Jones Michael Y. 21MAY31 X5713

10 1010 Smith Janet F. 07AUG47 X5621
11 1011 Van Hotten Gwendolyn 13SEP42 X5311
12 1012 Quintero Pedro 21FEB48 X5348
13 1015 Scholl Madison A. 19MAR45 X5419
14 1017 Waggonner Merrilee D. 27APR36 X5914
15 1020 Rudd Fred .
16 1024 Mueller Patsy 17JUN52 X5822
17 1031 Chan Tai 04JUL46 X5331
18 1049 Fernandez Sophia 11SEP44 X5847
19 1050 Ameer David 10OCT51 X5495
20 1062 Littlejohn Fannie 17MAY54 X5653
21 1067 Cahill Jacob 25DEC40 X5042
22 1071 Canady Frank A. 19NOV41 X5406
23 1074 Millsap Joel B. 12JUN36 X5224
24 1077 Gibson Teddy B. 23APR46 X5703
25 1078 Gibson George J. 23APR46 X5703
26 1083 Savage William D. 20JAN53 X5505
27 1086 Schmidt Penny 19FEB27 X5822
28 1092 Polanski Ivan L. 11OCT47 X5621
29 1101 Nathaniel Darryl 21MAR44 X5544
30 1105 Faulkner Carrie Ann 17AUG51 X5417
31 1112 Jones Rita M. 24DEC48 X5271
32 1119 Goodson Alan F. 21JUN50 X5512
33 1120 Reid David G. 15AUG45 X5369
34 1123 Freeman Leopold 09FEB35 X5604
35 1133 Williamson Janice L. 19MAY52 X5802
36 1139 Seaton Gary 03OCT56 X5545
37 1145 Juarez Armando 28MAY47 X5987
38 1156 Reed Kenneth D. 05JAN55 X5307
39 1161 Richardson Travis Z. 30NOV37 X5325
40 1213 Johnson Bradford 15APR54 X5446
41 1217 Rodriguez Romualdo R. 09FEB29 X5874
42 1219 Kaatz Freddie 21JUN57 X5387
43 1234 Shropshire Leland G. 04SEP49 X5616
44 1238 Throckmort Stewart Q. 04AUG31 X5391
45 1247 Garcia Francisco 05MAY55 X5348
46 1261 Collins Lillian 01MAY51 X5616
47 1265 Slye Leonard R. 18DEC60 X5123
48 1266 Redfox Richard B. 04APR44 X5386
49 1272 Smith Garland P. 05APR54 X5415
50 1313 Smith Jerry Lee 13SEP42 X5169
51 1327 Brooks Ruben R. 25FEB52 X5347
52 1900 Smith John .

86 Updating SAS Files with IMS Data � Chapter 5

Output 5.9 Data in the New Data Set MYDATA.NEWBDAY

The SAS System
SAS Data Set MYDATA.NEWBDAY

employee_ PHONE_
OBS id last_name birthday FIRST_NAME EXTENSION

1 1001 Waterhouse 01JAN48 Clifton P. X5109
2 1002 Bowman 14JUL31 Hugh E. X5901
3 1003 Salazar 12DEC40 Yolanda X5169
4 1004 Knight 09APR50 Althea X5218
5 1005 Knapp 04OCT37 Patrice R. X5012
6 1006 Garrett 23JAN35 Olan M. X5208
7 1007 Brown 24MAY46 Virgina P. X5258
8 1008 Hernandez 26MAR33 Jesse L. X5448
9 1009 Jones 21MAY31 Michael Y. X5713

10 1010 Smith 07AUG47 Janet F. X5621
11 1011 Van Hotten 13SEP42 Gwendolyn X5311
12 1012 Quintero 21FEB48 Pedro X5348
13 1015 Scholl 19MAR45 Madison A. X5419
14 1017 Waggonner 27APR36 Merrilee D. X5914
15 1020 Rudd . Fred
16 1024 Mueller 17JUN52 Patsy X5822
17 1031 Chan 04JUL46 Tai X5331
18 1049 Fernandez 11SEP44 Sophia X5847
19 1050 Ameer 10OCT51 David X5495
20 1062 Littlejohn 17MAY54 Fannie X5653
21 1067 Cahill 25DEC40 Jacob X5042
22 1071 Canady 19NOV41 Frank A. X5406
23 1074 Millsap 12JUN36 Joel B. X5224
24 1077 Gibson 23APR46 Teddy B. X5703
25 1078 Gibson 23APR46 George J. X5703
26 1083 Savage 20JAN53 William D. X5505
27 1086 Schmidt 19FEB27 Penny X5822
28 1092 Polanski 11OCT47 Ivan L. X5621
29 1101 Nathaniel 21MAR44 Darryl X5544
30 1105 Faulkner 17AUG51 Carrie Ann X5417
31 1112 Jones 24DEC48 Rita M. X5271
32 1119 Goodson 21JUN50 Alan F. X5512
33 1120 Reid 15AUG45 David G. X5369
34 1123 Freeman 09FEB35 Leopold X5604

35 1133 Williamson 19MAY52 Janice L. X5802
36 1139 Seaton 03OCT56 Gary X5545
37 1145 Juarez 28MAY47 Armando X5987
38 1156 Reed 05JAN55 Kenneth D. X5307
39 1161 Richardson 30NOV37 Travis Z. X5325
40 1213 Johnson 15APR54 Bradford X5446
41 1217 Rodriguez 09FEB29 Romualdo R. X5874
42 1219 Kaatz 21JUN57 Freddie X5387
43 1234 Shropshire 04SEP49 Leland G. X5616
44 1238 Throckmort 04AUG31 Stewart Q. X5391
45 1247 Garcia 05MAY55 Francisco X5348
46 1261 Collins 01MAY51 Lillian X5616
47 1265 Slye 18DEC60 Leonard R. X5123
48 1266 Redfox 04APR44 Richard B. X5386
49 1272 Smith 05APR54 Garland P. X5415
50 1313 Smith 13SEP42 Jerry Lee X5169
51 1327 Brooks 25FEB52 Ruben R. X5347
52 1900 Smith . John

Browsing and Updating IMS Data � Appending IMS Data with the APPEND Procedure 87

Appending IMS Data with the APPEND Procedure
You can append data that is described by SAS/ACCESS view descriptors and PROC

SQL views to SAS data files and vice versa. You can also append data from one view
descriptor to the data from another.

In the following example, two branch managers have kept separate records on
customers’ checking accounts. One manager has kept records in the CUSTOMER and
CHCKACCT segments of the IMS database ACCTDBD, described by the view
descriptor VLIB.CHCKACCT. The other manager has kept records in a Version 7 SAS
data set, MYDATA.CHECKS. Due to a corporate reorganization, the two sources of data
must be combined so that all customer data is stored in the IMS database ACCTDBD.
A branch manager can use the APPEND procedure to perform this task, as the
following example demonstrates.

options linesize=120;

proc print data=vlib.chckacct;
title2 ’Data Described by VLIB.CHCKACCT’;

run;

proc print data=mydata.checks;
title2 ’Data in MYDATA.CHECKS Data Set’;

run;

The data that is described by the VLIB.CHCKACCT view descriptor and the data in the
SAS data set MYDATA.CHECKS are displayed in the following two outputs.

Output 5.10 Data That Is Described by the VLIB.CHCKACCT View Descriptor

The SAS System

Data Described by VLIB.CHCKACCT

SOC_SEC_ CHECK_ACCOUNT_ CHECK_ CHECK_

OBS NUMBER CUSTOMER_NAME NUMBER DATE BALANCE

1 667-73-8275 WALLS, HOOPER J. 345620145345 15MAR95 1266.34

2 667-73-8275 WALLS, HOOPER J. 345620154633 28MAR95 1298.04

3 434-62-1234 SUMMERS, MARY T. 345620104732 27MAR95 825.45

4 436-42-6394 BOOKER, APRIL M. 345620135872 26MAR95 234.89

5 434-62-1224 SMITH, JAMES MARTIN 345620134564 16MAR95 2645.34

6 434-62-1224 SMITH, JAMES MARTIN 345620134663 24MAR95 143.78

7 178-42-6534 PATTILLO, RODRIGUES 745920057114 10JUN95 1502.78

8 156-45-5672 O’CONNOR, JOSEPH 345620123456 27MAR95 463.23

9 657-34-3245 BARNHARDT, PAMELA S. 345620131455 29MAR95 1243.25

10 667-82-8275 COHEN, ABRAHAM 382957492811 03APR95 7302.06

11 456-45-3462 LITTLE, NANCY M. 345620134522 25MAR95 831.65

88 Appending IMS Data with the APPEND Procedure � Chapter 5

Output 5.11 Data in the MYDATA.CHECKS Data Set

The SAS System
Data in MYDATA.CHECKS Data Set

check_
soc_sec_ account_ check_ check_

OBS customer_name number number balance date

1 COWPER, KEITH 241-98-4542 183352795865 862.31 25MAR95
2 OLSZEWSKI, STUART 309-22-4573 382654397566 486.00 02APR95
3 NAPOLITANO, BARBARA 250-36-8831 284522378774 104.20 10APR95
4 MCCALL, ROBERT 367-34-1543 644721295973 571.92 05APR95

Note: To use PROC APPEND, you must use a view descriptor that describes the
entire path of data from the root segment down to the level where you want to append
data. If a parent segment already exists with a key value equal to that specified in the
input data set, the IMS engine inserts the remaining path of data under the parent
segment. �

You can combine the data from these two sources using the APPEND procedure, as
shown in the following example:

proc append base=vlib.chckacct data=mydata.checks;
run;

proc print data=vlib.chckacct;
title2 ’Appended Data’;

run;

proc sql;
delete from vlib.account
where soc_sec_number in(’241--98--4542’

’250--36--8831’
’309--22--4573’
’367--34--1543’)

run;

The database type determines where the segments are inserted. In this case, the
database type is not an indexed database type, so the data in MYDATA.CHECKS is
intermixed with the data that is described by VLIB.CHCKACCT. The following output
displays the updated data that is described by the view descriptor, VLIB.CHCKACCT.

Browsing and Updating IMS Data � Appending IMS Data with the APPEND Procedure 89

Output 5.12 Results of Appending Data with the APPEND Procedure

The SAS System

Appended Data

SOC_SEC_ CHECK_ACCOUNT_ CHECK_ CHECK_

OBS NUMBER CUSTOMER_NAME NUMBER DATE BALANCE

1 667-73-8275 WALLS, HOOPER J. 345620145345 15MAR95 1266.34

2 667-73-8275 WALLS, HOOPER J. 345620154633 28MAR95 1298.04

3 434-62-1234 SUMMERS, MARY T. 345620104732 27MAR95 825.45

4 250-36-8831 NAPOLITANO, BARBARA 284522378774 10APR95 104.20

5 241-98-4542 COWPER, KEITH 183352795865 25MAR95 862.31

6 436-42-6394 BOOKER, APRIL M. 345620135872 26MAR95 234.89

7 434-62-1224 SMITH, JAMES MARTIN 345620134564 16MAR95 2645.34

8 434-62-1224 SMITH, JAMES MARTIN 345620134663 24MAR95 143.78

9 178-42-6534 PATTILLO, RODRIGUES 745920057114 10JUN95 1502.78

10 367-34-1543 MCCALL, ROBERT 644721295973 05APR95 571.92

11 156-45-5672 O’CONNOR, JOSEPH 345620123456 27MAR95 463.23

12 657-34-3245 BARNHARDT, PAMELA S. 345620131455 29MAR95 1243.25

13 667-82-8275 COHEN, ABRAHAM 382957492811 03APR95 7302.06

14 456-45-3462 LITTLE, NANCY M. 345620134522 25MAR95 831.65

15 309-22-4573 OLSZEWSKI, STUART 382654397566 02APR95 486.00

Note: The APPEND procedure issues a warning message when a variable in the
view descriptor does not have a corresponding variable in the input data set. �

The PROC SQL code deletes the appended data so that the next PROC APPEND
example will work without reinitializing the database.

You can use the APPEND procedure’s FORCE option to force PROC APPEND to
concatenate two data sets that have different variables or variable attributes.

The APPEND procedure also accepts a SAS WHERE statement to retrieve a subset
of the data. In the following example, a subset of the observations from the DATA=
data set is added to the BASE= data set.

proc append base=vlib.chckacct data=mydata.checks
(where=(check_date >=’26MAR95’d));

run;

proc print data=vlib.chckacct;
title2 ’Appended Data with a WHERE Data Set

Option’;
run;

Note that the WHERE= data set option applies only to the MYDATA.CHECKS data
set. The following output displays the results.

90 Appending IMS Data with the APPEND Procedure � Chapter 5

Output 5.13 Results of Appending Data with a WHERE= Data Set Option

The SAS System

Appended Data with a WHERE= Data Set Option

SOC_SEC_ CHECK_ACCOUNT_ CHECK_ CHECK_

OBS NUMBER CUSTOMER_NAME NUMBER DATE BALANCE

1 667-73-8275 WALLS, HOOPER J. 345620145345 15MAR95 1266.34

2 667-73-8275 WALLS, HOOPER J. 345620154633 28MAR95 1298.04

3 434-62-1234 SUMMERS, MARY T. 345620104732 27MAR95 825.45

4 250-36-8831 NAPOLITANO, BARBARA 284522378774 10APR95 104.20

5 436-42-6394 BOOKER, APRIL M. 345620135872 26MAR95 234.89

6 434-62-1224 SMITH, JAMES MARTIN 345620134564 16MAR95 2645.34

7 434-62-1224 SMITH, JAMES MARTIN 345620134663 24MAR95 143.78

8 178-42-6534 PATTILLO, RODRIGUES 745920057114 10JUN95 1502.78

9 367-34-1543 MCCALL, ROBERT 644721295973 05APR95 571.92

10 156-45-5672 O’CONNOR, JOSEPH 345620123456 27MAR95 463.23

11 657-34-3245 BARNHARDT, PAMELA S. 345620131455 29MAR95 1243.25

12 667-82-8275 COHEN, ABRAHAM 382957492811 03APR95 7302.06

13 456-45-3462 LITTLE, NANCY M. 345620134522 25MAR95 831.65

14 309-22-4573 OLSZEWSKI, STUART 382654397566 02APR95 486.00

Note that the IMS engine has no way to determine how large a database is. Therefore,
if you use the APPEND procedure to add a database to itself, a loop can result. For
more information about the APPEND procedure, see “APPEND Procedure" in the
Base SAS Procedures Guide.

91

P A R T3

SAS/ACCESS Interface to the IMS Engine:
Reference

Chapter 6.ACCESS Procedure Reference 93

Chapter 7.Advanced User Topics for the SAS/ACCESS Interface View
Engine for IMS 129

92

93

C H A P T E R

6
ACCESS Procedure Reference

Introduction to ACCESS Procedure Reference 93
ACCESS Procedure Syntax for IMS 94

Description 94

PROC ACCESS Statement Options 95

SAS Passwords for SAS/ACCESS Descriptors 95

Invoking the ACCESS Procedure 98
Database-Description Statements 99

Editing Statements 100

ACCESS Procedure Statements for IMS 100

Tools for Creating IMS Access Descriptors 121

Defining Access Descriptors 121

COB2SAS Tool 121
SAS Macro and DATA Step Code 122

Performance and Efficient View Descriptors 122

General Information 122

Extracting Data Using a View 123

Deciding How to Subset Your Data 123
View Descriptor WHERE Expression 123

Application WHERE Expression 124

DATA Step IF Statement 124

Combination of Methods 124

Writing Efficient WHERE Statements 125
Identifying Inefficient SAS WHERE Conditions 126

Identifying SAS WHERE Conditions That Are Not Acceptable to IMS 126

Introduction to ACCESS Procedure Reference

The ACCESS procedure enables you to create and edit the descriptor files that are
used by the SAS/ACCESS interface view engine to IMS (referred to as the IMS engine).
The ACCESS procedure can be used in batch, interactive line, and noninteractive modes.

This section provides complete reference information for the ACCESS procedure. The
PROC ACCESS statement is presented first, followed by the statement options and
procedure statements. For examples of how to use the statement options, refer to
“Invoking the ACCESS Procedure” on page 98. “Performance and Efficient View
Descriptors” on page 122 presents several efficiency considerations for using the
SAS/ACCESS interface to IMS.

Refer to the SAS Language Reference: Dictionary and the SAS Companion for z/OS
for information about SAS data sets, data libraries, and their naming conventions, or
for help with the terminology used in this procedure description.

94 ACCESS Procedure Syntax for IMS � Chapter 6

ACCESS Procedure Syntax for IMS

PROC ACCESS <options>;

Creating or Updating Statement
CREATE libref.member-name.ACCESS|VIEW;
UPDATE libref.member-name.ACCESS|VIEW;

Database-Definition Statements
DATABASE=database-name DBTYPE=database-type;
RECORD=record-name SEGMENT=segment-name

SEGLNG=segment-length;
GROUP=group-name LEVEL=level-number

KEY=Y|N|U OCCURS=number-of-repeats
SEARCH=search-name;

ITEM=item-name LEVEL=level-number
DBFORMAT=database-format
FORMAT=SAS-format SEARCH=search-name
KEY=Y|N|U OCCURS=number-of-repeats
DBCONTENT=database-content;

DELETE item-name|index-number;
INSERTitem-name|index-number;
REPLACE item-name|index-number;

Editing Statements
AN=Y|N;
UN=Y|N;
DROP item-name|index-number... ;
FORMAT item-name|index-number <=> format... ;
LIST ALL|VIEW|index-number|item-name <blanks|DB|DESC>;
QUIT;
RENAME item-name|index-number <=> SAS-name... ;
RESET ALL|item-name|index-number ... ;
SELECT ALL|item-name|index-number... ;
SUBSET selection-criteria;

RUN;

Description
The ACCESS procedure is used to create and edit access descriptors and view

descriptors, and to create SAS data files. Descriptor files describe DBMS data so that
you can read, update, or extract the DBMS data directly from within a SAS session or
in a SAS program.

ACCESS Procedure Reference � SAS Passwords for SAS/ACCESS Descriptors 95

The following sections provide more information about the syntax of the PROC
ACCESS statement.

PROC ACCESS Statement Options
To create and edit access and view descriptor files, you must issue the PROC

ACCESS statement with options and procedure statements. The statement has this
format:

PROC ACCESS <options>;
required-procedure-statements;
optional-procedure-statements;

This section describes PROC ACCESS options. For information about the procedure
statements, see “Invoking the ACCESS Procedure” on page 98.

Depending on which options you choose, the ACCESS procedure performs several
tasks. To create and edit access and view descriptors, use the following options:

DBMS=IMS
specifies the name of the database management system that the access descriptor
will access. Specify DBMS=IMS since you are using the SAS/ACCESS interface to
IMS.

ACCDESC=libref.access-descriptor
specifies the name of an access descriptor.

ACCDESC= is used with the DBMS= option to create a view descriptor that is
based on the specified access descriptor. You specify the view descriptor’s name in
the CREATE statement. You can also use a data set option on the ACCDESC=
option to specify any passwords that have been assigned to the access descriptor.
The access descriptor that you name must exist.

The ACCDESC= option has two aliases: AD= and ACCESS=.

The following options enable you to extract IMS data with a view descriptor:

VIEWDESC=<libref.>view-descriptor
specifies the name of the view descriptor from which to extract the IMS data.

OUT=<libref.>member-name
specifies the SAS data file to which DBMS data is written. OUT= is used only
with the VIEWDESC= option.

SAS Passwords for SAS/ACCESS Descriptors
SAS enables you to control access to SAS data sets and access descriptors by

associating one or more SAS passwords with them. You must first create the descriptor
files before assigning SAS passwords to them.

The following table summarizes the levels of protection that SAS passwords have and
their effects on access descriptors and view descriptors.

96 SAS Passwords for SAS/ACCESS Descriptors � Chapter 6

Table 6.1 Password and Descriptor Interaction

READ= WRITE= ALTER=

access descriptor no effect on descriptor no effect on descriptor protects descriptor from
being read or edited

view descriptor protects DBMS data from being
read or edited

protects DBMS data
from being edited

protects descriptor from
being read or edited

When you create view descriptors, you can use a data set option after the
ACCDESC= option to specify the access descriptor’s password (if one exists). In this
case, you are not assigning a password to the view descriptor that is being created.
Rather, using the password grants you permission to use the access descriptor to create
the view descriptor. For example:

proc access dbms=ims accdesc=mylib.account(alter=rouge);
create vlib.customer.view;
select all;

run;

By specifying the ALTER-level password, you can read the MYLIB.ACCOUNT access
descriptor and therefore create the VLIB.CUSTOMER view descriptor.

For detailed information about the levels of protection and the types of passwords
you can use, refer to SAS Language Reference: Dictionary. The following section
describes how you assign SAS passwords to descriptors.

You can assign, change, or clear a password for an access descriptor, a view
descriptor, or another SAS file by using the DATASETS procedure’s MODIFY
statement. Here is the basic syntax for using PROC DATASETS to assign a password
to an access descriptor, a view descriptor, or a SAS data file:

PROC DATASETS LIBRARY= libref MEMTYPE= member-type ;
MODIFY member-name (password-level = password-modification);

RUN;

The password-level argument can have one or more of the following values: READ=,
WRITE=, ALTER=, or PW=. PW= assigns read, write, and alter privileges to a
descriptor or data file. The password-modification argument enables you to assign a
new password or to change or delete an existing password.

For example, this PROC DATASETS statement assigns the password REWARD with
the ALTER level of protection to the access descriptor MYLIB.EMPLOYEE:

proc datasets library=mylib memtype=access;
modify employee (alter=reward);

run;

In this case, users are prompted for the password whenever they try to browse or
edit the access descriptor or to create view descriptors that are based on
MYLIB.EMPLOYEE.

You can assign multiple levels of protection to a descriptor or SAS data file. See
“Ensuring IMS Data Security” on page 131 for more information about how to prevent
unauthorized access to the data in your IMS databases.

In the next example, the PROC DATASETS statement assigns the passwords MYPW
and MYDEPT with READ and ALTER levels of protection to the view descriptor
VLIB.CUSTACCT:

proc datasets library=vlib memtype=view;
modify custacct (read=mypw alter=mydept);

run;

ACCESS Procedure Reference � SAS Passwords for SAS/ACCESS Descriptors 97

In this case, users are prompted for the SAS password when they try to read the
DBMS data, or try to browse or edit the view descriptor VLIB.CUSTACCT itself. You
need both levels to protect the data and descriptor from being read. However, a user
could still update the data that is accessed by VLIB.CUSTACCT, for example, by using
a PROC SQL UPDATE. Assign a WRITE level of protection to prevent data updates.

To delete a password on an access descriptor or any SAS data set, put a slash after
the password:

proc datasets library=vlib memtype=view;
modify custacct (read=mypw/ alter=mydept/);

run;

In the following example, PROC DATASETS sets a READ and ALTER password for
view descriptor VLIB.CUSTINFO. PROC PRINT tries to use the view descriptor with
both an invalid and valid password. PROC ACCESS tries to update the view descriptor
with and without a password.

/* Assign passwords */
proc datasets library=vlib memtype=view;
modify custinfo (read=r2d2 alter=c3po);

run;

/* Invalid password given */
proc print data=vlib.custinfo (pw=r2dq);
where soc_sec_number = ’178-42-6534’;
title2 ’Data for 178-42-6534’;

run;

/* Valid password given */
proc print data=vlib.custinfo (pw=r2d2);
where soc_sec_number = ’178-42-6534’;
title2 ’Data for 178-42-6534’;

run;

/* Missing password */
proc access dbms=ims;

update vlib.custinfo.view;
drop country;
list all;

run;

/* Valid password given */
proc access dbms=ims;

update vlib.custinfo.view (alter=c3po);
drop country;
list all;

run;

Refer to SAS Language Reference: Dictionary for more examples of assigning,
changing, deleting, and using SAS passwords.

98 Invoking the ACCESS Procedure � Chapter 6

Invoking the ACCESS Procedure
To invoke the ACCESS procedure you use the options described in “PROC ACCESS

Statement Options” on page 95 and certain procedure statements. The options and
statements you choose are defined by your task.

� To create an access descriptor:

PROC ACCESS DBMS=IMS;
CREATE libref.member-name.ACCESS;

required database-description statements;
optional editing statements;

RUN;

� To create an access descriptor and a view descriptor in the same procedure:

PROC ACCESS DBMS=IMS;
CREATE libref.member-name.ACCESS;

required database-description statements;
optional editing statements;

CREATE libref.member-name.VIEW;
SELECT item-list;
optional editing statements;

RUN;

� To create a view descriptor from an existing access descriptor:

PROC ACCESS DBMS=IMS ACCDESC=libref.access-descriptor;
CREATE libref.member-name.VIEW;

SELECT item-list;
optional editing statements;

RUN;

� To update an access descriptor:

PROC ACCESS DBMS=IMS;
UPDATE libref.member-name.ACCESS;

procedure statements;

RUN;

� To update a view descriptor:

PROC ACCESS DBMS=IMS;
UPDATE libref.member-name.VIEW;

procedure statements;

RUN;

Note that when you update an access descriptor (for example, drop another field from
the display), the view descriptors based on this access descriptor are not updated

ACCESS Procedure Reference � Database-Description Statements 99

automatically. You must re-create or modify any view descriptors that you want to
reflect the changes made to the access descriptor. Altering a DBMS table can invalidate
both access descriptors and view descriptors.

Database-Description Statements
The following statements define the IMS database in an access descriptor.

DATABASE=database-name DBTYPE=database-type;

RECORD=record-name SEGMENT=segment-name
SEGLNG=segment-length;

GROUP=group-name LEVEL=level-number
KEY=Y|N|U OCCURS=number-of-repeats
SEARCH=search-name;

ITEM=item-name LEVEL=level-number

DBFORMAT=database-format

FORMAT=SAS-format SEARCH=search-name

KEY=Y|N|U OCCURS=number-of-repeats

DBCONTENT=database-content;

DELETE item-name|index-number;

INSERT item-name|index-number;

REPLACE item-name|index-number;

The DATABASE=, RECORD=, and ITEM= statements are required to create an
access descriptor with the CREATE statement; the GROUP= statement is optional. The
INSERT, DELETE, and REPLACE statements are used with the UPDATE statement to
change an existing access descriptor. At least one of the GROUP=, RECORD=, or
ITEM= statements must be used with the INSERT, DELETE, and REPLACE
statements to change an access descriptor. The DATABASE= statement cannot be used
in an UPDATE statement.

Whether you are creating or changing an access descriptor, the RECORD=, ITEM=,
and GROUP= statements must be used in the same order as they appear in the
database.

Because IMS does not have a dictionary or store descriptive information about the
database, you need to provide the DBD information. To provide this information, you
need to have a COBOL copybook or layout of the database.

For logical databases, the access descriptor definitions are mapped to the logical DBD
and not to one or more physical DBDs. This enables the IMS engine to build correct
calls and for the SSAs (segmented search arguments) to navigate the logical structure
of the database.

Note: See “Tools for Creating IMS Access Descriptors” on page 121 for tools that
SAS supplies to automate the database definition process. �

100 Editing Statements � Chapter 6

Editing Statements
SAS/ACCESS editing statements enable you to drop or rename items, list items, reset

names, and so on in a descriptor. All of the statements can be used when you are
creating a descriptor. The ASSIGN=, SELECT, RESET, and UNIQUE= statements
cannot be used when you are changing a descriptor.

When creating or changing an access descriptor, place editing statements after the
last database definition statement. All editing statements are optional.

The following list shows the basic syntax of each editing statement:

ASSIGN=Y| N;

UNIQUE=Y| N;

DROP item-name | index-number...;

FORMAT item-name | index-number <=> format...;

LIST ALL | VIEW | index-number | item-name <blanks | DB | DESC>;

QUIT | EXIT;

RENAME item-name | index-number <=> SAS-name...;

RESET ALL | item-name | index-number...;

SELECT ALL | item-name | index-number...;

SUBSET selection-criteria;

These statements are described in detail in the following sections.

ACCESS Procedure Statements for IMS

ASSIGN= Statement

Generates SAS names and formats that are based on item names and DB Formats.

Optional statement

Applies to: access descriptor

Syntax
ASSIGN=Y | N;

ACCESS Procedure Reference � CREATE (Access Descriptor) Statement 101

Details
The ASSIGN= statement causes view descriptors to inherit the SAS variable names and
formats of the parent access descriptor at the time that the descriptor is created. That
is, if ASSIGN=Y, the variable names generated for the access descriptor will be used in
all derived view descriptors, regardless of the naming conventions used.

If ASSIGN=N, which is the default value, you specify the SAS variable names and
formats when you create a view descriptor from this access descriptor. The naming
conventions used by the view descriptors are determined by examining the
VALIDVARNAME SAS option. The VALIDVARNAME SAS option lets users specify
what naming conventions will be used in a SAS session, and enforces them by
converting variable names that do not conform to the necessary format. For more
information about the VALIDVARNAME system option, see “Using the SAS/ACCESS
Interface to IMS” on page 4 and SAS Language Reference: Dictionary.

If you enter a value of Y for this statement, you cannot specify the RENAME,
FORMAT, and UN= statements when creating view descriptors that are based on this
access descriptor.

When a new CREATE statement is entered, the ASSIGN= statement is reset to the
default value, N.

AN= is a valid alias for this statement.

CREATE (Access Descriptor) Statement

Creates an access descriptor.

Required statement

Applies to: access descriptor

Syntax
CREATE libref.member.ACCESS;

Details
The CREATE statement specifies a one- or two-level name for the access descriptor you
want to create. The suffix specifies the member type ACCESS. You can use the
CREATE statement in one procedure execution as many times as necessary.

To create an access descriptor, the CREATE statement must follow the PROC
ACCESS statement. It is specified before any of the database description or editing
statements , which are described later in this section.

When you submit a CREATE statement for processing, the statement is checked for
errors and, if none are found, the access descriptor specified in the previous CREATE
statement (if there is one) is saved. If errors are found, error messages are written to
the SAS log and processing is terminated. After you correct the error, resubmit the
statements or batch job for processing.

102 CREATE (View Descriptor) Statement � Chapter 6

CREATE (View Descriptor) Statement

Creates a view descriptor.

Required statement

Applies to: view descriptor

Syntax
CREATE libref.member.VIEW PSBNAME=psb-name <PCBINDEX=pcb-index>

<GSAM>;

Details
The CREATE statement specifies a one- or two-level name for the view descriptor you
want to create. The suffix specifies the member type VIEW. This statement is required
to create and save a view descriptor.

To create a view descriptor, add the CREATE statement after the procedure
statements that create the access descriptor on which this view descriptor is based. If
you are creating a view based on an existing access descriptor, specify the access
descriptor’s name in the ACCDESC= option in the PROC ACCESS statement.

Place any editing statement and view-descriptor-specific statements, such as the
SELECT and SUBSET statements, after the view descriptor’s CREATE statement. You
can submit more than one CREATE statement in one execution of the PROC ACCESS
statement. As with other SAS procedures, end the ACCESS procedure with a RUN
statement.

When you submit a CREATE statement for processing, the statement is checked for
errors and, if none are found, the view descriptor specified in the previous CREATE
statement (if there is one) is saved. If errors are found, error messages are written to
the SAS log and processing is terminated. After you correct the error, resubmit the
statements or batch job for processing.

Arguments
The following list explains the arguments that can appear in a CREATE statement for
a view descriptor:

PSBNAME= |PSB=
specifies the name of the PSB that references the IMS database on which this view
descriptor is based. This is a required argument.

PCBINDEX= |PCB=
specifies the PCB in the PSB that references the database. This argument is
optional; you need to specify a PCB index only if the PSB references the database
more than once. If you do not specify a PCB index and the PSB references the
database more than once, the first PCB in the PSB that references the database is
used.

GSAM
specifies that the database on which this descriptor is based is a GSAM database.
Specify this argument only if you have a GSAM database.

ACCESS Procedure Reference � DELETE Statement 103

DATABASE= Statement
Specifies the DBD name of the IMS database on which the access descriptor is based.

Required statement
Applies to: access descriptor

Syntax
DATABASE=database-name DBTYPE=database-type;

Details
The DATABASE= statement specifies the DBD name of the IMS database on which the
access descriptor is based. DBD= is an alias for the DATABASE= statement. If you are
creating an access descriptor, the DATABASE= statement must be the first statement
after the CREATE= statement.

For logical databases, the access descriptor definitions are mapped to the logical DBD
(database description) and not to one or more physical DBDs. This enables the IMS
engine to build correct database calls and for the SSAs (segmented search arguments)
to navigate the logical structure of the database.

Note: See “Tools for Creating IMS Access Descriptors” on page 121 for tools that
SAS supplies to automate the database definition process. �

Arguments
The following list explains the argument that can appear in a DATABASE= statement
for an access descriptor:

DBTYPE= |DBT=
specifies the type of database and is required with the DATABASE= statement.
Valid database types are HDAM, HIDAM, HSAM, HISAM, GSAM, SHSAM, and
SHISAM. See “IMS Database Types” on page 20 for a description of each database
type. You can use DBT= as an alias for DBTYPE=.

DBTYPE= tells the IMS engine how to handle WHERE clauses that generate
SSAs for database calls. If you omit DBTYPE= from your DATABASE= statement,
you receive the following error:

ERROR 22-322: Expecting one of the following:
DBTYPE = NAME. The statement is being ignored.

ERROR: Must enter database name first.

An example of the DATABASE= statement is as follows:

database=acctdbd dbtype=hisam;

DELETE Statement
Removes records, groups, or items from an existing access descriptor.

104 DROP Statement � Chapter 6

Optional statement

Applies to: access descriptor
Interacts with: UPDATE statement

Syntax
DELETE|DEL numeric-list;

DELETE|DEL item-name <... item-name-n>;

Details
The DELETE statement deletes the specified record, group, or item from an access
descriptor. You can specify as many records, groups, or items as you want in one
DELETE statement. When you delete a group or record, all of the items in that group
or record are deleted as well.

Note that if the first record of a descriptor is deleted, then the first item in the
descriptor must still be a RECORD.

Arguments
The following arguments can appear in a DELETE statement. You can mix item names
and quoted strings in the same DELETE statement, but you cannot mix index numbers
and names. Referencing a list of index numbers is an efficient way to delete items like
OCCURS clauses, which by definition are not unique.

numeric-list
is a list of index numbers, separated by logical operators, that represent the item’s
place in the access descriptor. You can obtain the index number of an item using
the LIST statement described later in this section.

item-name
is the name of the IMS group, record, or item to be deleted. This field can also
contain a quoted string.

Examples
The following are examples of DELETE statements:

DELETE 15 2 8 TO 12; /* deletes a numeric list */
DELETE 1 TO 23 BY 2; /* deletes a numeric list */
DELETE CITY STATE ZIP; /* deletes by name */
DELETE CITY ’FIRST-ORDER-DATE’; /* deletes a name and quoted string */

DROP Statement

Drops the specified item so that it is no longer available for selection.

Optional statement

Applies to: access descriptor or view descriptor

ACCESS Procedure Reference � FORMAT Statement 105

Syntax
DROP numeric-list;

DROP item-name <... item-name-n>;

Details
The DROP statement drops the specified item so that the item is no longer available for
selection. When used in an access descriptor, it prevents the specified item from being
available to a view descriptor. The DROP statement is used with the UPDATE
statement in a view descriptor.

You can specify as many items to be dropped as necessary by using one DROP
statement. You can identify items by their index number or by their name or a quoted
string, but you cannot mix index numbers and names. If you drop a record or group, all
the items in that record or group are dropped.

Arguments
The following arguments can appear in the DROP statement:

numeric-list
is a list of index numbers, separated by logical operators, that represent the item’s
place in the descriptor. You can get the index number of an item by using the
LIST statement described later in this section.

item-name
is the name of the IMS item to be dropped or a quoted string.

FORMAT Statement

Assigns a SAS format to an IMS item.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
FORMAT item-name|index-number <=> format <… item-name-n|index-number-n <=>

format-n>;

Details
The FORMAT statement assigns a SAS format to an IMS item. You can assign formats
to as many items as necessary using one FORMAT statement. Note that the equal sign

106 GROUP= Statement � Chapter 6

(=) between arguments is optional. You cannot use the FORMAT statement for a record
or group.

Arguments
The following list explains the arguments that can appear in the FORMAT statement:

item-name
is the name of the IMS item for which you want to assign or change the SAS
format.

index-number
is the index number of the IMS item for which you want to assign or change the
SAS format. The index number represents the item’s place in the access
descriptor. You can get the index number of an item using the LIST statement
described later in this section.

format
is the SAS format that you want to assign to the specified IMS item.

GROUP= Statement

Defines the groups within the record.

Optional statement

Applies to: access descriptor

Syntax
GROUP= group-name LEVEL=level-number <KEY=Y|N|U>

<OCCURS=number-of-repeats> <SEARCH=search-name>;

Details
The group name is the name that you want to assign to the group item in an IMS
database. This name can be a maximum of 32 characters. If any special characters or
blanks are included in the name, enclose the entire name in quotation marks. This is a
required argument.

The GROUP= statement defines the groups within the record. This statement is
optional.

See “Handling GROUP Keys in Descriptor Files” on page 136 for information about
how to reference GROUP keys in a view descriptor’s WHERE statement.

Arguments
In the GROUP= statement, you must enter the group name and level number. The
other arguments are used to further define the group and are not required. The
following list explains each argument that can appear in a GROUP= statement:

ACCESS Procedure Reference � INSERT Statement 107

LEVEL=
LV=

specifies the two-character numeric level of the IMS item. This level number is
similar to the COBOL level number. Groups have levels greater than 01, and their
level numbers are less than the level numbers of the items within the group. This
is a required argument.

KEY=
K=

indicates with an Y, N, or a U whether this item is defined in the DBD as a
sequence or key field and whether the key sequence field is unique. The default
setting, N, indicates the field is not a key sequence field. You must assign one key
sequence field per segment if you plan to use the view descriptors that are created
from this access descriptor to update the IMS database. Keys are recommended,
but not required, for all segments except the lowest hierarchical level if the view
descriptors will be used only for data retrieval. When KEY=U, retrieval calls to
IMS will be reduced because the IMS engine will know that there is only one
segment in the database for this key.

OCCURS=
O=

indicates the number of times a repeating group occurs. This is an optional
argument.

SEARCH=
SE=

specifies the search field name defined for the group item in the DBMS DBD. If
you want the IMS engine to create SSAs directly from a WHERE statement or
command, you must enter the search field names. Otherwise, the WHERE
statement is passed to SAS and all of the segments in the database that are
referenced in the view descriptor are read. SEARCH= is an optional argument,
but it is recommended where applicable.

Note: See “Handling GROUP Keys in Descriptor Files” on page 136 for
important information about searching at the GROUP level. Also see
“Performance and Efficient View Descriptors” on page 122 for more information
about SSAs and WHERE statements. �

INSERT Statement

Adds new records, groups, or items to an existing access descriptor.

Optional statement

Applies to: access descriptor
Interacts with: UPDATE statement

Syntax
INSERT|INS index-number;

INSERT|INS item-name <... item-name-n>;

108 ITEM= Statement � Chapter 6

Details
The INSERT statement is a positioning statement; it inserts the RECORD=, GROUP=,
or ITEM= statements following it after the item it references. The syntax and use of
the RECORD=, GROUP=, and ITEM= statements are the same in update mode as they
are in create mode.

Although the INSERT statement can reference only one item, more than one
RECORD=, GROUP=, or ITEM= statement can follow an INSERT statement. The
INSERT statement retains control until it encounters an editing, LIST, DELETE, or
REPLACE statement, or the ACCESS procedure ends through a QUIT, RUN, or other
procedure statement. Multiple INSERT statements can be used in one UPDATE
statement. When more than one INSERT statement references the same item, the most
recent update displays as first.

Arguments

The following arguments can appear in a INSERT statement:

item-number
is an index number that represents the item’s place in the access descriptor. You
can get the index number of an item by using the LIST statement described later
in this section.

item-name
is the name of the IMS group, record, or item after which subsequent groups,
records, or items will be inserted. This field can also contain a quoted string.

Example

The following is an example of an INSERT statement. A new record and item are
inserted at the beginning of the access descriptor ADLIB.CUSTINS. “INSERT 0” inserts
items at the beginning of the descriptor. The first item in an access descriptor must
always be a record. Also in the example, note that the first LIST statement prints a
pre-update listing of the database as defined by the access descriptor, while the second
prints a post-update listing.

proc access dbms=ims;
update adlib.custins.access;

list all db;
insert 0;
record=newfrec sg=newrecsg sl=400;
item=newfitem lv=3 dbf=$12. se=custfsti;

list all db;
run;

ITEM= Statement

Defines the fields within the record.

Required statement

Applies to: access descriptor

ACCESS Procedure Reference � ITEM= Statement 109

Syntax

ITEM= item-name LEVEL=level-number
DBFORMAT=database-format <SASNAME=SAS-name>
<FORMAT=SAS-format > <SEARCH=search-name>
<KEY=Y | N | U> <OCCURS=number-of-repeats>
<DBCONTENT=database-content >;

Details

The ITEM= statement defines the fields within the record. The item name is the name
that you assign to the field in an IMS database segment and which SAS/ACCESS
software uses to generate a SAS variable name. This name can be a maximum of 32
characters. If any special characters or blanks are included in the name, enclose the
entire name in single quotation marks. This is a required argument.

The generated SAS variable name will use the naming conventions specified by the
VALIDVARNAME system option. For information about VALIDVARNAME, see the
SAS Language Reference: Dictionary.

If you specified the AN= statement with a value of Y, you will not be able to change
the SAS variable names when you create a view descriptor from this access descriptor
after the access descriptor is created.

If you specified the UN= statement with a value of Y, the variable names will be
unique. Any duplicate names will be resolved as follows: the name will be truncated to
the legal length and a number appended to the end to identify it as unique. For
example, two instances of CUSTOMER_ADDRESS would be changed to
CUSTOMER_ADDRESS and CUSTOMER_ADDRESS0.

Sites commonly refer to undesired portions of the data buffer by using the FILLER
notation in the ITEM= statement and by defining the DBC (DB Content) as $CHAR.
See “Using Filler Notation in ITEM=” on page 137 for information.

Arguments

In the ITEM= statement, you must enter the item name, level number, and the
DBFORMAT= argument. The other arguments define the item further and are not
required. The following list explains each argument in the ITEM= statement:

LEVEL=
LV=

specifies the two-character numeric level of the IMS field. This level number is
similar to the COBOL level number. To indicate that a field is in a group, the
field’s level number must be greater than the group’s level number. This is a
required argument.

DBFORMAT=
DBF=

specifies how the IMS field is stored in the database. See “IMS Data Types in SAS/
ACCESS Descriptors” on page 21 for a table of recommended DB formats to use
for COBOL and PL/I data types. This table also shows the SAS variable formats
that the SAS/ACCESS interface to IMS generates for the DB Formats.

You must specify one of the following SAS informats in this argument. For
character data, the SAS informats are as follows:

110 ITEM= Statement � Chapter 6

$w. $HEXw.

$CHARw. $PHEXw.

$CHARZBw.

For numeric data, the SAS informats are as follows:

w.d ZDBw.d RBw.d

Fw.d IBw.d PDw.d

BZw.d PIBw.d PKw.d

ZDw.d HEXw.

SASNAME=
SN=

is supported for Version 6 compatibility only. It assigns a SAS variable name to
the IMS field. When VALIDVARNAME=V6, the name assigned to this argument is
also used as input to the subsetting WHERE statement.

FORMAT=
FMT=

assigns a SAS format to the SAS variable. This is an optional argument.
If you specified the AN= statement with a value of Y, SAS assigns default

formats (based on the field’s database format) to the variables when the access
descriptor is created. If you want, you can enter formats using the FORMAT=
argument in the ITEM= statement at that time. However, you will not be able to
change these formats when you create a view descriptor from this access
descriptor after the access descriptor is created.

SEARCH=
SE=

specifies the search field name defined for the field in the DBMS DBD. If you want
the IMS engine to create SSAs directly from a WHERE statement or command
that references the named item, then you must assign search field names.
Otherwise, the WHERE statement is passed to SAS, and all occurrences of the
segments referenced in the view descriptor in the database are read and passed to
SAS for further processing. See “Performance and Efficient View Descriptors” on
page 122 for more information about SSAs and WHERE statements. This is an
optional argument.

KEY=
K=

indicates with a Y, N, or U whether this field is defined in the DBD as a sequence
or key field and whether the key sequence field is unique. The default setting, N,
indicates the field is not a key sequence field. You must assign one key sequence
field per segment if you use the view descriptors created from this access descriptor
to update the IMS database. Keys are recommended, but not required, for all
segments except the lowest hierarchical level if the view descriptors are used only
for data retrieval. When KEY=U, retrieval calls to IMS are reduced because the
IMS engine knows that there is only one segment in the database for this key.

ACCESS Procedure Reference � ITEM= Statement 111

OCCURS=
O=

indicates the number of times a repeating field occurs. This is an optional
argument.

DBCONTENT=
DBC=

indicates that the values for this field need special handling by the IMS engine.
This is an optional argument. You can use this argument to specify a SAS format
that indicates the way date values are represented internally in the IMS database,
or to indicate how a field is initialized or stored in the database. This is not the
same as the value you entered in the DBFORMAT= argument.

For example, you would use the DBFORMAT= argument to specify that a date
is stored as a packed decimal. You would then use the DBCONTENT= argument
to indicate where the month, day, and year are stored in that packed decimal. The
following are valid parameters for date values:

Table 6.2 Valid Parameters for Date Values

YYMMDD6. DDMMYY6. JULIAN5.

YYMMDD8. DDMMYY8. JULIAN7.

MMDDYY6. TFGY2KD4.*

MMDDYY8. TFGY2KN4.*

* The TFGY2KD4. and TFGY2KN4. values indicate a 4-byte packed decimal
value that is stored in the IMS database in the form ’CYYMMDDS’x, where
C=century (0=1900, 1=2000), YY=year, MM=month, DD=day, and S=sign (C).
TFGY2KD4. interprets the packed decimal value and converts it to a SAS date
value, which is represented as the number of days since January 1, 1960. For
example, ’0990101C’x is interpreted as January 01, 1999, and is converted to the
value 14245. You can then use the FORMAT= statement to apply a SAS format to
the value. TFGY2KN4. interprets the packed decimal value as an 8-byte number
and converts it to a numeric value. For example, ’1990101C’x is interpreted as
January 01, 2099, and is stored as 20990101. When the database is updated, the
SAS values are converted back to the packed decimal format. When TFGY2KD4.
or TFGY2KN4. are entered for DBC=, a DBFORMAT= of PD4. or PD4.0. must
also be specified or SAS issues an error message.

The following are valid parameters for special formats values that indicate how
a field is initialized:

B when values are blanks for zero.

H for high values.

L for low values.
These special formats affect how SAS displays and updates the fields in the

database. Use special format B to indicate to the IMS engine that a numeric
variable has blanks when its value is zero. Use the special codes H and L to
indicate that a variable is initialized to high or low values, respectively. For
example, if you specify L for a variable, SAS displays a missing value when it finds
low values (hexadecimal zeros) in the variable. If you update that variable with a
missing value, the IMS engine writes low values to the variable in the database. If
you specify H for a variable, SAS displays a missing value when it finds high
values (hexadecimal Fs) in the variable. If you update that variable with a
missing value, the IMS engine writes high values to the variable in the database.

112 LIST Statement � Chapter 6

You can also use the special formats values when a date is initialized in a special
way. For example, if you have a date initialized to low values, enter, enclosed in
single quotation marks, the date format followed by a slash (/) and an initialization
code. For example, for an eight-digit date in the MMDDYY8. form initialized to
low values, you would enter the following value for the DBCONTENT argument:

’MMDDYY8./L’

Do not specify a DBCONTENT for records and groups.

LIST Statement

Lists all or selected items in the descriptor and information about the items.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
LIST <ALL|VIEW|index-number|item-name> <blanks|DB|DESC>;

Details
The LIST statement lists all or selected items in the descriptor and information about
the items.

Arguments
The LIST statement consists of two sets of arguments. Select one argument from the
first set to select the items to be displayed, and select one argument from the second set
to specify the type of information to be displayed about the selected items.

The first set includes the following arguments:

ALL
lists all the items in the access descriptor that are available for selection. If an
item is dropped, NON-DISPLAY is displayed next to the item’s description when
listing an access descriptor. When listing a view descriptor, dropped items are not
displayed.

VIEW
lists all the items in the access descriptor that are selected for the view descriptor.

index-number
specifies the index number that corresponds to the IMS item for which you want to
display the current status. The index number represents the item’s place in the
descriptor.

item-name
specifies the name of an IMS item for which you want to display the current status.

The second set includes the following arguments:

ACCESS Procedure Reference � RECORD= Statement 113

blanks lists the SAS information, including the DB Format and SAS format
information, for the specified items. To use this argument, include
only the ALL, VIEW, item-name, or index-number argument from
the first set to specify the items.

DB lists the database information, including the DB Content, segment
name, search field, segment length, key field, and occur field
information, for the specified items. Use the ALL, VIEW, item-name
or index-number argument before this argument to specify which
items to list.

DESC lists both SAS and database information for the specified items. Use
the ALL, VIEW, item-name or index-number argument before this
argument to specify which items to list.

Note: The LIST statement output is written to the SAS log. �

QUIT Statement

Terminates the procedure without any further descriptor creation.

Optional statement

Syntax
QUIT|EXIT;

Details
The QUIT statement terminates the procedure without any further descriptor creation.
EXIT is an alias for the QUIT statement.

RECORD= Statement

Defines an IMS segment.

Required statement

Applies to: access descriptor

Syntax
RECORD=record-name SEGMENT=segment-name SEGLNG=segment-length;

114 RENAME Statement � Chapter 6

Details
The RECORD= statement defines an IMS segment. A value of 01 is automatically
assigned as the level number of a record, so the RECORD= statement does not include
a level number argument. You should begin your database definition with a RECORD=
statement immediately after the DATABASE= statement.

Arguments
The following list explains each of the arguments that can appear in a RECORD=
statement.

RECORD= |RE=
specifies an arbitrary name for the segment. A record name can be a maximum of
32 characters. If special characters or blanks are included in the name, enclose the
entire name in single quotation marks. This is a required argument.

SEGMENT= | SG=
specifies the name of the segment as defined in the DBD. A segment name can be
a maximum of eight characters. If your database is a GSAM database, enter GSAM
as the segment name. This is a required argument.

SEGLNG= |SL=
specifies the segment length as defined in the DBD. This is a required argument.
See “Handling Segments of Varying Length” on page 135 for more information.

RENAME Statement

Enters or modifies the SAS name for an item.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
RENAME item-name|index-number <=> SAS-name

<... item-name-n|index-number-n <=> SAS-name-n>;

Details
The RENAME statement enters or modifies the SAS variable name for an item. If you
are creating a view descriptor from an existing access descriptor with an ASSIGN=
value of Y, you cannot use the RENAME= statement. You can rename as many items as
necessary using one RENAME= statement.

Note: If the VALIDVARNAME system option is set to V6, this statement affects the
SAS name parameter; if VALIDVARNAME is set to V7 or one of the other values, it
affects the item name. �

Arguments
The following list explains the arguments that appear in the RENAME= statement:

ACCESS Procedure Reference � REPLACE Statement 115

item-name
is the name of the IMS item that you want to rename.

index-number
is the index number of the IMS item that you want to rename. The index number
represents the item’s place in the descriptor. You can get the index number of an
item using the LIST statement described earlier in this section.

SAS-name
is the new SAS variable name that you want to assign to the specified item.

REPLACE Statement

Modifies record, group, and item definitions in an existing access descriptor.

Optional statement

Applies to: access descriptor
Interacts with: UPDATE statement

Syntax
REPLACE | REPL index-number

<GROUP= new-group-name ITEM=new-item-name
LEVEL=level-number
DBFORMAT=database-format
FORMAT=SAS-format SEARCH=search-name
KEY=Y|N|U DBCONTENT=database-content>;

|
<RECORD=new-record-name

SEGMENT= segment-name
SEGLNG= segment-length>;

REPLACE | REPL item-name

<LEVEL=level-number DBFORMAT=database-format
FORMAT=SAS-format SEARCH=search-name
KEY=Y|N|U DBCONTENT=database-content>;

|
<SEGMENT=segment-name SEGLNG=segment-length>;

Details
The REPLACE statement replaces or modifies existing records, groups, and items in
existing access descriptors. Any item that can be entered on RECORD, GROUP=, and
ITEM= statements can be modified, except the OCCURS option.

116 RESET Statement � Chapter 6

Unlike the INSERT and DELETE statements, each data item to be modified needs a
separate REPLACE statement, although any number of REPLACE statements can occur
in any order with INSERT and DELETE statements within an UPDATE statement

Arguments
The only required item on the REPLACE statement is the index number, name, or
quoted string used to identify it. However, the optional arguments are recommended for
data definition. Except for the following optional arguments, the arguments follow the
same editing rules as they would in create mode or in an update insert situation.

� KEY=N will remove an item as a designated key field.
� Specifying blanks on a SEARCH or DBCONTENT parameter removes their value,

effectively dropping the parameters.
� The FORMAT parameter currently cannot be reset to its default value.

Examples
The following are examples of replacement statements:

replace shipped dbc=mmddyy6.; /* modifies dbcontent */

replace 5 se=’ ’ /* drops search field parameter */

replace ’old-record-name’ record=’new-record-name’;
sg=’new-ims-segname’; /* replaces record */

replace 2 item=’cust-item’; /* renames item */

RESET Statement

Resets specified or all items to their default settings.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
RESET ALL | item-name | index-number

<… item-name-n|index-number-n>;

Details
The RESET statement resets specified or all items to their default settings. You can
reset as many items as necessary using one RESET statement or the ALL option to
reset all the items. The RESET statement has different effects on access and view
descriptors.

Access descriptors In access descriptors, the default setting for a SAS variable
name is a blank unless you included the AN= statement. If you used the AN=

ACCESS Procedure Reference � SELECT Statement 117

statement, the names are reset to those generated. The default setting for SAS formats
in access descriptors is determined by the DB Formats of the items. Any dropped items
will be included again.

View descriptors In view descriptors, the RESET statement deselects items and
resets the SAS name and format values to those defined in the access descriptor on
which the view descriptor is based. The SAS names and formats are unaffected by the
RESET statement if you specified the AN= statement with a value of Y when you
created the access descriptor on which this view descriptor is based.

Arguments
The following list explains the arguments that appear in the RESET statement:

ALL
resets all the items defined in the access descriptor to their default setting. For a
view descriptor, the ALL option resets only the items that are selected.

item-name
specifies the name of the item that you want to reset. If you specify a record or
group name, all the items in that record or group are reset.

index-number
specifies the index number of the item that you want to reset. The index number
represents the item’s place in the access descriptor. You can get the index number
of an item using the LIST statement described earlier in this section. If you specify
a record or group index number, all the items in that record or group are reset.

SELECT Statement

Selects the items in the access descriptor that are to be included in the view descriptor.

Optional statement

Applies to: view descriptor

Syntax
SELECT ALL | item-name | index-number <… item-name-n|index-number-n>;

Details
The SELECT statement selects the items in the access descriptor that are to be included
in the view descriptor. Use the SELECT statement only when you are defining view
descriptors. You can select as many items as necessary using one SELECT statement.

Arguments
The following list explains the arguments that appear in the SELECT statement:

118 SUBSET Statement � Chapter 6

ALL
includes in the view descriptor all of the items that are defined in the access
descriptor that were not dropped.

CAUTION:
If the access descriptor contains segments representing more than one path, using
ALL will create an invalid view descriptor. �

item-name
specifies the name of the item you want to select to be included in the view
descriptor. If you specify a record or group name, all the items in that record or
group are selected.

index-number
specifies the index number of the item you want to select. The index number
represents the item’s place in the access descriptor. You can get the index number
of an item using the LIST statement described earlier in this section. If you specify
a record or group index number, all the items in that record or group are selected.

SUBSET Statement

Adds or modifies selection criteria defined for a view descriptor.

Optional statement

Applies to: view descriptor

Syntax
SUBSET <selection-criteria>;

Details
The SUBSET statement specifies the selection criteria for the view descriptor. If you do
not use the SUBSET statement, the view will include all occurrences of the segments
included in the view descriptor.

Arguments
The selection-criteria argument can be new or modified selection criteria that you want
to define for the view descriptor. Only a WHERE statement can be used with the
SUBSET statement.

Use SAS variable names in the SAS WHERE statement to specify selection criteria.
Any variable specified in the WHERE statement must also be selected in the view
descriptor. If your statement includes a date or time representation, use the SAS date
or time constant representation, such as ’01JAN91’D.

To improve performance, use WHERE statements from which the IMS engine can
generate SSAs. For more information about creating efficient view descriptors, see
“Performance and Efficient View Descriptors” on page 122. For more information about
the WHERE statement and the expressions it enables, see SAS Language Reference:
Dictionary.

ACCESS Procedure Reference � UPDATE Statement 119

You can delete the current selection criteria by issuing the SUBSET statement
without an argument.

UNIQUE = Statement

Generates unique SAS names based on item names.

Optional statement

Applies to: view descriptor

Syntax
UNIQUE | UN = Y | N;

Details
The UNIQUE= statement specifies whether unique SAS variable names should be
generated for items. The UNIQUE= statement can be used only when creating a view
descriptor.

The default value, N, enables you to enter duplicate SAS variable names. You must
resolve these duplicate names before you create view descriptors based on the access
descriptor.

If you specify a value of Y and duplicate SAS variable names exist, numbers are
appended to any SAS names that are duplicated as the result of truncation. For
example, if you enter a value of Y for the UNIQUE= statement, two instances of the
item ADDRESS would be changed to ADDRESS and ADDRESS0.

Note: If you specified a value of Y for the ASSIGN= statement when you created the
access descriptor on which this view descriptor is based, you cannot specify a UNIQUE=
statement. �

UN= is a valid alias for this option.

UPDATE Statement

Updates a SAS/ACCESS descriptor file.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
UPDATE libref.member.ACCESS | VIEW;

120 UPDATE Statement � Chapter 6

Details
The UPDATE statement identifies an existing access descriptor or view descriptor that
you want to change. The descriptor can exist in a temporary (WORK) or permanent
SAS library. If the descriptor has been protected with a SAS password that prohibits
editing of the access or view descriptor, then the password must be specified on the
UPDATE statement.

To update a descriptor, use its three-level name. The first level identifies the libref of
the library where you stored the descriptor. The second level is the descriptor’s member
name. The third level is the type of SAS file: ACCESS or VIEW. For a view descriptor,
you can specify the PSBNAME and PCBINDEX arguments.

You can use the UPDATE statement as many times as necessary in one procedure.
Use these guidelines to write the UPDATE statement:

� Like the CREATE statement, the UPDATE statement should immediately follow
PROC ACCESS and precede any database definition and editing statements. Also,
all database definition statements should precede any editing statements.

� Within the database definition group, the DELETE, INSERT, and REPLACE
statements can be specified in any order and can occur multiple times with an
UPDATE sequence. The order has no effect on processing.

� When using index numbers, the numbers specified with the UPDATE statement
refer to the original pre-update order. Index numbers used with editing
statements always apply to the post-update, “ready to rewrite” order.

� Use the LIST statement after the UPDATE statement and avoid using
intermediate LIST statements, particularly in batch mode. The LIST statement
forces a reorganization of the in-memory layout of the access or view descriptor.
Intermediate list statements change the index numbering at each invocation and
can cause an error.

� Do not attempt to create a view descriptor after you have updated a view
descriptor in the same procedure execution. You can create a view descriptor after
updating or creating an access descriptor or after creating a view descriptor.

The following examples edit the access descriptor IMSLIB.CUSTS. Despite the order of
the INSERT, DELETE, and REPLACE statements in the update sequence, the
examples produce identical results.

/* ----example 1------ */
proc access dbms=ims;

update imslib.custs.access;
insert address;

item=address2 lv=3 dbf=$12 se=custadd2;
delete contact;
repl 23 se=custphon;
ins 23;

item=newitem lv=3 dbf=$30 se=custlsti;
run;

/* ---example 2--- */
proc access dbms=ims;

update imslib.custs.access;
delete contact;
repl 23 se=custphon;
ins 23;

item=newitem lv=3 dbf=$30 se=custlsti;
insert address;

item=address2 lv=3 dbf=$12 se=custadd2;
run;

ACCESS Procedure Reference � COB2SAS Tool 121

The following example shows how index numbers are interpreted by different parts
of an UPDATE statement. In the example, the DELETE statement processes the third
item in the original descriptor. The DROP statement, however, processes the fourth
item in the post-update order, which in this case would have been the fifth item in the
original sequence.

proc access dbms=ims;
update imslib.custs.access;

delete 3; /* pre-update item 3 */
drop 4; /* post-update item 4 */

list all;
run;

Pre-update and post-update listings are shown below.

/* ---prior to UPDATE --- */
IMS Database: CUSTOMER
Function: Create Descriptors-access: CUSTS1 view:

L# Item Name DBFormat Format
1 01 CUSTOMER *RECORD* *RECORD*
2 02 CUSTOMER-INFO *GROUP* *GROUP*
3 03 CUSTOMER-CODE $8. $8.
4 03 STATE $2. $2.
5 03 ZIP 10.0 12.0
6 03 COUNTRY $20. $20.

/* ---after UPDATE --- */
IMS Database: CUSTOMER
Function: Create Descriptors-access: CUSTS1 view:

L# Item Name DBFormat Format
1 01 CUSTOMER *RECORD* *RECORD*
2 02 CUSTOMER-INFO *GROUP* *GROUP*
3 03 STATE $2. $2.
4 03 ZIP *NON-DISPLAY* 10.0 12.0
5 03 COUNTRY $20. $20.

Tools for Creating IMS Access Descriptors

Defining Access Descriptors
The SAS/ACCESS interface to IMS is different from other SAS/ACCESS interfaces in

that it requires you to define the database in your access descriptor. Other SAS/ACCESS
interfaces are able to query a data dictionary or another information repository to
acquire detailed information about the database object that is being accessed.

Defining access descriptors for IMS databases can be time consuming because the
data has to be entered manually. To automate this process, especially in cases where
many access descriptors must be defined, there are several tools available for your use.

COB2SAS Tool
The COB2SAS tool uses the COB2SAS utility to process COBOL copybook database

definitions and to store them in a permanent SAS data file. This data file is then

122 SAS Macro and DATA Step Code � Chapter 6

processed by a DATA step program that is supplied in the installed prefix.SAMPLE
PDS, called IMSS2A. The IMSS2A program processes the observations in the data file
and generates most of the syntax required by the PROC ACCESS procedure statements
that create an access descriptor for the database.

The generated statements are written to a host file (physical sequential or PDS
member) where they can be edited. The statements written to the host file require some
editing because the copybook file does not contain all the information that is necessary
to create the access descriptor. You need to add DBD-specific information such as
segment lengths, search and sequence field names, DBD name, DBTYPE, and segment
names, in order to complete the code. You can then either submit the generated
statements with JCL in a batch execution, or submit them from the SAS Program
Editor window.

The COB2SAS tool is available from SAS free of charge for download from the World
Wide Web, from an FTP site, or in the form of a mailer tape. This tool was originally
designed to aid in converting COBOL file copybooks to INPUT statements for SAS
DATA steps. For access descriptor creation, it is not necessary to complete all of the
steps outlined in the COB2SAS usage instructions. Typically, after the copybook is
processed, the results are stored in a temporary SAS file, which is then used to
generate the INPUT statement. For IMS access descriptor creation, only the steps up to
and including creation of the SAS file (dictionary file) are necessary. A modification is
made to make the dictionary file permanent, and from there the IMSS2A program is
used to complete the process.

Note that only steps R2COB1-R2COB5 are needed to create the dictionary file.
Member R2MVS is the file to edit to make the dictionary a permanent file. R2MVS is
also the main program that drives all of the other steps. It is well documented, and
comments provide information about what each step does.

For more information about using the COB2SAS tool and about the IMSS2A sample
program, look in the sample PDS for z/OS.

SAS Macro and DATA Step Code
The second tool was donated by a SAS user.* The tool consists of SAS macro and

DATA step code that processes the database DBD directly. The benefit of this tool is
that the file of generated PROC ACCESS code does not need further editing before
being submitted for execution. This tool is available in the sample PDS for z/OS.

Performance and Efficient View Descriptors

General Information
When you create and use view descriptors, follow these guidelines to minimize the

use of IMS and z/OS system resources and to reduce the time IMS takes to access data.
Select only the items your program needs. Selecting unnecessary fields adds extra

processing time.
Sorting data can be resource-intensive, even if it is done using the SORT procedure.

You should sort data only when sorted data is needed for your program. Note that IMS
does not support the ORDER BY clause or a BY statement in an application, such as
PROC PRINT ... BY variable...;. If you have an IMS database that does not have an

* Bruce Babbitt of New England Power Service Company

ACCESS Procedure Reference � View Descriptor WHERE Expression 123

index and you want to use a SAS procedure that requires the data to be sorted, you
must first extract the data to sort it. If you have an IMS database that does have an
index and you want to use a BY variable other than an index key, you must also extract
the data to sort it before executing the SAS procedure.

Where possible, specify selection criteria that can be converted into SSAs to subset
the amount of data IMS returns to SAS.

Extracting Data Using a View
If a view descriptor describes a large IMS database and you will use the temporary

or permanent view descriptor many times, it might be more efficient to extract the data
and place it in a SAS data file. Under the following circumstances you should probably
extract data:

� If you plan to use the same IMS data in several procedures, you might improve
performance by extracting it. Placing the data into a SAS data file requires disk
space to store the data and I/O to write the data. However, SAS data files are
organized to provide optimal I/O performance with PROC and DATA steps.
Programs using SAS data files often use less CPU time than programs that
directly read IMS data.

� If you plan to read a large amount of data from a large IMS database and the
database is being shared by several users, your direct reading of the data could
adversely affect all users’ response time. Extracting data can improve response
time.

� If you think directly reading this data would present a security risk, you might
want to extract the data and not distribute information about either the access
descriptor or view descriptor.

Deciding How to Subset Your Data
There are many reasons why you might want to subset or filter the data that is

being returned from a database path that is defined by a view descriptor. The main
benefit is performance. Retrieving a portion of the data in the database path is more
efficient than retrieving all of the data in the path. Another reason is to enforce security
measures, such as restricting users of view descriptors to certain subsets of data.

Once you determine that your application can benefit from using a subset of data,
there are several ways that you can subset data in SAS. Use the following guidelines to
determine when to use a view descriptor WHERE expression, an application WHERE
expression, or a DATA step subsetting IF statement, and when to use a combination of
the methods.

Note: Regardless of the method that you choose, for performance reasons you should
always attempt to choose selection criteria that can be converted by the engine into
SSAs. If the engine cannot build SSAs for your data request, then a sequential access
method is used to retrieve all path data that is defined by the view descriptor. �

View Descriptor WHERE Expression
Include a WHERE expression in your view descriptor by using a SUBSET statement

when you want to do the following tasks:

� have selection criteria that you want to always apply, regardless of the application
that references the view descriptor.

124 Application WHERE Expression � Chapter 6

� restrict access to data in a way that the selection criteria cannot be viewed,
modified, or deleted.

Selection criteria stored in a view descriptor can be protected with a password as well
as with operating system security. If an application specifies additional subset criteria,
it is combined with the view descriptor selection criteria and treated as an AND search
argument.

Application WHERE Expression
Use an application WHERE expression (SAS WHERE statement, clause, or data set

option) when the guidelines specified in the previous section do not apply and you meet
the following criteria:

� you want to use the same view descriptor for various tasks (includes DATA steps,
procedures, and SCL), where each requires a different subset of data

� you need to generate dynamic selection criteria for the data that is defined by the
view descriptor.

For a more detailed description of how the WHERE expressions work, see “WHERE
Statement Processing” on page 143.

DATA Step IF Statement
Use a subsetting IF statement in a DATA step execution when you meet the

following criteria:
� you need to impose selection criteria that would result in a sequential retrieval of

the data that is defined by the view descriptor. This type of criteria does not meet
SSA eligibility requirements.

The IMS engine generates SSAs only when all of the conditions in a WHERE
expression meet eligibility requirements. The DATA step IF statement enables you to
perform filtering that does not meet SSA eligibility requirements, while using a view
descriptor WHERE expression or application WHERE expression to obtain the
performance benefits from SSAs.

Combination of Methods
There are some comparison operators in SAS that cannot be incorporated into SSAs

for DL/I function calls and that cannot be used with the DATA step IF statement. In
these cases, you will have to evaluate the impact of a sequential retrieval to see if that
method is acceptable. If it is not, then you can extract a subset of view descriptor data
into a SAS data set (or define a DATA step view) using eligible selection criteria, then
subset the data set using an application task to achieve the desired performance gains.

If needed, you can mix all of the filtering methods. For example,

data work.subset;
set vlib.imsview; /*View can contain subset criteria*/

where (additional eligible conditions for IMS SSAs);
if (ineligible criteria that would not generate SSAs);

run;

For all methods, it is possible that a change in criteria can cause an application that
once produced SSAs to no longer produce them and resort to using a sequential access

ACCESS Procedure Reference � Writing Efficient WHERE Statements 125

method. You can prevent this from happening with the SAS system option
IMSWHST=Y. IMSWHST= is an invocation option that can be placed in the restricted
options table so that it cannot be changed or overridden. Should the engine detect that
no SSAs can be generated when this option is in effect, it will issue a message to the
SAS log and terminate the executing task.

Writing Efficient WHERE Statements
Specifying a WHERE statement from which the IMS engine can generate SSAs

improves performance. The IMS engine returns to SAS only those database segments
that meet your selection criteria. If the IMS engine cannot generate SSAs, all segment
occurrences for each IMS record (as defined by the path of segments in the view
descriptor) are returned to SAS for further processing.

To determine whether SSAs are being generated by your WHERE statement, set the
option IMSDEBUG=Y or set the number of calls for which you want debugging
information.

To ensure that your WHERE statements generate SSAs, do the following:

� When creating descriptors, specify a search field name for all variables you plan to
include in your application’s WHERE statements, when possible.

� Use one of the eight operators supported by IMS in your WHERE statements. The
eight operators supported by IMS are listed in the following table, along with their
alternate forms.

Table 6.3 IMS Supported Operators

Operator Alternate Form

= EQ

> GT

< LT

>= => or GE

<= =< or LE

= = or NE

& * or AND (dependent AND)

| + or OR (logical OR)

* Pad the =, >, and < operators with blanks on the right or left.

The ability of the IMS engine to generate SSAs also depends on the database type
and on the operators that you use in your WHERE expression.

� For GSAM databases, no SSAs can be generated.

� For other database types, the following rules apply:

� SSAs are generated only for WHERE expressions that involve a variable, an
operator, and a literal value. Multiple expressions that use Boolean operators
are also used. For example:

where partnum > 1000
where partnum > 1000 and

orddate = ’31JAN94’d

126 Identifying Inefficient SAS WHERE Conditions � Chapter 6

� The following operators generate SSAs: = (EQ), > (GT), < (LT), >= (GE), <=
(LE), IN, BETWEEN, IS NULL, and IS MISSING. For HDAM databases,
only the equals (=), IS MISSING, and IN operators generate SSAs.

� Compound expressions generate SSAs, except when the expressions are
joined by OR and the fields involved are in different segments.

For a more detailed description of how WHERE statements work, see “WHERE
Statement Processing” on page 143.

Identifying Inefficient SAS WHERE Conditions
When your view descriptor uses WHERE clauses that have multiple values for a

search field, and specifies a path that does not originate from the root segment in the
IMS database, it forces the IMS engine to reposition itself to the beginning of the IMS
database for each value.

In this example, the WHERE statement tries to find two checking account records in
the ACCTDBD database.

where chckacct = ’345620145345’
or chckacct = ’345620134663’;

Because the CUSTOMER segment is the root segment and the CHCKACCT segment
is a child of CUSTOMER, the IMS engine must issue a GU call for each checking
account number that it wants to find. It does this in order to reposition itself at the
start of the database. If it used GN calls, it might pass by one of the records because
they are not in sequential order.

Specifying multiple values for a search field in a WHERE statement for HDAM IMS
databases permits the IMS engine to create a WHERE key list. The IMS engine issues
calls that use, at a minimum, the first segment level SSA with a WHERE key list value.
When no more data is retrieved from the IMS database for a WHERE key list value, a
GU call is used to reposition to the beginning of the database and the next WHERE key
list value is used. Processing stops when all WHERE key list values have been used.

The following conditions do not enable the IMS engine to generate SSAs. They cause
all data from the IMS database as defined by the view descriptor to be returned to SAS
for further processing:

� HDAM WHERE statements that use a WHERE key list and an OR operator with
another search field or key list in the first segment level of the view descriptor, for
example:

where custcode in (’24589689’ ’29834248’)
| state in (’CA’ ’VA’);

� an OR between two segment levels

Identifying SAS WHERE Conditions That Are Not Acceptable to IMS
The following examples are SAS WHERE conditions that are passed to SAS for

further processing.
� arithmetic expressions, for example:

where c1=c4*3
where c4−c5

� expressions in which a variable or combination of variables assumes a value of 1
or 0 to signify true or false, for example:

ACCESS Procedure Reference � Identifying SAS WHERE Conditions That Are Not Acceptable to IMS 127

where c1
where (c1=c2)*20

� concatenation of character variables, for example, where c2=D2||D3.
� LIKE, BETWEEN, CONTAINS, SOUNDS LIKE operators, for example:

where lastname=*’SMITH’
where lastname like ’D_A%’

� truncated comparison, for example, where cl=:abc.
� DATETIME and TIME formats, for example:

where ctime= ’12:00’t
where ctime= ’01jan60:12:00’dt

� comparisons using operators other than equivalence (=) for character variables, for
example:

where name>’A’
where ssn<=’251-09-7384’

� comparisons using operators other than equivalence (=) for date variables not in
the YYMMDD format, for example, where stmtdate>’01JAN01’D. STMTDATE
has a DB Content of MMDDYY6.

� references to missing values. This includes the period (.) for numeric variables,
and the IS MISSING and IS NULL operators.

where stmtdate = .(numeric)

where name = (character)

� OR requests for conditions in two hierarchical levels of the database, for example,
where name=’Smith’ or stmtamt>0. In this example, the NAME field is in the
root segment, and the STMTAMT field is in a child segment.

� any WHERE statement for a GSAM database, for example, where var1<200.

� Any reference to a variable that does not have a SEARCH or SEQ field assigned to
it in the access descriptor.

128

129

C H A P T E R

7 Advanced User Topics for the
SAS/ACCESS Interface View
Engine for IMS

Introduction to Advanced Topics for the Interface View Engine 129
Changing an IMS Database and the Effects on Descriptors 130

Changes That Cause Existing View Descriptors to Fail 130

Understanding Character Set Encoding 130

Ensuring IMS Data Security 131

IMS Security 131
SAS Security 131

Maximizing IMS Performance 132

Understanding the IMS Interface 132

IMS Interface Concepts 132

Understanding the Flattened File Concept 132

Using the *U Command Code 134
Handling Missing Values 134

Using BY Variables 134

Handling Special Fields 135

Handling Fields That Occur Multiple Times 135

Handling Redefined Fields 135
Handling Segments of Varying Length 135

Handling GROUP Keys in Descriptor Files 136

Using Dummy Fields for GROUP Keys 136

Using Filler Notation in ITEM= 137

IMS Engine Calls to the Database 139
Creating the ACCESS Descriptor 139

Data Retrieval 139

WHERE Statement Processing 143

Data Retrieval by Using a Secondary Index 144

Combining Segments to Define Descriptors 145

Data Modification Processing 146
Delete Processing 146

Add Processing 147

Update Processing 147

Introduction to Advanced Topics for the Interface View Engine
This section includes some considerations for administering the SAS/ACCESS

interface view engine for IMS (referred to as the IMS engine). It provides additional
technical detail on how the engine interface and engine calls work.

130 Changing an IMS Database and the Effects on Descriptors � Chapter 7

Changing an IMS Database and the Effects on Descriptors

Changes to an IMS database can affect descriptor files. You must modify or re-create
the descriptors if changes to the IMS database invalidate them. You use the ACCESS
procedure to edit the affected access descriptors and view descriptors, or to create new
descriptors.

If a view descriptor differs from the access descriptor, you receive a message.
Re-create or edit the view descriptor as required. If you do not change your descriptor
files, IMS might return incorrect data to you. If the changes to the database involve
numeric data, the procedure that uses the view descriptor could terminate abnormally.
See “UPDATE Statement” on page 119 for information about editing descriptors.

Changing an item name has no effect on existing view descriptors. However, before
you make other changes to IMS databases, consider the guidelines described in the next
section.

Changes That Cause Existing View Descriptors to Fail

The following changes to an IMS database cause existing view descriptors to fail:

� inserting or deleting segments in the middle of the hierarchy if you are updating
the database

� inserting or deleting a level in multiple occurring fields

� changing the attributes of a field

� deleting fields that are referenced in a view descriptor

� inserting a field in the middle of a segment

� adding fields to the end of database segments because longer segments might not
be reflected in the RECORD statement’s SEGLNG= argument

Understanding Character Set Encoding

IMS does not use character sets or code pages and does not transcode data, so the
interpretation of the data is done by SAS. Therefore, the IMS engine must transcode all
character data going into an IMS database and all character data returned from an
IMS database.

The default encoding behavior is as follows:

� for output processing to a new IMS database (did not previously exist), the data is
written to the new database using the current SAS session encoding.

� for output processing to an existing IMS database, the new data inherits the
encoding of the existing data in the database.

� for input (read) processing, if the SAS session encoding and the encoding on the
IMS database are incompatible, the data is transcoded to the session encoding. If
the database does not have an encoding, SAS transcodes the data only if the host
platform is different.

The SAS/ACCESS interface to IMS supports the ENCODING= data set option in
order to override the encoding for processing a specific input or output file. For
example, when you are reading an IMS database using an IMS view descriptor, the
ENCODING= data set option enables you to specify an encoding that is different from

Advanced User Topics � SAS Security 131

the session encoding. The data is transcoded from the database encoding to the session
encoding as the data is read from the IMS database.

proc print data=imsview (encoding=latin2);
run;

Some of the reasons that you might want to override encoding behavior by using the
ENCODING= data set option are as follows:

� to create output in an encoding that is different from the current session encoding
or that is the encoding for an existing IMS database.

� to create output that contains mixed encodings.
� to request that no transcoding occurs.

For more information about the ENCODING= data set option, see the SAS Language
Reference: Dictionary.

Ensuring IMS Data Security

IMS Security
SAS preserves the data security that is provided by IMS and the operating system.

The Database Administrator (DBA) has control over who has access to an IMS database.
A user cannot use IMS facilities through the ACCESS procedure or the SAS/ACCESS
interface view engine unless the PSB specified provides that user with the appropriate
IMS authority. The PSB determines if a user can access an IMS database and, if so, the
kind of access the user has to the database (Get, Insert, Replace, Delete, or All).

In addition to controlling access to a database, the PSB can also control access to
specific segments and fields in the database. To control access to a specific database, the
DBA can create several view descriptors that describe the same data in the database,
and assign each view descriptor a different PSB. Each PSB should define a different
type of access to the database. For example, one PSB would enable a user to insert data
in the database and another PSB would enable a user only to read the data in that
same database. This enables the DBA to provide each user with a PSB that defines the
type of database access the DBA wants to let that user have. Each segment in a view
descriptor must be specified in the PSB that is referenced in the view.

SAS Security
To secure data from accidental update or deletion, you can do the following on the

SAS side of the interface:
� Set up all SAS/ACCESS access descriptors yourself, dropping items that contain

sensitive data so they cannot be referenced in view descriptors. Give users either
read-only or no access to the SAS library where you store the access descriptors.
Read-only access prevents users from editing access descriptors and enables them
to see only the items selected for each view descriptor.

� Set the IMSDLUPD= or IMSBPUPD= SAS system options to N to disable all
updates from SAS for a particular region type.

� Assign SAS passwords (READ, WRITE, ALTER, or PW) to a view descriptor,
access descriptor, PROC SQL view, DATA step view, or data file.

Using passwords adds an extra measure of security if you use view descriptors
that include sensitive or confidential data in a shared environment (that is, where

132 Maximizing IMS Performance � Chapter 7

SAS/SHARE software is in use). For more information about assigning passwords,
see “SAS Passwords for SAS/ACCESS Descriptors” on page 95.

Maximizing IMS Performance
Among the factors that affect IMS performance is the size of the database that is

accessed. If the database being accessed is very large, you should evaluate all SAS
programs that you want to access the database directly. When evaluating the programs,
ask the following questions:

� Does the program need all the items included in the view descriptor?
� Does the view descriptor’s WHERE statement retrieve only those records or

segments that are needed for subsequent analysis?
� Does your WHERE statement directly generate SSAs so that only a subset of the

data is passed to SAS for processing? To determine whether a WHERE statement
is generating SSAs, set the SAS system option IMSDEBUG=Y or set the number
of calls for which you want debugging information.

For HDAM, avoid non-equality conditions in a WHERE statement. See
“Identifying Inefficient SAS WHERE Conditions” on page 126 for more information.

� Can you use the DATA step’s MODIFY statement to join view descriptors (where
each view represents one path in the database) when conditions for a MODIFY
statement’s use apply?

� Is the data going to be used by more than one procedure? If so, consider requiring
the data to be extracted and placed in a SAS data file rather than accessed directly
by each procedure. (See the VIEWDESC= and OUT= options in “PROC ACCESS
Statement Options” on page 95 for information about extracting IMS data.)

Understanding the IMS Interface

IMS Interface Concepts
This section describes concepts that are exclusive to the SAS/ACCESS interface to

the IMS engine. You must understand these concepts in order to successfully use the
interface. This section describes the following concepts:

� flattened file concept
� missing values
� special fields
� BY variables

Understanding the Flattened File Concept
When the IMS engine creates SAS observations from a hierarchical database, it must

flatten out the data. The flattened file concept means that SAS flattens the hierarchical
levels and treats one path of data, including the root segment, parent segments, and
child segments, as one SAS observation. If the root segment or any parent segment has
children, the parent segment is repeated for each child segment’s data. Therefore, each
observation contains all the parent segments above the child segment.

For example, if you access the data in the database shown in Figure 7.1 on page 133,
the IMS engine will return data from the segments in the following table as SAS
observations. Therefore, the view descriptor would have to define four segment types.

Advanced User Topics � Understanding the Flattened File Concept 133

Table 7.1 Flattened File Segments

Observation Segments returned

1 1 2 3 4

2 1 2 3 5

3 1 2 3 6

4 1 2 3 7

5 1 8 9 .

6 1 8 10 .

Figure 7.1 Flattened File Concept

B

1

2
8

3

4

5
6

7

9

10

If you use the data from these observations in a SAS procedure, it appears that the
data in segment 1 occur six times rather than only once. This can result in misleading
statistics when you use such procedures as the MEANS procedure that involves any
segment except the child segment in a database with more than two hierarchical levels.
It can also be a problem in second-level data because root data repeats. To avoid
misleading statistics that can result from flattened files, create view descriptors that
describe data in only one hierarchical level. Or perform statistical operations using
data from only the lowest level that is accessed by the view descriptor.

134 Using the *U Command Code � Chapter 7

Using the *U Command Code
The IMS engine generates navigational SSAs to traverse and flatten the database

hierarchy. Because sequential calls perform this task, the database’s current position is
an important issue. (See “Database Position” on page 28 for more information.)

Using a *U command code ensures the current database position on the proper
parent segment as a DL/I call moves down the hierarchy to the next target segment
(the segment named in the last SSA). *U on the immediate parent of the target means
that even if the parent is unqualified, the position indicator remains there and does not
move to a child (target segment) that belongs to a different parent occurrence.

For example, when DL/I processes a Get or ISRT call, it establishes a position on the
segment occurrence that satisfies the call at each level in the path of the segment
(target) that you are retrieving or inserting. A *U command code on an SSA in a Get or
ISRT call tells DL/I not to move from the established database position at the level of
the SSA when trying to satisfy the call. You use an ISRT call and I/O or TP PCBs to
insert messages to the IMS/ESA control region message queues when a SAS program is
executing in a BMP region. See “ISRT Calls to Message Queues” on page 212.

Handling Missing Values
This section describes how the SAS/ACCESS interface to IMS handles missing data

values. It also describes how the DB Content field affects how data is displayed and
stored in the database.

If you create a view descriptor to add an IMS-DL/I database segment and fields in
that segment are not defined, the IMS engine writes low values to the database fields
that are not included in the descriptor. The engine does so because it does not know
that the fields exist.

If there are missing values in a SAS data set that you use to add or update an IMS
database, the IMS engine writes zeros to the database for numeric fields and blank
spaces to the database for character fields unless you specify a special format (B, L, or
H) for the DBCONTENT= argument of the ITEM= statement. DBCONTENT= affects
how the engine updates the fields. (See “ITEM= Statement” on page 108 for more
information about special formats.)

Conversely, if a field is defined with a DBCONTENT= value and the database
retrieves that value (blanks, low values, or high values) in the field, then the IMS engine
passes missing values to SAS. In addition, if a view descriptor describes more than one
level in a database, and not all the levels exist for one database record, the IMS engine
fills the missing segment occurrence with missing values in the SAS observation.

Using BY Variables
If you specify an IMS view descriptor as input to a SAS procedure that uses a BY

variable, you must either
� create a SAS data file from the IMS data (that is, extract the data) and sort the

data using that variable. You then specify the newly created data file in your
procedure.

� reference a SAS variable associated with a database index in the BY statement;
that is, the BY variable must be defined as the index key.

Advanced User Topics � Handling Special Fields 135

Handling Special Fields

Handling Fields That Occur Multiple Times
An item or a group in an IMS database segment can occur more than one time. For

example, in the example database ACCTDBD, the two phone number fields, home
phone and office phone, could be defined in your access descriptor as one field that
occurs two times. To do this, specify OCCURS=2 in the ITEM= statement for the phone
number field when you create the access descriptor. When you save the access
descriptor, the descriptor is expanded to show fields for two phone numbers. When the
IMS engine reads the database, it retrieves two phone numbers for each customer.

Fields that occur multiple times in the database can be nested only three levels
deep, which creates a three-dimensional table. The following example shows the
definition of a record with fields that occur multiple times, nested three levels deep:

01 Automatic Teller Record
02 ATM Information
03 ATM Location (occurs 20 times)

04 Location
04 ATM Transaction Information (occurs 7 times)

05 Account Type
05 Transaction Time
05 Transaction (occurs 2 times)

06 Transaction Type
06 Transaction Amount

After you have saved an access descriptor, you cannot change the number in the
OCCURS= argument. Instead, you have to delete an item and re-enter it with the
correct number in OCCURS=.

Handling Redefined Fields
Redefined fields are fields that have been defined with more than one data type. For

example, some records in a database might have character values stored in a certain
field, and other records in the same database might have numeric values stored in that
same field. You could handle this by defining the field as $11. in one access descriptor
and 11. in another access descriptor based on the same database. When you create
view descriptors for the database, use a WHERE statement to retrieve only the
appropriate values for the field. This can often be done by specifying a particular record
type or other code in the WHERE statement.

Handling Segments of Varying Length
If you work with a segment that contains a field that varies in length, specify the

maximum length of the varying field for SEGLNG= when you define the segment in the
access descriptor. When IMS retrieves the entire segment, it fills in the varying portion
with missing values if it did not retrieve any data for that portion of the segment.

136 Handling Special Fields � Chapter 7

Handling GROUP Keys in Descriptor Files
To support a definition of a GROUP field as a key and to be able to have access to

the GROUP items, you need to define a dummy field for this key.
In IMS, GROUPs enable the same portion of data in a buffer to be assigned different

logical names. For example, a field that begins at offset 1 for a length of 15 can be
named FIELD1. Other fields can be defined within FIELD1, such as in FIELD2,
FIELD3, and FIELD4 that begin at offsets 1, 6, and 11, respectively (where each has a
length of 5).

Because no SAS variable name can be specified in the GROUP= statement, no single
reference can be made to the group in the WHERE criteria. Therefore, even if a valid
SEARCH or SEQ name exists for the GROUP in the DBD, the IMS engine cannot
qualify calls that are based on the group itself.

A simple solution is to define the entire group as an item and to assign the SAS
variable name and SEARCH name appropriately. Then you can specify a WHERE
statement in your view descriptor or application and the IMS engine will build qualified
SSAs. A problem remains if the application wants access to the components of the
GROUP. In this case, you must reference the view descriptor in a DATA step to
SUBSTR out the parts and store them in separate SAS variables.

Using Dummy Fields for GROUP Keys
You can define a dummy field in the segment for a GROUP key in order to permit a

WHERE clause reference for qualified SSAs and to access the composite fields. The
GROUP statement defines the group but you can take it a step further. You add a
dummy field to the end of the segment definition as an ITEM with a length that is
equal to the entire GROUP and a SEARCH= value equal to the DBD SEARCH or SEQ
field name from the DBD (the GROUP SEARCH= also has this value). The SEGLNG
value is increased for this field.

By using a dummy field for the GROUP, you can specify in your view descriptor a
WHERE clause as follows:

WHERE sas-dummy-name EQ value

In this case, the IMS engine locates the dummy field in the view descriptor through
the SAS variable name in the WHERE clause. It uses its SEARCH= value to qualify
the SSA. When the data comes back to the buffer, the true data is in the GROUP
portion of the segment definition and its component values are stored in the SAS
variables that are associated with the items that are defined for the GROUP.

Also, by marking the GROUP itself as the key (with the KEY= argument),
navigational SSAs that are generated by the IMS engine for sequential GN calls will
refer to the correct buffer location for the data. The navigational SSAs will use the
correct SEARCH= value in the SSA.

CAUTION:
You must never refer to the dummy field as the key (with KEY=) because doing so would
force the IMS engine to use the dummy buffer location to qualify navigational SSAs for GN
calls. This would cause problems. �

Below is an example of an access descriptor and a view descriptor based on the
ACCTDBD. The GROUP key is on home phone, which has a dummy field (GROUP
STUFF) defined for it.

proc access dbms=ims;
create work.account.access;
dbd=acctdbd dbtype=hdam;
record=’customer_record’ sg=customer sl=225;

item=soc_sec_number lv=2 dbf=$11. key=u

Advanced User Topics � Handling Special Fields 137

se=ssnumber;
item=customer_name lv=2 dbf=$40.

se=custname;
item=addr_line_1 lv=2 dbf=$30.

se=custadd1;
item=addr_line_2 lv=2 dbf=$30.

se=custadd2;
item=city lv=2 dbf=$28.

se=custcity;
item=state lv=2 dbf=$2.

se=custstat;
item=country lv=2 dbf=$20.

se=custland;
item=zip_code lv=2 dbf=$10.

se=custzip;
group=home_phone lv=2

se=custhphn;
item=’area code’ lv=3 dbf=$3.
item=filler1 lv=3 dbf=$1.
item=phone_number lv=3 dbf=$8.
item=office_phone lv=2 dbf=$12.

se=custophn;
item=’group stuff’ lv=2 dbf=$12.

se=custhphn;
list all;

create work.phone.view psbname=acctsam pcbindex=2;
select soc_sec_number customer_name ’area code’

’phone number’ ’group stuff’;
list view;

run;

proc print data=work.phone;
var soc_sec_number customer_name ’area code’

’phone number’;
where ’group stuff’ = ’803-657-1346’ or

’group stuff’ = ’803-657-1687’;
run;

The following output shows the results.

Output 7.1 Results of a Dummy Field for a GROUP Key

The SAS System

OBS soc_sec_number customer_name ’area code’ ’phone number’

1 436-42-6394 BOOKER, APRIL M. 803 657-1346
2 178-42-6534 PATTILLO, RODRIGUES 803 657-1346
3 434-62-1234 SUMMERS, MARY T. 803 657-1687

Using Filler Notation in ITEM=

It is important that access descriptor segment definitions not omit ITEM and
GROUP references for fields that are embedded in the segment. Database segments

138 Handling Special Fields � Chapter 7

might contain fields (contiguous or discontiguous) that applications might not need to
access. In these cases, it is correct not to define them in SAS/ACCESS view descriptors.
For performance reasons, it is recommended that applications not define them so that
the IMS engine does not invoke conversion routines to convert data that will not be
used.

Sites commonly refer to undesired portions of the data buffer by using the FILLER
notation in the ITEM= statement, and by defining the DBC (DB Content) as $CHAR. If
the undesired portion of the segment lays beyond all the desired segment fields,
applications do not have to define these portions of the segment. However, you must
make sure that the SEGLNG value for the segment is equal to the length of the entire
segment and not just to the portion of the segment that they are interested in defining.

When the undesired fields are embedded between desired fields, you must use the
FILLER notation or something similar (FILLER is a reserved word in COBOL but not
in SAS). SAS uses relative offsets to locate defined fields in the buffer when converting
data from the IMS buffer to the SAS program data vector (PDV). By using the field
lengths from the DBC, SAS determines the offset and length in the IMS buffer for the
current field as needed to map to the PDV. If a field or series of fields is undesired,
information must be supplied about placement and length so that SAS can move
correctly to the next valid field to be mapped.

FILLER fields can be coded as DBC of $CHAR, which requires no conversion if
selected for a view descriptor. In most cases FILLER fields are not selected. By
preserving the relative offsets of fields within the buffer using FILLER definitions, the
IMS engine can correctly map data that is requested by the application or view
descriptor to the PDV.

Below is an example of a root segment for the ACCOUNT database with all of the
fields defined from the DBD.

record=’customer_record’ segment=customer
seglng=225;

item=soc_sec_number lv=2 dbf=$11.
search=ssnumber key=y;

item=customer_name lv=2 dbf=$40.
search=custname;

item=’address info’ lv=2;
item=addr_line_1 lv=3 dbf=$30.;
item=addr_line_2 lv=3 dbf=$30.;
item=city lv=3 dbf=$28.;
item=state lv=3 dbf=$2. ;
item=country lv=3 dbf=$20.;
item=zip_code lv=3 dbf=$10.;
item=home_phone lv=2 dbf=$12.;
item=office_phone lv=2 dbf=$12.;

Assuming that none of your view descriptors would ever require phone information,
you could code the following:

record=’customer_record’ segment=customer
seglng=225;

item=soc_sec_number lv=2 dbf=$11.
search=ssnumber key=y;

item=customer_name lv=2 dbf=$40.
search=custname;

item=’address info’ lv=2;
item=addr_line_1 lv=3 dbf=$30.;
item=addr_line_2 lv=3 dbf=$30.;
item=city lv=3 dbf=$28.;

Advanced User Topics � Data Retrieval 139

item=state lv=3 dbf=$2. ;
item=country lv=3 dbf=$20.;
item=zip_code lv=3 dbf=$10.;

Note that the SEGLNG= value does not change even though two fields at the end are
dropped.

By comparison, assume that the application needs everything except the address
information:

record=’customer_record’ segment=customer
seglng=225;

item=soc_sec_number lv=2 dbf=$11
. search=ssnumber key=y;

item=customer_name lv=2 dbf=$40.
search=custname;

item=’filler’ lv=2 dbf=$char60.;
item=city lv=3 dbf=$28.;
item=state lv=3 dbf=$2. ;
item=country lv=3 dbf=$20.;
item=zip_code lv=3 dbf=$10.;
item=home_phone lv=2 dbf=$12.;
item=office_phone lv=2 dbf=$12.;

Here, the FILLER preserves 60 bytes so that view descriptors that reference fields
past the filler can get data mapped correctly from the IMS buffer to the PDV variables
based on the relative offset information. Once again, SEGLNG= does not change.

IMS Engine Calls to the Database

Creating the ACCESS Descriptor
To create an access descriptor using the ACCESS procedure, you must first enter the

database definition. IMS does not store descriptive information about databases in a
dictionary or database. After you have created an access descriptor, you can select
variables from one path of data when you create a view descriptor. The IMS engine is
designed to get its information to build its own SSAs from the view descriptors and any
supplied WHERE clause; these views are based on access descriptors that define the
DL/I databases. The IMS engine uses the information stored in the view descriptor to
generate DL/I calls and to format the results of those calls into SAS observations. By
design, view descriptors cannot access IMS/ESA control region message queues.
Therefore, the IMS engine interface is not able to access the message queues if it is
executing in a BMP region.

Data Retrieval
The IMS engine sequentially processes database data in order to flatten IMS records

when no WHERE criteria exist. All data in the path specified by the view descriptor is
returned in the order in which it was stored in the database when you use unqualified
Get-Next (GN) processing. Therefore, the IMS engine uses qualified segment search
arguments (SSAs) to navigate the database path and maintain proper positioning,
basing all qualified Get calls on the results of the previous call. You can use SAS
WHERE statements to perform some level of direct access to a database.

140 Data Retrieval � Chapter 7

You can see an example of this process by using the view descriptor VLIB.CHKDEB,
which describes the CUSTOMER, CHCKACCT, and CHCKDEBT segments in the
ACCTDBD database. First, the IMS engine issues an unqualified Get Unique (GU) call
to position itself at the beginning of the database. If the CUSTOMER segment were the
only segment in the ACCTDBD database, the IMS engine would then issue qualified
Get Next (GN) calls for CUSTOMER until it reached the end of the database. However,
because the ACCTDBD database is a multilevel database and the view descriptor
defines more than the root segment, the processing is more difficult. To obtain the
dependent segment, the IMS engine must use the value returned in the I/O area for the
field designated as the key in order to build a qualified SSA for the parent segment (in
this case the root segment).

Next, the IMS engine issues a Get Next Within Parent (GNP) call by concatenating
the qualified SSA for the root segment with an unqualified SSA for the next level down
in the hierarchy. The engine then takes the value of the field designated as the key field
of that segment (as defined originally in the access descriptor) from the I/O area to
generate a qualified SSA for that level. The next database call is a GNP with the two
qualified SSAs concatenated with an unqualified SSA for the next level down in the
hierarchy. The engine continues to combine qualified SSAs with an unqualified SSA for
the next lowest level down the hierarchy until the lowest level (as defined in the view
descriptor) is retrieved, or until a status of GE is returned; GE indicates no segment
occurrence.

The following figure shows the segments that are described by the view descriptor,
VLIB.CHKDEB, and the order in which the segments are accessed by IMS. The calls
that are generated by the IMS engine to navigate the database are also described. Note
that one SAS observation is made up of one complete path of data. If there is no child
segment, the IMS engine passes missing values in the fields for that segment to SAS.

Figure 7.2 ACCTDBD Segments That are Described by VLIB.CHKDEB

CHCKACCT
4

5

6
CHCKACCT

7

CHCKDEBT
8

9

CHCKDEBT
10

11

CUSTOMER
1

2

3

Shown below is the call output that is generated by the IMS engine when it
navigates the database (based on the preceding figure). It is printed to the SAS log by
using SAS IMSDEBUG=Y. It shows how the IMS engine uses the *U command code to

Advanced User Topics � Data Retrieval 141

maintain parentage in cases where no key field has been defined for one or more
hierarchical levels in the view descriptor. See “Using the *U Command Code” on page
134 for more information.

GU gets CUSTOMER 1
Status Code=

GNP
CUSTOMER*U-(SSNUMBEREQ667-73-8275) gets CHCKACCT 4
CHCKACCT*--
Status Code=

GNP
CUSTOMER*U-(SSNUMBEREQ667-73-8275) gets CHCKDEBT 8
CHCKACCT*U-(ACNUMBEREQ345620145345)
CHCKDEBT*--

Status Code=

GNP
CUSTOMER*U-(SSNUMBEREQ667-73-8275) gets CHCKDEBT 9
CHCKACCT*U-(ACNUMBEREQ345620145345)
CHCKDEBT*--

Status Code=

GNP
CUSTOMER*U-(SSNUMBEREQ667-73-8275)
CHCKACCT*U-(ACNUMBEREQ345620145345)
CHCKDEBT*--

Status Code=GE

GNP
CUSTOMER*U-(SSNUMBEREQ667-73-8275) gets CHCKACCT 5
CHCKACCT*--
Status Code=

GNP
CUSTOMER*U-(SSNUMBEREQ667-73-8275) gets CHCKDEBT 10
CHCKACCT*U-(ACNUMBEREQ345620154633)
CHCKDEBT*--

Status Code=

GNP
CUSTOMER*U-(SSNUMBEREQ667-73-8275) gets CHCKDEBT 11
CHCKACCT*U-(ACNUMBEREQ345620154633)
CHCKDEBT*--

Status Code=

GNP
CUSTOMER*U-(SSNUMBEREQ667-73-8275)
CHCKACCT*U-(ACNUMBEREQ345620145345)

142 Data Retrieval � Chapter 7

CHCKDEBT*--

Status Code=GE

GNP
CUSTOMER*U-(SSNUMBEREQ667-73-8275) gets CHCKACCT 6
CHCKACCT*--
Status Code=

GNP
CUSTOMER*U-(SSNUMBEREQ667-73-8275)
CHCKACCT*U-(ACNUMBEREQ345620180723)
CHCKDEBT*--

Status Code=GE

GNP
CUSTOMER*U-(SSNUMBEREQ667-73-8275)
CHCKACCT*--

Status Code=GE

GN
CUSTOMER*-- gets CUSTOMER 2
Status Code=

GNP
CUSTOMER*U-(SSNUMBEREQ434-62-1234) gets CHCKACCT 7
CHCKACCT*--
Status Code=

GNP
CUSTOMER*U-(SSNUMBEREQ434-62-1234)
CHCKACCT*U-(ACNUMBEREQ345620104732)
CHCKDEBT*--

Status Code=GE

GNP
CUSTOMER*U-(SSNUMBEREQ434-62-1234)
CHCKACCT*--

Status Code=GE
GN
CUSTOMER*-- gets CUSTOMER 3
Status Code=

GNP
CUSTOMER*U-(SSNUMBEREQ436-42-6394)
CHCKACCT*--

Status Code=GE

GN

Advanced User Topics � WHERE Statement Processing 143

CUSTOMER*--

Status Code=GB

Note: The data retrieval process for GSAM databases is somewhat different. After
issuing an initial close call (CLSE) to establish position at the beginning of the database,
the IMS engine uses unqualified GN calls to retrieve all the data in the database. �

WHERE Statement Processing
There are many ways to subset data in SAS by using the following tools:
� a WHERE statement in a view descriptor
� a SAS WHERE statement in a PROC or DATA step

� a PROC SQL SELECT statement’s WHERE clause
� a WHERE command in the SAS/FSP procedures

� a SAS data set WHERE option

These all use SAS WHERE statement syntax. You do not have to use IMS SSA
syntax with the IMS engine that runs under Version 7 and later of SAS.

The IMSI engine attempts to build SSAs from the WHERE conditions that you enter;
condition refers to the expression(s) in the WHERE statement, clause, command, or
option. The engine uses these SSAs to qualify each call to the database. Therefore, IMS
returns to SAS only those observations that meet your conditions. However, if the IMS
engine cannot convert the WHERE condition into SSAs, it passes all database segments
referenced by the view descriptor to SAS, which then subsets and processes the data.
Because it uses more resources to have SAS process WHERE conditions, you should try
to use WHERE conditions that can be turned into valid SSAs when resources are a
concern.

To specify WHERE conditions that the IMS engine can use to generate SSAs, use one
of the operators supported by IMS. In the access descriptor, define search field names
from the DBD for all the variables included in your WHERE condition when possible.
See “Writing Efficient WHERE Statements” on page 125 for a list of the operators IMS
supports.

Note: IMS SSAs do not support conditions that use OR and combine elements from
two different segments. �

The engine uses the search field names that are entered in the view descriptor for
the field names in the SSAs. Therefore, if you use a SAS variable in a WHERE
condition for which you do not have a search field defined, the IMS engine cannot
generate SSAs for that WHERE condition.

If the WHERE statement or clause contains multiple conditions and any one of the
conditions cannot generate a qualified SSA, then no qualified SSA is generated from the
statement or clause.

If the IMS engine can handle a WHERE condition, it uses the SEARCH= argument
in the ITEM= statement to generate a qualified SSA. If possible, the engine combines
the qualified SSAs that it generated to navigate the database with any WHERE
condition SSAs. If both SSAs involve the same field, only the WHERE SSA is used to
avoid a mutually exclusive situation. The engine then issues a path call to obtain the
segments in the hierarchy down to the lowest level with an item specified in the
WHERE condition. All segments in the path are retrieved and passed to SAS.
Therefore, if you use a WHERE condition from which the IMS engine can generate
SSAs, the Program Specification Block (PSB) specified in that view descriptor must let

144 Data Retrieval by Using a Secondary Index � Chapter 7

the path calls for the segments in the hierarchy above and including segments with
variables in the WHERE condition.

For example, if you enter the WHERE condition

WHERE CHCKACCT = 345620145345

the IMS engine passes the following SSAs to IMS:

CUSTOMER*D-
CHCKACCT*--(ACNUMBERREQ345620145345)

The IMS engine uses the results of this call to generate SSAs to navigate the
database further and to flatten out the IMS record as defined in the view descriptor.
The engine combines these navigational SSAs with the SSA that it generated from the
WHERE condition for the CHCKACCT segment. The engine continues processing and
retrieves the view descriptor’s lowest level segment (CHCKDEBT), which is a child of
the CHCKACCT segment. CHCKACCT has an ACNUMBER value that is equal to
345620145345 until the engine does not find another CHCKDEBT segment (status code
GE).

To improve the efficiency of using a WHERE condition to subset your data, use the
operators supported by IMS. Enter the search field names of all variables in the
WHERE condition so that the IMS engine can pass only a subset of data to SAS for
further processing. Use the SAS system option IMSDEBUG=Y to see whether your
WHERE condition is generating SSAs directly.

Note: For GSAM databases, the IMS engine always passes WHERE clauses to SAS
for processing. �

Data Retrieval by Using a Secondary Index
The SAS/ACCESS interface enables you to take advantage of secondary indexes in

IMS. A secondary index enables a SAS application to complete the following tasks:

� Access a segment type in the database in a sequence other than the sequence that
is specified by the key field. For example, the application might need to access a
database by phone numbers—a field in the root segment of the database—rather
than by the Social Security number, which is the segment’s key.

� Change the view of the database data based on a condition in a dependent
segment in the database. For example, a banking application might need to access
the database (normally accessed by the Social Security number, the root segment’s
key field) by the checking account number or the savings account number, which
are key fields in dependent segments to the root segment.

Because IMS stores root segments in the sequence of their key fields, an application
that accesses the data in another order would be inefficient. A database administrator
(DBA), in conjunction with the SAS application user analyst or programmer, determines
if a secondary index is needed and assists in laying out the secondary index. By using
secondary indexing, IMS can go directly to a segment based on a field that is not the
key field.

You can define your access descriptors and view descriptors so that they can access
secondary indexes, as described in this section.

In IMS, when an application requests that a segment be returned based on the
database call and SSA combination, the segment that is returned is called the target
segment. If an application requests only one segment, that segment becomes the target
segment. If a sequence of SSAs is used, then the lowest level segment retrieved in the
hierarchy is the target segment. If you issue a path call for multiple segments, all the
segments are returned to the I/O area.

Advanced User Topics � Combining Segments to Define Descriptors 145

To use secondary indexes with SAS applications, you have to assign certain IMS
parameters and use certain arguments when you create an access descriptor. The PCB
that you use must specify the PROCSEQ parameter, which causes IMS to use the
secondary index. You also might need to use the PCBINDX= argument when you create
a view descriptor so that the correct PCB is used by the engine. The secondary index is
automatically accessed when these parameters are assigned.

To create a secondary index, the DBD for the database must contain XDFLD
statements that do the following:

� define the name of an indexed field that is associated with an index target
segment type

� identify the index source segment type

� identify the index source segment fields that are used in creating a secondary
index.

One XDFLD statement is required for each secondary index relationship.

Combining Segments to Define Descriptors
This section lists ways in which target and source segments can be related and,

therefore, how you should define your descriptors in order to access the IMS data
through a secondary index.

� When the source segment and the target segment are the same, and the target
segment is the root segment the following is true:

The source segment supplies the field(s) values that comprise the secondary
index. The secondary index stores these values in order with other information
that specifies where the target segment is located for any value of the secondary
index.

The XDFLD statement contains the NAME= value that is used in the
SEARCH= argument, because doing so gives the secondary index the same name
as will be used in the application’s SSAs.

� When the source segment and the target segment are the same, and the target
segment is not the root segment the following is true:

The database is conceptually restructured. The DBA and the SAS applications
analyst or programmer lay out how the database will look conceptually. Physically,
the database is still the same. This causes the SAS application to access the data
by using the secondary index data structure of the database. For this case, in
addition to the scenario described in the first item of this list, the entire access
descriptor definition must describe the secondary index data structure and not the
primary structure.

� When the source segment and the target segment are not the same, and the target
segment is the root segment the following is true:

There is no secondary index data structure because the target segment is the
root segment. However, the target and source segments are separate segments in
the database.

In order for you to create an access descriptor using separate segments, you
must add a dummy field to the end of the root segment. This dummy field must
contain a length that matches the field(s) length for the target segment key value.
In addition, the SEGLNG value for the entire root segment must be increased in
the DBD for this additional field. Any valid SAS name can be assigned to this
dummy field, but the SEARCH= value must be the XDFLD name for the field from
the DBD.

146 Data Modification Processing � Chapter 7

In essence, the dummy field is a virtual field in the access descriptor definition
for the root. It does not physically exist there, but a SAS application can submit
SSA references for the target (in this case the root) that is qualified on this field.

For example, consider a SAS application that uses the following WHERE
statement:

WHERE sasname EQ value

Sasname is the SAS variable name for the virtual field and value is a value for
the field in the source segment. The IMS engine properly builds a SSA for the
target (root) that is qualified by using the XDFLD name for the field and the value
from the WHERE clause.

� When the source segment and the target segment are not the same, and the target
segment is not the root the following is true:

This is the most complicated. It combines the scenarios described in the previous
two list items. The same dummy field must be added to the target segment as in
the previous list item. In addition, the entire access descriptor must map to or
define the secondary data structure that results from the target not being the root.

Data Modification Processing
Modifying a hierarchical database such as an IMS database can be complicated.

Therefore, you need to know how the IMS engine operates in order to perform database
modifications.

If you plan to use a view descriptor to update the database, the IMS engine requires
that you designate one search field as a key (that is, one key field) for each hierarchical
level in the database. You designate the key field when you create the access descriptor
on which the view descriptor is based. The key fields must be selected in the view
descriptor.

Note: The search field that you designate as the key must be defined in the DBD as
a key field; otherwise, updating results might be unpredictable. In addition, you cannot
skip hierarchical levels in a view descriptor that you want to use to update the
database. Because the IMS engine uses path calls to perform most updates, no ROLB
(ROLLBACK) calls are required. If a path call fails, the engine returns an error to SAS
and no update is performed. �

The engine, by default, issues checkpoints at the beginning and end of the update
process. You can use the AUTOSAVE option with SAS/FSP software to increase the
frequency of issuing checkpoints. Your update PSB must enable path call processing,
and an I/O PCB must be included for checkpoint calls.

The only time an update is performed with multiple DL/I calls is when you request
both an update and an insert. For example, you could use the FSEDIT procedure to
update a CUSTOMER segment and, on the same display, enter information to insert a
new CHCKACCT segment under the CUSTOMER parent segment you just modified. In
this case, if the insert call fails after the engine has processed the modification, the IMS
engine issues another update call that replaces the modified parent segment with the
original data in that segment. This process uses fewer resources than a ROLB call.
(See Chapter 9, “How to Use the IMS DATA Step Interface,” on page 195 for
information about ROLB and other non-database access calls.)

Delete Processing
You can delete only the lowest existing segment defined in the view descriptor.

Advanced User Topics � Update Processing 147

CAUTION:
If you delete a segment that has children that are not defined in the view descriptor, the
children are also deleted. �

For example, if your view includes the CUSTOMER and CHCKACCT segments only
and you delete a CHCKACCT segment, any CHCKDEBT segments under CHCKACCT
are also deleted even though they are not defined in the view descriptor.

If your view descriptor includes all the hierarchical levels but a particular segment
has no children, the lowest existing segment is deleted. For example, if a CUSTOMER
segment occurrence has no CHCKDEBT segments under a CHCKACCT segment,
issuing the DELETE command deletes the CHCKACCT segment. If you then have only
a CUSTOMER segment and you issue the DELETE command, the CUSTOMER
segment is deleted.

Note: You cannot delete segments in a GSAM database. �

Add Processing
SAS/FSP software provides three ways to insert new data into an IMS database:

� To add a path of data to your database, enter the new data using the FSVIEW
procedure (with the MODIFY command) or the FSEDIT procedure, and issue the
ADD command. The IMS engine adds all the data that you entered as a new path
of data in your database.

� To add a new child segment under an existing root segment that does not have any
children, use PROC FSVIEW (with the MODIFY command) or PROC FSEDIT to
display the existing segment. Enter the child data on the screen below the existing
parent segment.

� To add a twin segment to an existing child segment, you must first use PROC
FSVIEW (with the MODIFY command) or PROC FSEDIT to display the segment
to which you want to add a twin. Enter the new data by typing over the existing
child, making sure you change the key field of the segment to which you want to
add a twin. The IMS engine then inserts a twin segment. Any segments which
appear on the screen under the changed segment are also added under the new
twin segment in a path call.

Note that you can add segments only at the end of a GSAM database.

You can also use the APPEND procedure, DATA step MODIFY statement, or an
INSERT statement in the SQL procedure to add data to an IMS database. To insert a
path of data, use a view descriptor that describes the entire path to be inserted. To
insert child segments under a parent segment, enter the key field value of the parent
segment. The new data will be inserted under the existing parent.

Update Processing
The IMS engine compares the data you entered to the data that is stored in the I/O

area from the last call. If you change any data in a path of data, the engine replaces
only the segments that have changed in the path. If you change the key field defined in
the view descriptor, the IMS engine inserts a twin segment occurrence under the
current parent segment.

Note: You cannot update segments in a GSAM database. �

148

149

P A R T4

The IMS DATA Step Interface: Reference

Chapter 8.Overview of the IMS DATA Step Interface 151

Chapter 9.How to Use the IMS DATA Step Interface 195

Chapter 10.Advanced Topics for the IMS DATA Step Interface 217

150

151

C H A P T E R

8
Overview of the IMS DATA Step
Interface

Introduction to the IMS DATA Step Interface 151
DATA Step Statement Extensions 152

Overview of DATA Step Extensions 152

DL/I Input and Output Buffers 153

An Introductory Example of a DATA Step Program 153

Example of Using DATA Step Views 157
The DL/I INFILE Statement 160

Introduction to the DL/I INFILE Statement 160

PCB Selection Options 161

Other DL/I INFILE Options 162

Using the DL/I INFILE Statement 166

The DL/I INPUT Statement 170
Introduction to the DL/I INPUT Statement 170

Example 1: A Get Call 171

Using the DL/I INPUT Statement 173

Checking Status Codes 173

Use of the Trailing @ 173
Example 2: Using the Trailing @ 174

The DL/I FILE Statement 176

The DL/I PUT Statement 176

Introduction to the DL/I PUT Statement 176

Example 3: An Update Call 177
Using the DL/I PUT Statement 178

REPL Call 178

Example 4: Issuing REPL Calls 179

DLET Call 181

Example 5: Issuing DLET Calls 181

IMS DATA Step Examples 182
Overview of IMS DATA Step Examples 182

Example 6: Issuing Path Calls 182

Example 7: Updating Information in the CUSTOMER Segment 185

Example 8: Using the Blank INPUT Statement 188

Example 9: Using the Qualified SSA 191

Introduction to the IMS DATA Step Interface
Special SAS extensions for the standard SAS INFILE and FILE statements enable

you to format DL/I calls in a SAS DATA step. These extended SAS statements and
their corresponding INPUT and PUT statements are called DL/I INFILE, DL/I INPUT,
DL/I FILE, and DL/I PUT to distinguish them from the standard SAS statements. An

152 DATA Step Statement Extensions � Chapter 8

IMS DATA step can contain standard SAS statements as well as the SAS statements
that are used with the SAS/ACCESS interface to IMS.

The beginning of this section describes the syntax of the SAS statement extensions
that are used with the SAS/ACCESS interface to IMS. The next section describes basic
DATA step programming techniques and considerations for this IMS interface. The last
section consists of sample DATA step programs that access DL/I databases. The sample
programs integrate many of the concepts that are discussed throughout the section.

This section assumes that you understand the SAS DATA step and the statements
used in the DATA step. See SAS Language Reference: Dictionary for details about the
statements, options, and syntax in SAS DATA steps.

There are many references to DL/I processing in this description, such as DL/I calls
and status codes. If you are not familiar with the DL/I information, be sure to refer to
the appropriate IBM documentation for complete descriptions. You should also read this
document’s Chapter 2, “IMS Essentials,” on page 11 which gives an overview of DL/I
concepts that are important in writing DATA step programs for the DATA step interface
to IMS.

DATA Step Statement Extensions

Overview of DATA Step Extensions
In a DATA step, the SAS/ACCESS interface to IMS uses special extensions of

standard SAS INFILE and FILE statements to access DL/I resources. These extended
statements are referred to as the DL/I INFILE and DL/I FILE statements, and their
corresponding INPUT and PUT statements are referred to as DL/I INPUT and DL/I
PUT statements.

DL/I INFILE and DL/I INPUT statements work together to issue DL/I get calls. The
DL/I INFILE, DL/I FILE, and DL/I PUT statements work together to issue DL/I update
calls.

The DL/I INFILE statement tells SAS where to find the parameters needed to build
DL/I calls. Special DL/I INFILE statement extensions perform the following tasks:

� Name the PSB.
� Specify a SAS variable or a number that selects the appropriate PCB in the PSB.
� Specify a SAS variable that contains DL/I call functions (for example, GN or

REPL).
� Specify SAS variables that contain SSAs for the DL/I call.
� Name SAS variables to contain information returned by the call, for example, the

status code and retrieved segment name.

The DL/I INFILE statement is necessary to identify the parameters for a call.
However, the call is not actually formatted and issued until a DL/I INPUT statement is
executed for get calls or DL/I FILE and DL/I PUT statements are executed for update
calls.

The DL/I INFILE statement is required in any DATA step that accesses a DL/I
database because the special extensions of the DL/I INFILE statement specify variables
that set up the DL/I calls. When a DL/I INFILE statement is used with a DL/I INPUT
statement, get calls are issued. When a DL/I INFILE statement is used with DL/I FILE
and DL/I PUT statements, update calls are issued. Both get and update calls can be
issued in one DATA step.

The syntax and use of the DL/I INFILE, DL/I FILE, DL/I INPUT, and DL/I PUT
statements are described in detail later in this section.

Overview of the IMS DATA Step Interface � An Introductory Example of a DATA Step Program 153

DL/I Input and Output Buffers
Two separate buffers are allocated by SAS as I/O areas for data transfer. The input

buffer is for DL/I segments retrieved by get calls. The output buffer is for data written
by an update call. The length of each buffer is specified by the LRECL= option in the
DL/I INFILE statement. The default length for each buffer is 1,000 bytes.

The input buffer is formatted by DL/I in the same way an I/O area for any DL/I
program is formatted. If a fixed-length segment is retrieved, the fixed-length segment
begins in column 1 of the input buffer. If a segment of varying length is retrieved, the
length field (LL field) in IB2. format (half-word binary) begins in column 1 and the
varying-length segment data follows immediately. If a path of segments is retrieved,
the buffer contains the concatenated segments.

The format of the output buffer is like that of the input buffer. If a fixed-length
segment is written, the fixed-length segment begins in column 1 of the output buffer. If
a varying-length segment is written, the length field in IB2. format (half-word binary)
begins in column 1. The varying-length segment data immediately follows the length
field. If a path of segments is written, the buffer contains the concatenated segments.

The segment data format in the output buffer is determined by the DL/I PUT
statement and must match the original segment data format. See “Using the DL/I PUT
Statement” on page 178 for more information about how to format segment data in the
output buffer.

The format of the data in a segment is determined by the application program that
wrote the data segment originally, just as the data format in any other record is
determined by the program that writes the record. When you write an IMS DATA step
program you must know the segment’s format in order to read data from the segment
with a DL/I INPUT statement or to write data to the segment with a DL/I PUT
statement.

In most cases, you are probably not the person who originally determined the
segment data format. Segment data format information is stored in different ways at
different installations. For example, the information can be obtained from a data
dictionary, COBOL or Assembler copy libraries, source programs, a SAS macro library,
or other documentation sources. DBA staff at your installation can help you find the
segment data formats you need.

An Introductory Example of a DATA Step Program
The following example is a simple IMS DATA step program that reads segments

from a DL/I database and creates a SAS data set from data in the retrieved segments.
Next, the program processes the SAS data set with PROC SORT and PROC PRINT.

The example accesses the ACCTDBD database with a PSB called ACCTSAM.
ACCTSAM contains five PCBs; the second PCB contains a view of the ACCTDBD
database in which the CUSTOMER segment is the only sensitive segment. See
Appendix 2, “Example Data,” on page 261 for information about the databases, PSBs,
segments, and fields used in this example and other examples in this document. This
example uses the DLI option of the INFILE statement, which tells SAS that the
INFILE statement refers to a DL/I database. Other nondefault region and execution
parameters in effect include these:

� The second PCB in the specified PSB is used.
� Status codes are examined.

Defaults for other region and execution parameters in this example include these:
� A DL/I region is used.
� The DL/I calls issued are all GN (get-next) calls.

154 An Introductory Example of a DATA Step Program � Chapter 8

� No SSAs are used.
� Program access is sequential.
� PCB feedback mask data is not examined.

If you do not want to use these defaults, the special statement and product options
that you can specify for IMS are described later in this section.

The numbered comments following this program correspond to the numbered
statements in the program:

u data work.custlist;
v infile acctsam dli status=st pcbno=2;
w input @1 soc_sec_number $char11.

@12 customer_name $char40.
@52 addr_line_1 $char30.
@82 addr_line_2 $char30.
@112 city $char28.
@140 state $char2.
@142 country $char20.
@162 zip_code $char10.
@172 home_phone $char12.
@184 office_phone $char12.;

x if st = ’ ’ then
do;

file log;
put _all_;
abort;

end;
run;

y proc sort data=work.custlist;
by customer_name;

U options linesize=132;
proc print data=work.custlist;

var home_phone office_phone;
id customer_name;
title2 ’Customer Phone List’;

V proc print data=work.custlist;
var addr_line_1 addr_line_2 city

state country zip_code;
id customer_name;
title2 ’Customer Address List’;

run;

u The DATA statement references a temporary SAS data set called
CUSTLIST, which is to be opened for output.

v The INFILE statement tells SAS to use a PSB called ACCTSAM.
The DLI option tells SAS that ACCTSAM is a DL/I PSB instead of a
fileref. The statement also tells the IMS interface to use the second
PCB and to return the DL/I STATUS code in the ST variable.

w The INPUT statement causes a GN (get-next) call to be issued. The
PCB being used is sensitive only to the CUSTOMER segment, so the

Overview of the IMS DATA Step Interface � An Introductory Example of a DATA Step Program 155

get-next calls retrieve only CUSTOMER segments. When the
INPUT statement executes, data is retrieved from a CUSTOMER
segment and placed in the input buffer. The data is then moved to
the specified SAS variables in the program data vector
(SOC_SEC_NUMBER, CUSTOMER_NAME, and so on).

As the DATA step executes, CUSTOMER segments are retrieved
from ACCTDBD, and SAS observations that contain the
CUSTOMER data are written to the CUSTLIST data set. Because
program access is sequential, the DATA step stops executing when
the DL/I STATUS code indicates an end-of-file condition.

x The status code is checked for non-blank values. For any non-blank
status code except GB, all values from the program data vector are
written to the SAS log, and the DATA step aborts. If the status code
variable value is GB, the DATA step will terminate with an end-of-file
condition if the processing was sequential (using non-qualified
SSAs). Since this example uses no SSA, the database is processed
sequentially and no check for a status code of GB is required.

y The SORT procedure sorts the CUSTLIST data set alphabetically by
customer name.

U The PRINT procedure first prints a Customer Phone List.

V The procedure is invoked again to print a Customer Address List.

The following output shows the SAS log for this example.

156 An Introductory Example of a DATA Step Program � Chapter 8

Output 8.1 SAS LOG for Introductory IMS DATA Step Example

12 data work.custlist;
13 infile acctsam dli status=st pcbno=2;
14 input @1 soc_sec_number $char11.
15 @12 customer_name $char40.
16 @52 addr_line_1 $char30.
17 @82 addr_line_2 $char30.
18 @112 city $char28.
19 @140 state $char2.
20 @142 country $char20.
21 @162 zip_code $char10.
22 @172 home_phone $char12.
23 @184 office_phone $char12.;
24 if st ^= ’ ’ then
25 do;
26 file log;
27 put _all_;
28 abort;
29 end;
30

NOTE: The infile ACCTSAM is:
(system-specific pathname),
(system-specific file attributes)

NOTE: GB -End of database encountered
NOTE: 10 records were read from the infile (system-specific pathname).

The minimum record length was 225.
The maximum record length was 225.

NOTE: The data set WORK.CUSTLIST has 10 observations and 10 variables.

31 proc sort data=work.custlist;
32 by customer_name;
33
34 options linesize=132;

NOTE: The data set WORK.CUSTLIST has 10 observations and 10 variables.

35 proc print data=work.custlist;
36 var home_phone office_phone;
37 id customer_name;
38 title2 ’Customer Phone List’;
39

NOTE: The PROCEDURE PRINT printed page 1.

40 proc print data=work.custlist;
41 var addr_line_1 addr_line_2 city state country zip_code;
42 id customer_name;
43 title2 ’Customer Address List’;
44 run;

NOTE: The PROCEDURE PRINT printed page 2.

The following two outputs show the results of this example.

Overview of the IMS DATA Step Interface � Example of Using DATA Step Views 157

Output 8.2 Customer Phone List — Results of Introductory Example

Customer Phone List

customer_name home_phone office_phone

BARNHARDT, PAMELA S. 803-345-4346 803-355-2543
BOOKER, APRIL M. 803-657-1346
COHEN, ABRAHAM 803-657-7435 803-645-4234
LITTLE, NANCY M. 803-657-3566
O’CONNOR, JOSEPH 803-657-5656 803-623-4257
PATTILLO, RODRIGUES 803-657-1346 803-657-1345
SMITH, JAMES MARTIN 803-657-3437
SUMMERS, MARY T. 803-657-1687
WALLS, HOOPER J. 803-657-3098 803-645-4418
WIKOWSKI, JONATHAN S. 803-467-4587 803-654-7238

Output 8.3 Customer Address List — Results of Introductory Example

Customer Address List

addr_

customer_name line_1 addr_line_2 city state country zip_code

BARNHARDT, PAMELA S. RT 2 BOX 324 CHARLOTTESVILLE VA USA 25804-0997

BOOKER, APRIL M. 9712 WALLINGFORD PL. GORDONSVILLE VA USA 26001-0670

COHEN, ABRAHAM 2345 DUKE ST. CHARLOTTESVILLE VA USA 25804-0997

LITTLE, NANCY M. 4543 ELGIN AVE. RICHMOND VA USA 26502-3317

O’CONNOR, JOSEPH 235 MAIN ST. ORANGE VA USA 26042-1650

PATTILLO, RODRIGUES 9712 COOK RD. ORANGE VA USA 26042-1650

SMITH, JAMES MARTIN 133 TOWNSEND ST. GORDONSVILLE VA USA 26001-0670

SUMMERS, MARY T. 4322 LEON ST. GORDONSVILLE VA USA 26001-0670

WALLS, HOOPER J. 4525 CLARENDON RD RAPIDAN VA USA 22215-5600

WIKOWSKI, JONATHAN S. 4356 CAMPUS DRIVE RICHMOND VA USA 26502-5317

Example of Using DATA Step Views
The preceding introductory DATA step example can also be made into a DATA step

view. A DATA step view is a SAS data set of type VIEW. It contains only a definition of
data that is stored elsewhere, in this case, in a DL/I database; the view does not contain
the physical data.

A DATA step view is a stored, named DATA step program that you can specify in
other SAS procedures to access IMS data directly. A view’s input data can come from
one or more sources, including external files and other SAS data sets.

The following DATA step code is contained in a macro that is invoked twice to create
two distinct DATA step views. When the DATA step views are executed, CUSTOMER
segments are read from the ACCTDBD database and selected data values are placed in
two SAS data sets. Then each SAS data set is processed with PROC SORT and PROC
PRINT to produce the same outputs as the introductory example in “An Introductory
Example of a DATA Step Program” on page 153.

The numbered comments following this program correspond to the numbered
statements in the program:

158 Example of Using DATA Step Views � Chapter 8

u %macro custview(viewname=,p1=,p2=,p3=,p4=,p5=,
p6=,p7=,p8=,p9=,p10=);

v data &viewname / view=&viewname;
w keep &p1 &p2 &p3 &p4 &p5 &p6 &p7 &p8 &p9 &p10;
x infile acctsam dli status=st pcbno=2;

input @1 soc_sec_number $char11.
@12 customer_name $char40.
@52 addr_line_1 $char30.
@82 addr_line_2 $char30.
@112 city $char28.
@140 state $char2.
@142 country $char20.
@162 zip_code $char10.
@172 home_phone $char12.
@184 office_phone $char12.;

if st = ’ ’ then
do;

file log;
put _all_;
abort;

end;
y %mend;

U %custview(viewname=work.phone,
p1=customer_name,
p2=home_phone,
p3=office_phone);

V %custview(viewname=work.address,
p1=customer_name,
p2=addr_line_1,
p3=addr_line_2,
p4=city,
p5=state,
p6=country,
p7=zip_code);

options linesize=132;

W data work.phonlist;
set work.phone;

run;

X proc sort data=work.phonlist;
by customer_name;

run;

proc print data=work.phonlist;
title2 ’Customer Phone List’;

run;

Overview of the IMS DATA Step Interface � Example of Using DATA Step Views 159

at data work.addrlist;
set work.address;

run;
ak proc sort data=work.addrlist;

by customer_name;
run;

proc print data=work.addrlist;
title2 ’Customer Address List’;

run;

u %MACRO defines the start of the macro CUSTVIEW which allows
11 input overrides. VIEWNAME is the name of the DATA step view
to be created. The following are the other 10 overrides:

P1 name of the 1st data item name to keep.

P2 name of the 2nd data item name to keep.

P3 name of the 3rd data item name to keep.

P4 name of the 4th data item name to keep.

P5 name of the 5th data item name to keep.

P6 name of the 6th data item name to keep.

P7 name of the 7th data item name to keep.

P8 name of the 8th data item name to keep.

P9 name of the 9th data item name to keep.

P10 name of the 10th data item name to keep.

Ten data items are allowed because there are 10 input fields in
the INPUT statement for the database.

v The DATA statement names the DATA step view as specified by the
macro variable &VIEWNAME.

w The KEEP statement identifies the variables that will comprise the
observations in the output data set. In this case, there will be as
many as 10.

x This is the same code that was executed in the introductory example
in “An Introductory Example of a DATA Step Program” on page 153.

y %MEND defines the end of macro CUSTVIEW.

U %CUSTVIEW generates a DATA step view named WORK.PHONE,
which when executed produces observations containing the data
items CUSTOMER_NAME, HOME_PHONE, and OFFICE_PHONE.

V %CUSTVIEW generates a DATA step view named
WORK.ADDRESS, which when executed produces observations
containing the data items CUSTOMER_NAME, ADDR_LINE_1,
ADDR_LINE_2, CITY, STATE, COUNTRY, and ZIP_CODE.

W Data set WORK.PHONLIST is created by obtaining data using the
DATA step view WORK.PHONE.

X PROC SORT sorts WORK.PHONLIST and PROC PRINT prints it
out.

160 The DL/I INFILE Statement � Chapter 8

at Data set WORK.ADDRLIST is created by obtaining data using the
DATA step view WORK.ADDRESS.

ak PROC SORT sorts WORK.ADDRLIST and PROC PRINT prints it
out.

The DL/I INFILE Statement

Introduction to the DL/I INFILE Statement
If you are unfamiliar with the standard INFILE statement, refer to SAS Language

Reference: Dictionary for more information.
A standard INFILE statement specifies an external file to be read by an INPUT

statement. A DL/I INFILE statement specifies a PSB, which in turn identifies DL/I
databases or message queues to be accessed with DL/I calls. Special extensions in the
DL/I INFILE statement specify SAS variables and constants that are used to build a
DL/I call and to handle the data returned by the call. A limited selection of the
standard INFILE statement options can also be specified in a DL/I INFILE statement.

To issue get calls, use the DL/I INFILE statement with the DL/I INPUT statement.
To issue update calls, use the DL/I FILE and DL/I PUT statements with the DL/I
INFILE statement.

Note that there is an important difference between the standard INFILE statement
and the DL/I INFILE statement: you must use a corresponding INPUT statement with
a standard INFILE statement, but you can use a DL/I INFILE statement without a
DL/I INPUT statement. The standard INFILE statement has no effect without a
corresponding INPUT statement because the standard INFILE statement points to a
file to be read with INPUT statements. However, a DL/I INFILE statement does not
always have an accompanying DL/I INPUT statement. Instead, it can be grouped with
DL/I FILE and DL/I PUT statements. When combined with DL/I FILE and DL/I PUT
statements, the DL/I INFILE statement points to a PSB and specifies SAS variables
and constants that are used to build update calls. In other words, a DL/I INFILE does
not always imply that you are reading from a DL/I database; it is also used if you are
writing to the database.

Use the following syntax when issuing a DL/I INFILE statement:

INFILE PSBname DLI options;

PSBname
specifies the name of the PSB used to communicate with DL/I in the current DATA
step. A PSBname must be specified in a DL/I INFILE statement and must
immediately follow the keyword INFILE. (A standard INFILE statement would
specify a fileref in this position.)

All DL/I INFILE statements in the same DATA step must specify the same PSB
name. You cannot use more than one PSB in a DATA step. Therefore, the PSB
must be sensitive to all DL/I databases or message queues that you want to access.
Different PSBs can be used in different DATA steps.

Note: The PSB name cannot be the same name as a fileref on a JCL
statement. �

Overview of the IMS DATA Step Interface � PCB Selection Options 161

DLI
tells SAS that this INFILE statement refers to DL/I databases or message queues.
DLI must be specified immediately following the PSB name in a DL/I INFILE
statement.

The options described in the next two sections can appear in the DL/I INFILE
statement but are not required. Many of these options identify a SAS variable that
contains DL/I information. These variables are not added automatically to a SAS
output data set (that is, they have the status of variables that are dropped with the
DROP option). If you want to include the variables in an output SAS data set, you will
need to create separate variables and assign values to them. Most of the variables do
not need to be predefined before specification in the DL/I INFILE statement. SAS
allocates them automatically with the correct type and length. However, the SSA
variables are an exception.

PCB Selection Options

PCBNO=number
defines the first eligible PCB in the PSB (specified by PSBname). For example, if
you specify PCBNO=3, the first eligible PCB is the third PCB in the PSB. This
option enables you to bypass PCBs that are inappropriate for your program. You
can combine PCBNO= with the DBNAME= option or the PCB= option (described
later in this section) to select a particular PCB for your program.

If PCBNO= is not specified, the first eligible PCB is the first PCB in the PSB.

DBNAME=variable
specifies a SAS variable that contains a DL/I DBD name. The value of the variable
determines which of the eligible PCBs is used for the DL/I call. When DBNAME=
is specified, the eligible PCBs are searched sequentially, starting with the first
eligible PCB. Refer to the description of the PCBNO= option earlier in this section
for more information. The first eligible PCB with a DBD name that matches the
value of the DBNAME= variable is used. You must enter the variable in uppercase
letters.

For example, if PCBNO=5, DBNAME=DB, and the value of the DB variable is
ACCOUNT, SAS searches for a PCB with the DBD name ACCOUNT beginning
with the fifth PCB, which is the first eligible PCB.

The DBNAME= variable must be assigned a valid eight-character DBD name
(padded with blanks if necessary) or a blank character string before execution of a
DL/I INPUT or DL/I PUT statement that issues a DL/I call. The value of the
variable specified by the DBNAME= option can be changed between calls.

If the DBNAME= option is not specified or the DBNAME= variable contains a
blank character string, the PCB= option (described later in this section) is used to
select the appropriate PCB, if specified. If neither the DBNAME= option nor the
PCB= option is specified, the first PCB in the PSB is used for every DL/I call.

DBNAME= is convenient because you do not have to know which PCB refers to
a particular database; you need to know only the DBD name for the database you
want to access. However, if more than one eligible PCB refers to the same
database, only the first of these PCBs is used. You must specify the PCB= option
rather than DBNAME= if more than one eligible PCB refers to the same database
and you want to use any PCB other than the first one for the database.

PCB=variable
names a SAS variable that is an index for the list of eligible PCBs as defined by
the PCBNO= option. The value of the PCB= variable indicates which PCB in the

162 Other DL/I INFILE Options � Chapter 8

eligible list to use. The specified variable must be numeric and must be assigned a
value before execution of a DL/I INPUT or DL/I PUT statement. The value of the
specified variable can be changed between calls.

Consider an example that uses the PCBNO= and PCB= options. Assume that
PCBNO=3, PCB=PCBNDX, and PCBNDX has a value of 2. Since PCBNO=3, the
third PCB in the PSB is the first eligible PCB, and since PCBNDX has a value of
2, the second eligible PCB (that is, the fourth PCB in the PSB) is used.

If the DBNAME= option is also specified and the DBNAME= variable’s value is
not blank, the PCB= variable value is not used. If neither the DBNAME= option
nor the PCB= option is specified, the first eligible PCB is used for every DL/I call
by default.

Other DL/I INFILE Options

CALL=variable
names a SAS variable that contains the DL/I call function used when a DL/I
INPUT or DL/I PUT statement is executed. Variable must be assigned a valid
four-character DL/I call function code before a DL/I INPUT or DL/I PUT statement
is executed. The value must be entered in capital letters and be a valid get call
function for any DL/I INPUT statement execution (for example, ’GU ’). It must
be a valid update call function for any DL/I PUT statement execution (for example,
’REPL’). The following table shows the calls executed by DL/I INPUT statements
and those executed by DL/I PUT statements.

Table 8.1 Calls Executed by DL/I INPUT and DL/I PUT Statements

DL/I INPUT Statement DL/I PUT Statement

GU ISRT

GHU REPL

GN DLET

GHN CHKP

GNP ROLL

GHNP ROLB

GCMD CHNG

STAT LOG

POS PURG

CMD

DEQ

FLD

OPEN

CLSE

The value of the CALL= variable can be changed between calls.

Overview of the IMS DATA Step Interface � Other DL/I INFILE Options 163

If CALL= is not specified, the call function defaults to GN (get next). In this case, a
DL/I PUT statement would not have a valid call function because DL/I PUT statements
execute update calls, and should not be used.

FSARC=variable
specifies a SAS variable that contains the concatenated status code bytes of each
field search argument (FSA) of an z/OS IMS/VS Fast Path FLD call. The first
character of variable contains the first FSA status code value, the second character
contains the second FSA status code value, and so on. The specified variable is a
character variable with a default length of 200. Since each status code is one byte
in length, as many as 200 FSA status codes can be stored.

If FSARC= is not specified, the FSA status codes are not returned.

LENGTH=variable
specifies a SAS variable that contains the length of the segment or path of
segments retrieved when a DL/I get call is executed. The variable that is specified
must be numeric.

You can find the length of fixed-length segments in the DBD for the database. If
a segment has a varying length, the length information is contained in the first two
bytes of the segment, that is, in the LL field. To obtain the length data from the
LL field of the segment, simply specify the LL field in the DL/I INPUT statement:

input @1 ll pib2.
@3 loan_num
@10 terms;

Be aware that in some cases the value that is returned for the LENGTH=
variable or INFILE notes might not represent the length of the segment data
correctly. This is due to the method SAS uses to determine the length. The entire
input buffer is filled with the hexadecimal characters X’2E’ before the call is
executed. When DL/I executes the get call, segment data overwrites the X’2E’
characters until the segment data ends. SAS scans the buffer, looking for the first
occurrence of the X’2E’ sequence. If the remainder of the buffer is filled with X’2E’
or if there are 256 consecutive X’2E’s, SAS assumes that the sequence indicates
the end of the returned data and calculates the segment length. However, if the
segment data happens to contain 256 consecutive bytes of X’2E’ or end with one or
more bytes with this value, the returned length value is incorrect.

LRECL=length
specifies the length of the SAS buffers used as I/O areas when DL/I calls are
executed. The length must be greater than or equal to the length of the longest
segment or path of segments accessed. If LRECL= is not specified, the default
buffer length is 1000 bytes.

If a retrieved segment or path of segments is longer than the value of LRECL=,
DL/I overlays other data or instruction storage areas. Unpredictable results can
occur if this happens.

PCBF=variable
names a SAS variable that contains feedback values from the PCB mask data that
is generated by each DL/I call. The specified variable is a character variable with
a default length of 200.

Some of the data returned in the PCBF= variable is the same as that returned
in the SEGMENT= variable and STATUS= variable described below. Separate
options are available for segment and status data because they are more
commonly used in controlling the program flow.

If the DL/I call uses a database PCB, the mask data returned in the PCBF=
variable is formatted as shown in Table 8.2 on page 164. The format of the PCBF=

164 Other DL/I INFILE Options � Chapter 8

variable is different when a non-database PCB (an I/O PCB or TP PCB) is used in
the DL/I call. See Chapter 10, “Advanced Topics for the IMS DATA Step
Interface,” on page 217 for information about the format of the mask data for a
non-database PCB.

If PCBF= is not specified, the mask data is not returned (except segment and
status information if the SEGMENT= and STATUS= options are specified).

Particular data can be extracted from the mask data using the SAS function
SUBSTR. For example, this assignment statement extracts the value of the first
eight bytes, the DBD name. PCBMASK is the PCBF= variable:

dbdname=substr(pcbmask,1,8);

To extract data that is stored in a nonstandard format, use the INPUT and
SUBSTR functions. For example, this assignment statement extracts the value of
bytes 9 and 10, the segment level number:

seglev=input(substr(pcbmask,9,2),ib2.);

Table 8.2 Format of Data Returned in the PCBF= Variable for a Database PCB

Bytes Description

1–8 These bytes of the PCBF= variable contain the DBD name.

9–10 The level number of the last segment accessed is contained in bytes 9 and 10 in IB2. format. Level
number refers to a segment’s level in the hierarchical structure. For example, your program might
issue a qualified GN call with these SSAs:
CUSTOMER*D-(SSNUMBER =667-73-8275)
CHCKACCT*D- (ACNUMBER =345620145345)
CHCKCRDT (CRDTDATE =033195)

If segments exist to satisfy the CUSTOMER and CHCKACCT SSAs but there is no CHCKCRDT
segment with a CRDTDATE field value of 033195, the last segment accessed is the CHCKACCT
segment. CHCKACCT is at the second level of the hierarchy; therefore, the level number is 2.

11–12 The DL/I status code is contained in these bytes of the PCBF= variable. The status code can also
be obtained by specifying the STATUS= option.

13–16 Bytes 13–16 contain the DL/I processing options defined for this PCB in the PSBGEN with the
PROCOPT= parameter.

17–24 These bytes contain the name of the last segment accessed. (Normally, the reserved area of the PCB
mask occupies bytes 17–20, but the reserved data has been removed.) Consider the example for the
level number of data in bytes 9–10. In that example there are SSAs for CUSTOMER, CHCKACCT,
and CHCKCRDT segments; however, only the SSAs for CUSTOMER and CHCKACCT are satisfied.
Since CHCKACCT is the last segment accessed, these bytes contain a value of CHCKACCT.

The name of the last segment accessed can also be obtained from the variable specified by the
SEGMENT= option.

25–28 The length of the key feedback data is contained in these bytes in IB4. format. The key feedback
data is described in this table under bytes 33–200.

Overview of the IMS DATA Step Interface � Other DL/I INFILE Options 165

Bytes Description

29-32 The number of sensitive segments in the PCB is contained in these bytes in IB4. format. For
example, if you use a PCB that defines CUSTOMER and SAVEACCT as sensitive segments, these
bytes contain a value of 2.

33–200 The key feedback data is contained in bytes 33–200. Key feedback data consists of the key field of
the last segment accessed and the key field of each segment along the path to the last segment.
This is also called the concatenated key. For example, if you issue a GN call qualified with SSAs for
the CUSTOMER and CHCKACCT segments, the concatenated key consists of the values from the
SSNUMBER field of the CUSTOMER segment and the ACNUMBER field of the CHCKACCT
segment.

The maximum length of the PCBF= variable is 200. Since 32 of the 200 bytes are used by other
data from the PCB mask, the maximum length of the key feedback data in the PCBF= variable is
168 bytes. If the length of the concatenated key is greater than 168 bytes, the data is truncated.
(However, the value in bytes 25–28 reflects the actual length, not the truncated length.)

SEGMENT=variable
specifies a SAS variable that contains the name of the last segment accessed by the
DL/I call. The specified variable is a character variable with a default length of 8.

If the DL/I call is qualified (that is, if one or more SSAs are used), the name of
the lowest-level segment encountered that satisfied a qualification of the call is
returned. For example, assume that a GN call is issued with these two SSAs:

SAVEACCT*D-(ACNUMBER =345620145345)
SAVECRDT(CRDTDATE =033195)

If a SAVEACCT segment is encountered with the correct value for ACNUMBER
but there is no segment with the correct CRDTDATE, then the value SAVEACCT
is returned to the SEGMENT= variable.

If the call is unqualified (no SSAs used), the name of the retrieved segment is
returned. This information can be useful in sequential-access programs with more
than one sensitive segment type. For example, assume that a program employs a
PCB that is sensitive to the CUSTOMER, CHCKACCT, and CHKCRDT segments
and issues unqualified calls. You can specify the SEGMENT= option so that the
name of the returned segment is available.

If SEGMENT= is not specified, the last segment’s name is not returned to the
program unless the PCBF= option is used.

SSA=variable
SSA=(variable, variable,...)

specifies from 1 to 15 SAS variables that contain values used as DL/I SSAs for the
calls executed by DL/I INPUT or DL/I PUT statements. Each SSA= variable value
must be entered in capital letters and must be assigned a complete DL/I SSA
value (qualified or unqualified) or be set to blanks before the execution of the DL/I
INPUT or DL/I PUT statement. Each SSA= variable value must be character and
must be assigned a length (for example, with a LENGTH statement) before
execution of the DL/I INFILE statement. The minimum length of an SSA variable
is 9 bytes, and the maximum length is 200 bytes.

The value of an SSA= variable can be changed between calls.
SSA= variables must be character variables, but you can qualify an SSA with

data from a numeric field in a segment. In this case, you can use the PUT function
to insert a numeric value into an SSA= variable. See “SSAs in IMS DATA Step
Programs” on page 232 for more information.

If SSA= is not specified, SSAs are not used in any DL/I call in the DATA step.

166 Using the DL/I INFILE Statement � Chapter 8

STATUS=variable
names a SAS variable to which the DL/I status code is assigned after each DL/I
call. The variable is a character variable with a length of 2. This option provides a
convenient way to check status codes, for example, when you are writing a
random-access program and need to check for the end-of-file condition. (See
“Checking Status Codes” on page 173 for more information about checking status
codes in IMS DATA step programs.)

If STATUS= is not specified, status codes are not returned to the program
unless the PCBF= option is used.

The following standard INFILE statement options can also be specified in a DL/I
INFILE statement:

EOF=label
specifies a statement label that is the object of an automatic GO TO when the input
file reaches an end-of-file condition in a sequential-access IMS DATA step program.
Random-access programs do not cause the end-of-file condition to be set and, thus,
do not execute this option. In random-access programs, you must check the status
code variable for a value of GB (end-of-file) and branch to the labeled statements.

OBS=n
specifies the last line to be read from the INFILE. In an IMS DATA step program,
n specifies the maximum number of DL/I get calls to execute.

START=variable
defines the starting column of the input buffer when you use the _INFILE_
specification in a DL/I PUT statement.

STOPOVER
stops processing if the segment returned to the input buffer does not contain
values for all variables that are specified in the DL/I INPUT statement.

Refer to SAS Language Reference: Dictionary for complete descriptions of these
options. Note that EOF=, OBS=, START=, and STOPOVER are the only standard
INFILE options that can be specified in a DL/I INFILE statement.

One other standard INFILE statement option, the MISSOVER option, is the default
for DL/I INFILE statements and does not have to be specified. The MISSOVER option
prevents SAS from reading past the current segment data in the input buffer if values
for all variables specified by the DL/I INPUT statement are not found. Variables for
which data is not found are assigned missing values. Without the default action of the
MISSOVER option, SAS would issue another get call when values for some variables
are missing.

Table 8.3 on page 167 summarizes the DLI INFILE statement options and other
options that affect the DATA step interface to IMS, and it also describes the purpose of
each option along with its default value and any additional comments.

Using the DL/I INFILE Statement
You can have more than one input source in a DATA step; for example, you can read

from a DL/I database and a SAS data set in the same DATA step. If you want to use
several external files (data sets other than SAS data sets) in a DATA step, use separate
INFILE statements for each source. The input source is set (or reset) whenever an
INFILE statement is executed. The file or DL/I PSB referenced in the most recently
executed INFILE statement is the current input source for INPUT statements. The
current input source does not change until a different INFILE statement executes,
regardless of the number of INPUT statements executed.

Overview of the IMS DATA Step Interface � Using the DL/I INFILE Statement 167

When you change input sources by executing multiple INFILE statements and you
want to return to an earlier input source, it is not necessary to repeat all options
specified in the original INFILE statement. SAS remembers options from the first
INFILE statement with the same fileref or PSB name. In a standard INFILE statement
it is sufficient to specify only the fileref; in a DL/I INFILE, specify DLI and the PSB.
Options specified in a previous INFILE statement with the same fileref or PSB name
cannot be altered.

Note: The PSB name cannot be the same name as a fileref on a JCL DD statement
or TSO ALLOC, or a filename’s fileref. �

Table 8.3 Summary of DL/I INFILE Statement Specifications and Options

Option Purpose Default Comments

CALL= variable specifies variable containing call
function

GN (get-next) required to change call function
from default

DBNAME=
variable

specifies which eligible database PCB to
use

not applicable overrides PCB= option if variable
value is nonblank

DLI indicates DL/I resource is data source not applicable required; must follow PSB name

FSARC=
variable

specifies variable containing FSA status
codes

not applicable z/OS IMS/VS Fast Path FLD
calls only

LENGTH=
variable

specifies variable containing length of
returned segment(s)

not applicable

LRECL= length specifies length of I/O buffers 1000 bytes if too short, unpredictable results
might occur

PCB= variable specifies variable containing numeric
index to choose eligible PCB

not applicable

PCBF= variable specifies variable containing PCB
feedback data

not applicable

PCBNO=n defines first eligible PCB 1

PSBname specifies PSB to use not applicable required; must follow INFILE
keyword; cannot match active
fileref or DDname

SEGMENT=
variable

specifies variable containing last
segment accessed

not applicable segment name also available
through PCBF= variable

SSA= variable or
(variable,
variable,. . .)

specifies 1 to 15 variables containing
SSAs

not applicable must have length defined before
INFILE execution

EOF= label specifies label for subroutine executed
at end-of-file

not applicable for sequential access only

MISSOVER assigns missing values for missing data yes forced for DL/I INFILE, does not
have to be specified

OBS=n specifies maximum number of get calls not applicable

START= variable specifies variable containing start
column for _INFILE_

not applicable

STOPOVER stops processing if some variable values
missing

not applicable

168 Using the DL/I INFILE Statement � Chapter 8

Consider this DATA step:

filename employ ’<your.sas.employ>’ disp=shr;
data test (drop = socsec);

ssa1 = ’CUSTOMER ’;
func = ’GN ’;
infile acctsam dli call=func

ssa=ssa1 pcbno=3 status=st;
input @1 soc_sec_number $char11.

@12 customer_name $char40.
@82 addr_line_2 $char30.
@112 city $char28.
@140 state $char2.
@162 zip_code $char10.
@172 home_phone $char12.;

if st = ’ ’ then
link abendit;

prt = 0;
do until (soc_sec_number = socsec);

infile employ ls=53 ;
input @1 socsec $11.

@13 employer $3.;
if soc_sec_number = socsec then

do until (st = ’GE’);
infile acctsam dli;
func = ’GNP ’;
ssa1 = ’SAVEACCT ’;
input @1 savings_account_number 12.

@13 savings_amount pd5.2
@18 savings_date mmddyy6.
@26 savings_balance pd5.2;

if st = ’ ’ then
do;

output test;
prt = 1;

end;
else
if st = ’GE’ then

do;
error = 0;
if prt = 0 then

output test;
end;

else
link abendit;

end;
end;

return;

abendit:
file log;
put _all_;
abort;

run;

Overview of the IMS DATA Step Interface � Using the DL/I INFILE Statement 169

proc print data=test;
title2 ’2 Files Combined’;

run;

filename employ clear;

The input source for the first INPUT statement is the DL/I PSB called ACCTSAM.
When the second INFILE statement is executed, an external file referenced by the
fileref EMPLOY becomes the current input source for the next INPUT statement. Then,
the input source switches back to the ACCTSAM PSB after soc_sec_number =
socsec. Notice the entire DL/I INFILE statement is not repeated; only the PSBname
and DLI are specified.

Remember that only one PSB can be used in a given DATA step, although that PSB
can be referenced in multiple INFILE statements.

Since the IMS database is being processed sequentially, the DATA step will
terminate as soon as either a GB status is returned from IMS or an end-of-file is
encountered when processing file EMPLOY.

Note: For the purposes of this example, the data in the EMPLOY file is in the same
order as the HDAM database used in the example and there is a one-to-one
correspondence between the values of SOC_SEC_NUMBER and SOCSEC. �

The following output shows the results of this example.

Output 8.4 Results of Using Multiple Input Sources in an IMS DATA Step

The SAS System

2 Files Combined

soc_sec_

OBS number customer_name addr_line_2 city state

1 667-73-8275 WALLS, HOOPER J. 4525 CLARENDON RD RAPIDAN VA

2 434-62-1234 SUMMERS, MARY T. 4322 LEON ST. GORDONSVILLE VA

3 436-42-6394 BOOKER, APRIL M. 9712 WALLINGFORD PL. GORDONSVILLE VA

4 434-62-1224 SMITH, JAMES MARTIN 133 TOWNSEND ST. GORDONSVILLE VA

5 434-62-1224 SMITH, JAMES MARTIN 133 TOWNSEND ST. GORDONSVILLE VA

6 178-42-6534 PATTILLO, RODRIGUES 9712 COOK RD. ORANGE VA

7 156-45-5672 O’CONNOR, JOSEPH 235 MAIN ST. ORANGE VA

8 657-34-3245 BARNHARDT, PAMELA S. RT 2 BOX 324 CHARLOTTESVILLE VA

9 667-82-8275 COHEN, ABRAHAM 2345 DUKE ST. CHARLOTTESVILLE VA

10 456-45-3462 LITTLE, NANCY M. 4543 ELGIN AVE. RICHMOND VA

11 234-74-4612 WIKOWSKI, JONATHAN S. 4356 CAMPUS DRIVE RICHMOND VA

savings_

account_ savings_ savings_ savings_

OBS zip_code home_phone prt employer number amount date balance

1 22215-5600 803-657-3098 0 AAA 459923888253 784.29 12870 672.63

2 26001-0670 803-657-1687 0 NBC 345689404732 8406.00 12869 8364.24

3 26001-0670 803-657-1346 0 CTG 144256844728 809.45 12863 1032.23

4 26001-0670 803-657-3437 0 CBS 345689473762 130.64 12857 261.64

5 26001-0670 803-657-3437 1 CBS 345689498217 9421.79 12858 9374.92

6 26042-1650 803-657-1346 0 UMW 345689462413 950.96 12857 946.23

7 26042-1650 803-657-5656 0 AFL 345689435776 136.40 12869 284.97

8 25804-0997 803-345-4346 0 ITT 859993641223 845.35 12860 2553.45

9 25804-0997 803-657-7435 0 IBM 884672297126 945.25 12868 793.25

10 26502-3317 803-657-3566 0 SAS 345689463822 929.24 12867 924.62

11 26502-5317 803-467-4587 0 UNC

170 The DL/I INPUT Statement � Chapter 8

The DL/I INPUT Statement

Introduction to the DL/I INPUT Statement
If you are unfamiliar with the INPUT statement, refer to SAS Language Reference:

Dictionary for more information.
An INPUT statement reads from the file that is specified by the most recently

executed INFILE statement. If the INFILE statement is a DL/I INFILE statement, the
INPUT statement issues a DL/I get call and retrieves a segment or segments.

There are no special options for the DL/I INPUT statement as there are for the DL/I
INFILE statement. The form of the DL/I INPUT statement is the same as that of the
standard INPUT statement:

input variable optional-specifications;

For example, suppose you are issuing a qualified get call for the CUSTOMER
segment. The DL/I INPUT statement might be coded like this:

input @1 soc_sec_number $char11.
@12 customer_name $char40.
@52 addr_line_1 $char30.
@82 addr_line_2 $char30.
@112 city $char28.
@140 state $char2.
@142 country $char20.
@162 zip_code $char10.
@172 home_phone $char12.
@184 office_phone $char12.;

When this DL/I INPUT statement executes, DL/I retrieves a CUSTOMER segment and
places it in the input buffer. Data for the variables specified in the DL/I INPUT
statement is then moved from the input buffer to SAS variables in the program data
vector by SAS.

Different forms of the INPUT statement can have different results:
� When an INPUT statement specifies variable names (as in the previous example),

the segment is usually retrieved and placed in the input buffer and the values are
moved immediately to SAS variables in the program data vector unless this form
of the INPUT statement is preceded by an INPUT statement with a trailing @
sign, for example, input@. The INPUT statement with a trailing @ sign is
described below.

� If the INPUT statement does not specify any variable names or options, as in this
example:

input;

a segment or segments are retrieved by the call and placed in the input buffer
but no data is mapped to the program data vector. Or, if the previous INPUT
statement was input@, this clears the hold.

� If the INPUT statement does not specify variable names but does have a trailing @:

input @;

a call is issued and one or more segments are retrieved and placed in the input
buffer. The trailing @ tells SAS to use the data just placed in the input buffer
when the next DL/I INPUT statement in that execution of the DATA step is
executed. In other words, the trailing @ tells SAS not to issue another call the

Overview of the IMS DATA Step Interface � Example 1: A Get Call 171

next time a DL/I INPUT statement is executed. Instead, SAS uses the data that is
already in the input buffer. This form of the INPUT statement is very useful in
IMS DATA step programs. Refer to “Using the DL/I INPUT Statement” on page
173 for more information.

� You can combine the form that names variables with the form that uses a trailing
@. In this example, a call is issued, a segment is retrieved and placed in the input
buffer, and values for the named variables are moved to SAS variables in the
program data vector:

input soc_sec_number $char11. @;

Because of the trailing @, SAS holds the segment in the input buffer for the
next INPUT statement.

Although the syntax of the DL/I INPUT statement and the standard INPUT
statement are the same, your use of the DL/I INPUT statement is often different.
Suggested uses of the DL/I INPUT statement are discussed in “Using the DL/I INPUT
Statement” on page 173.

Example 1: A Get Call

The following DATA step illustrates how to issue get calls using the DL/I INFILE
and DL/I INPUT statements:

data custchck;
retain ssa1 ’CUSTOMER*D ’

ssa2 ’CHCKACCT ’;
infile acctsam dli ssa=(ssa1,ssa2) status=st

pcbno=3;
input @1 soc_sec_number $char11.

@12 customer_name $char40.
@52 addr_line_1 $char30.
@82 addr_line_2 $char30.
@112 city $char28.
@140 state $char2.
@142 country $char20.
@162 zip_code $char10.
@172 home_phone $char12.
@184 office_phone $char12.
@226 check_account_number $char12.
@238 check_amount pd5.2
@243 check_date mmddyy6.
@251 check_balance pd5.2;

if st = ’ ’ then
do;

file log;
put _all_;
abort;

end;
run;

proc print data=custchck;
title2 ’Customer Checking Accounts’;

run;

172 Example 1: A Get Call � Chapter 8

This DATA step creates a SAS data set, CUSTCHCK, with one observation for each
checking account in the ACCTDBD database. To build the data set, the program issues
qualified get-next path calls using unqualified SSAs for the CUSTOMER and
CHCKACCT segments. The path call is indicated by the *D command code in the
CUSTOMER SSA, SSA1. The PCBNO= option specifies the first eligible PCB that
permits path calls for the CUSTOMER segment of the ACCTDBD database.

The DL/I INFILE statement points to the ACCTSAM PSB and specifies two SSA
variables, SSA1 and SSA2. The SSA variables have already been assigned values and
lengths by the preceding RETAIN statement. Since these SSAs are not qualified, the
program access is sequential. In this get call, the status code is checked and the third
PCB is specified. Defaults are in effect for the other DL/I INFILE options: only get-next
calls are issued, the input buffer length is 1000 bytes, and segment names and PCB
mask data are not returned.

When the DL/I INPUT statement executes and status = ’ ’, the qualified GN call
is issued, the concatenated CUSTOMER and CHCKACCT segments are placed in the
input buffer, and data from both segments are moved to SAS variables in the program
data vector.

The following output shows the results of this example.

Output 8.5 Results of Issuing Get Calls

The SAS System

Customer Checking Accounts

soc_sec_ addr_

OBS number customer_name line_1 addr_line_2 city state

1 667-73-8275 WALLS, HOOPER J. 4525 CLARENDON RD RAPIDAN VA

2 667-73-8275 WALLS, HOOPER J. 4525 CLARENDON RD RAPIDAN VA

3 434-62-1234 SUMMERS, MARY T. 4322 LEON ST. GORDONSVILLE VA

4 436-42-6394 BOOKER, APRIL M. 9712 WALLINGFORD PL. GORDONSVILLE VA

5 434-62-1224 SMITH, JAMES MARTIN 133 TOWNSEND ST. GORDONSVILLE VA

6 434-62-1224 SMITH, JAMES MARTIN 133 TOWNSEND ST. GORDONSVILLE VA

7 178-42-6534 PATTILLO, RODRIGUES 9712 COOK RD. ORANGE VA

8 156-45-5672 O’CONNOR, JOSEPH 235 MAIN ST. ORANGE VA

9 657-34-3245 BARNHARDT, PAMELA S. RT 2 BOX 324 CHARLOTTESVILLE VA

10 667-82-8275 COHEN, ABRAHAM 2345 DUKE ST. CHARLOTTESVILLE VA

11 456-45-3462 LITTLE, NANCY M. 4543 ELGIN AVE. RICHMOND VA

12 234-74-4612 WIKOWSKI, JONATHAN S. 4356 CAMPUS DRIVE RICHMOND VA

check_

account_ check_ check_ check_

OBS country zip_code home_phone office_phone number amount date balance

1 USA 22215-5600 803-657-3098 803-645-4418 345620145345 1702.19 12857 1266.34

2 USA 22215-5600 803-657-3098 803-645-4418 345620154633 1303.41 12870 1298.04

3 USA 26001-0670 803-657-1687 345620104732 826.05 12869 825.45

4 USA 26001-0670 803-657-1346 345620135872 220.11 12868 234.89

5 USA 26001-0670 803-657-3437 345620134564 2392.93 12858 2645.34

6 USA 26001-0670 803-657-3437 345620134663 0.00 12866 143.78

7 USA 26042-1650 803-657-1346 803-657-1345 745920057114 1404.90 12944 1502.78

8 USA 26042-1650 803-657-5656 803-623-4257 345620123456 353.65 12869 463.23

9 USA 25804-0997 803-345-4346 803-355-2543 345620131455 1243.25 12871 1243.25

10 USA 25804-0997 803-657-7435 803-645-4234 382957492811 7462.51 12876 7302.06

11 USA 26502-3317 803-657-3566 345620134522 608.24 12867 831.65

12 USA 26502-5317 803-467-4587 803-654-7238 345620113263 672.32 12870 13.28

Refer to “Example 6: Issuing Path Calls” on page 182 later in this section for a
detailed explanation of a sample IMS DATA step program that includes a similar DATA
step.

Overview of the IMS DATA Step Interface � Using the DL/I INPUT Statement 173

Using the DL/I INPUT Statement

Checking Status Codes
A get call might or might not successfully retrieve the requested segments. For each

call issued, DL/I returns a status code that indicates whether the call was successful.
Since the success of a call can affect the remainder of the program, it is a good idea to
check status codes, especially in programs that use random access. You can obtain the
status code returned by DL/I with the STATUS= option or the PCBF= option of the DL/I
INFILE statement. Refer to your IBM documentation for explanations of DL/I status
codes.

In general, a call has been successful and the segment(s) has been obtained if the
automatic SAS variable _ERROR_ has a value of zero. This corresponds to a blank DL/I
return code, or codes of CC, GA, or GK. SAS sets _ERROR_ to 1 if any other DL/I status
code is returned or if the special SAS status code SE is returned. (The SE code is
generated when SAS cannot format a proper DL/I call from the options specified.) If
ERROR is set to 1, the contents of the input buffer and the program data vector are
printed on the SAS log when another INPUT statement is executed or when control
returns to the beginning of the DATA step, whichever comes first.

Some of the DL/I status codes that set _ERROR_ might not be errors to your SAS
program. When this is the case, you should check the actual return code as well as the
value of _ERROR_. For example, suppose you are writing a program that looks for a
segment with a particular value for a sequence field. If the segment is found, a replace
call (REPL) is issued to update the segment. If the segment is not found, _ERROR_ is
set to 1, but you do not consider the status code to be an error. Instead, you issue an
insert call (ISRT) to add a new segment.

If a status code sets _ERROR_ but you do not consider the status code to be an error,
you should reset _ERROR_ to zero before executing another INPUT or PUT statement
or returning to the beginning of the DATA step. Otherwise, the contents of the input
buffer and program data vector are printed on the SAS log.

Use of the Trailing @
You can use different forms of the DL/I INPUT statement to perform these general

functions:
� issue a DL/I get call
� place the retrieved segment in the input buffer
� move data from the input buffer to SAS variables in the program vector if

variables are named in the INPUT statement.

In some programs, it is important to check the values of the _ERROR_ or STATUS=
variables before moving data from the input buffer to SAS variables in the program
data vector. For example, if a get call fails to retrieve the expected segment, the input
buffer might still contain data from a previous get call or be filled with missing values.
You might not want to move these values to SAS variables. By checking the STATUS=
or _ERROR_ variable, you determine whether the call was successful and can decide
whether to move the input buffer data to SAS variables.

Similarly, if you issue unqualified get calls with a PCB that is sensitive to more than
one segment type, you might need to know what type of segment was retrieved in order
to move data to the appropriate SAS variables.

When you want to issue a get call but you need to check _ERROR_ or STATUS=
variable values before moving data to SAS variables, use a DL/I INPUT statement with
a trailing @ to issue the call:

input @;

174 Using the DL/I INPUT Statement � Chapter 8

The trailing @ pointer control causes SAS to hold the current record (segment) in the
input buffer for the next DL/I INPUT statement. The next DL/I INPUT statement to be
executed does not issue another call and does not place a new segment in the input
buffer. Instead, the second INPUT statement uses the data placed in the input buffer
by the first INPUT statement.

If no variables are named in the first DL/I INPUT statement (as in the statement
shown in the previous paragraph), data is not moved from the buffer to SAS variables
until another DL/I INPUT statement specifying the variables is executed. Therefore,
before executing a second INPUT statement, you can check the value of the STATUS=
or PCBF= variable to determine whether the call was successful. You can also check the
ERROR automatic variable and the SEGMENT= variable. After checking these
values, execute a second DL/I INPUT statement to move data to SAS variables, if
appropriate.

Example 2: Using the Trailing @

This example demonstrates the use of the trailing @. This DATA step creates two SAS
data sets, CHECKING and SAVINGS, from data in the CHCKACCT and SAVEACCT
segments of the ACCTDBD database. The PCB that is used defines CUSTOMER,
CHCKACCT, and SAVEACCT as sensitive segments. Since no CALL= or SSA=
variables are specified, all calls are unqualified get-next calls, and access is sequential.

Each call is issued by a DL/I INPUT statement with a trailing @, so the retrieved
segment is placed in the buffer and held there. Two variables are checked: ST and SEG
(the SEGMENT= variable). If a call results in an error, the job terminates. If a call is
successful, the program checks SEG to determine the type of the retrieved segment.
Because this is a sequential access program, a GB (end-of-file) status code is not treated
as an error by the program. Therefore, the program resets _ERROR_ to 0.

When SEG=’CUSTOMER’, execution returns to the beginning of the DATA step.
When the SEG value is CHCKACCT or SAVEACCT, another DL/I INPUT statement
moves the data to SAS variables in the program data vector, and the observation is
written to the appropriate SAS data set.

data checking savings;
infile acctsam dli segment=seg status=st

pcbno=3;
input @;
if st = ’ ’ and

st = ’CC’ and
st = ’GA’ and
st = ’GK’ then

do;
file log;
put _all_;
abort;

end;
if seg = ’CUSTOMER’ then
return;

else
do;

input @1 account_number $char12.
@13 amount pd5.2
@18 date mmddyy6.
@26 balance pd5.2;

if seg = ’CHCKACCT’ then

Overview of the IMS DATA Step Interface � Using the DL/I INPUT Statement 175

output checking;
else
output savings;

end;
run;

proc print data=checking;
title2 ’Checking Accounts’;

run;

proc print data=savings;
title2 ’Savings Accounts’;

run;

The following output shows the results of this example:

Output 8.6 Results of Using the Trailing @

The SAS System
Checking Accounts

account_
OBS number amount date balance

1 345620145345 1702.19 12857 1266.34
2 345620154633 1303.41 12870 1298.04
3 345620104732 826.05 12869 825.45
4 345620135872 220.11 12868 234.89
5 345620134564 2392.93 12858 2645.34
6 345620134663 0.00 12866 143.78
7 745920057114 1404.90 12944 1502.78
8 345620123456 353.65 12869 463.23
9 345620131455 1243.25 12871 1243.25

10 382957492811 7462.51 12876 7302.06
11 345620134522 608.24 12867 831.65
12 345620113263 672.32 12870 13.28

The SAS System
Savings Accounts

account_
OBS number amount date balance

1 459923888253 784.29 12870 672.63
2 345689404732 8406.00 12869 8364.24
3 144256844728 809.45 12863 1032.23
4 345689473762 130.64 12857 261.64
5 345689498217 9421.79 12858 9374.92
6 345689462413 950.96 12857 946.23
7 345689435776 136.40 12869 284.97
8 859993641223 845.35 12860 2553.45
9 884672297126 945.25 12868 793.25

10 345689463822 929.24 12867 924.62

Note: If the DL/I call is issued by a DL/I INPUT statement with a trailing @ and
the status code sets _ERROR_, but you do not consider the status code to be an error
and you want to issue another get call in the same execution of the DATA step, then
you must first execute a blank DL/I statement:input; �

The blank DL/I INPUT statement clears the input buffer. If the buffer is not cleared by
issuing a blank INPUT statement, the next DL/I INPUT statement assumes that the
data to be retrieved is already in the buffer and does not issue a DL/I call. See

176 The DL/I FILE Statement � Chapter 8

“Example 8: Using the Blank INPUT Statement” on page 188 for an example that
includes a blank INPUT statement.

The DL/I FILE Statement
If you are unfamiliar with the FILE statement, refer to SAS Language Reference:

Dictionary for more information.
The FILE statement identifies an external file to which information specified by a

PUT statement is written. In an IMS DATA step, the DL/I FILE statement specifies a
PSB, which in turn identifies a DL/I database or message queue to be accessed by a DL/
I update call. The call is formatted using the values and variables specified in the DL/I
INFILE statement, which must precede the DL/I FILE statement in the DATA step.
The update call is issued when the corresponding DL/I PUT statement is executed. In
other words, to issue an update call you use a DL/I INFILE, DL/I FILE, and DL/I PUT
statement.

The following is the form of the DL/I FILE statement:

FILE PSBname DLI;

PSBname
specifies the same PSB referenced in the DATA step’s DL/I INFILE statement.
Refer to “The DL/I INFILE Statement” on page 160 for more information. A PSB
name must be specified.

DLI
tells SAS that the output file is a DL/I database or message queue. DL/I must be
specified and must be after the PSB name.

No other options (including standard FILE statement options) are recognized in the
DL/I FILE statement.

The DL/I FILE statement references a PSB that identifies a database or message
queue to which a corresponding DL/I PUT statement writes.

The most recently executed FILE statement determines the current output file. If you
are using more than one output file in a DATA step, there must be a FILE statement
for each file. Change the current output file from one to another by executing a
different FILE statement. To return to the original output file, repeat the original FILE
statement. The current output file does not change until a new FILE statement
executes, regardless of the number of PUT statements executed.

The DL/I PUT Statement

Introduction to the DL/I PUT Statement
If you are unfamiliar with the PUT statement, refer to SAS Language Reference:

Dictionary for more information.
A PUT statement writes information to the file specified by the most recently

executed FILE statement. If the FILE statement is a DL/I FILE statement, the
corresponding PUT statement issues a DL/I update call.

There are no special options for a DL/I PUT statement as there are for the DL/I
INFILE and DL/I FILE statements. The form of the DL/I PUT statement is the same
as that of the standard PUT statement:

Overview of the IMS DATA Step Interface � Example 3: An Update Call 177

PUT variable optional-specifications;

For example, assume that you are issuing an insert call for the CUSTOMER segment
of the ACCTDBD database. The following DL/I PUT statement (which looks just like a
standard PUT statement) formats a CUSTOMER segment and issues the ISRT call:

put @1 ssnumber $char11.
@12 custname $char40.
@52 addr_line_1 $char30.
@82 addr_line_2 $char30.
@112 custcity $char28.
@140 custstat $char2.
@142 custland $char20.
@162 custzip $char10.
@172 h_phone $char12.
@184 o_phone $char12.;

Although the syntax of the DL/I PUT statement is identical to that of the standard PUT
statement, your use of the DL/I PUT is often different. Segment format and suggested
uses of the DL/I PUT statement are discussed in “Using the DL/I PUT Statement” on
page 178.

Example 3: An Update Call
This DATA step reads MYDATA.CUSTOMER, an existing SAS data set containing

information about new customers, and updates the ACCTDBD database with the data
in the SAS data set:

data _null_;
set mydata.customer;
length ssa1 $9;
infile acctsam dli call=func ssa=ssa1

status=st pcbno=4;
file acctsam dli;
func = ’ISRT’;
ssa1 = ’CUSTOMER’;
put @1 ssnumber $char11.

@12 custname $char40.
@52 addr_line_1 $char30.
@82 addr_line_2 $char30.
@112 custcity $char28.
@140 custstat $char2.
@142 custland $char20.
@162 custzip $char10.
@172 h_phone $char12.
@184 o_phone $char12.;

if st = ’ ’ then
if st = ’LB’ or st = ’II’ then

error = 0;
else

do;
file log;
put _all_;
abort;

end;
run;

178 Using the DL/I PUT Statement � Chapter 8

To update ACCTDBD with new occurrences of the CUSTOMER segment type, this
program issues qualified insert calls that add observations from MYDATA.CUSTOMER
to the database. The DL/I INFILE statement defines ACCTSAM as the PSB. Options in
the INFILE statement specify the following information:

� The SAS variable FUNC contains the call function.
� PCBNO= specifies the database PCB to use.
� SSA1 contains the SSA that specifies the segment name of the segment to be

inserted.
� STATUS= specifies where the status code is returned.

Defaults are in effect for the other DL/I INFILE options: the output buffer length is
1000 bytes, and segment names and PCB mask data are not returned.

If the ISRT call is not successful, the status code variable ST is set with the DL/I
status code and the automatic variable _ERROR_ is set to 1. After the ISRT call, the
status code variable ST is checked for non-blanks. If the variable value is either LB or
II, which indicate that the segment occurrence already exists, the automatic variable
ERROR is reset to 0 and processing continues. Otherwise, all values from the
program data vector are written to the SAS log, and the DATA step aborts.

Using the DL/I PUT Statement
A PUT statement writes data to the current output file, which is determined by the

most recently executed FILE statement. A DL/I PUT statement writes to a DL/I
database or message queue by issuing a DL/I update call. If you are unfamiliar with
the PUT statement, refer to SAS Language Reference: Dictionary for more information.

In order for a DL/I update call to be executed, the CALL= option must be specified in
the DL/I INFILE statement. The value of the CALL= variable must be set to the
appropriate update call before the DL/I PUT statement is executed. If CALL= is not
specified, the call function defaults to GN and no update calls can be issued.

The update call issued by a DL/I PUT statement might or might not be successful.
DL/I returns various status codes that indicate whether the update call was successful.
It is always a good idea to check the status code, but it is especially important in an
update program. If you are unfamiliar with DL/I status codes, consult your IBM
documentation for descriptions. Your SAS program can obtain the return code if the
STATUS= option of the INFILE statement is specified. The _ERROR_ and STATUS=
variable checking guidelines discussed in “Using the DL/I INPUT Statement” on page
173 are also applicable to DL/I PUT statements.

REPL Call
When you replace a segment (REPL call) with a DL/I PUT statement, you must

place the entire segment in the output buffer, even if all fields are not being changed.
One way the buffer can be formatted is by specifying all fields and their locations.

For example, this DL/I PUT statement formats the entire CUSTOMER segment of the
ACCTDBD database:

put @1 ssnumber $char11.
@12 custname $char40.
@52 addr_line_1 $char30.
@82 addr_line_2 $char30.
@112 custcity $char28.
@140 custstat $char2.
@142 custland $char20.

Overview of the IMS DATA Step Interface � Example 4: Issuing REPL Calls 179

@162 custzip $char10.
@172 h_phone $char12.
@184 o_phone $char12.;

Another way to format the output buffer is with the _INFILE_ specification. If the
current input source is a DL/I INFILE and the last DL/I INPUT statement retrieved
the DL/I segment to be replaced, then the following DL/I PUT statement formats the
output buffer with the contents of the retrieved segment and holds the segment in the
output buffer until another DL/I PUT statement is executed:

put _infile_ @;

A subsequent DL/I PUT statement can modify the data in the output buffer and
execute the REPL call.* Example 4 illustrates this technique.

Example 4: Issuing REPL Calls
In this example, CUSTOMER segments are updated with change-of-address

information from a Version 6 SAS data set called MYDATA.NEWADDR. The Version 6
DATA step interface works exactly like the Version 7 and later DATA step interfaces,
except that the Version 7 and later DATA step interfaces support SAS variable and
member names of up to 32 characters. The interface will work as long as the SAS
variable names specified in the DL/I INPUT statement match those specified in the DL/
I PUT statement. Variables in this SAS data set are SSN (Social Security number),
NEWADDR1, NEWADDR2, NEWCITY, NEWSTATE, and NEWZIP. After the
CUSTOMER segment is retrieved, the PUT statement formatting the output buffer is
issued. The segment is held in the output buffer until a second PUT statement is issued
that executes a REPL call to update the CUSTOMER segment.

Notice that SSA1, a qualified SSA, is constructed by concatenating the SSA
specification with the value of the SSN variable in the SAS data set. SSA1 is set to
blanks after the GHU call because an SSA is not needed for the REPL call. (Since the
program issues get calls with qualified SSAs, access is random.)

data _null_;
set mydata.newaddr;
length ssa1 $31;
infile acctsam dli ssa=ssa1 call=func

status=st pcbno=4;
ssa1 = ’CUSTOMER(SSNUMBER =’ || ssn || ’)’;
func = ’GHU ’;
input;
if st = ’ ’ then

do;
func = ’REPL’;
ssa1 = ’ ’;
file acctsam dli;
put _infile_ @;
put @52 newaddr1 $char30.

@82 newaddr2 $char30.
@112 newcity $char28.

* The effect of a trailing @ in a DL/I PUT statement is slightly different from the effect of one in a DL/I INPUT statement. A
trailing @ in a DL/I PUT statement causes data to be moved to the output buffer but does not issue the update call. Instead,
the call is issued by the next DL/I PUT statement that does not terminate with a trailing @. In a DL/I INPUT statement
with a trailing @, the get call is issued, and data is moved to the input buffer. The next DL/I INPUT statement can then
move data to the program data vector.

180 Example 4: Issuing REPL Calls � Chapter 8

@140 newstate $char2.
@162 newzip $char10.;

if st = ’ ’ then
link abendit;

end;
else

if st = ’GE’ then
error = 0;

else
link abendit;

return;

abendit:
file log;
put _all_;
abort;

run;

Alternatively, the two DL/I PUT statements can be combined into one without the
trailing @ sign. For example:

data _null_;
set mydata.newaddr;
length ssa1 $31;
infile acctsam dli ssa=ssa1 call=func

status=st pcbno=4;
ssa1 = ’CUSTOMER(SSNUMBER =’||ssn||’)’;
func = ’GHU ’;
input;
if st = ’ ’ then

do;
func = ’REPL’;
ssa1 = ’ ’;
file acctsam dli;
put @1 _infile_

@52 newaddr1 $char30.
@82 newaddr2 $char30.
@112 newcity $char28.
@140 newstate $char2.
@162 newzip $char10.;

if st = ’ ’ then
link abendit;

end;
else

if st = ’GE’ then
error = 0;

else
link abendit;

return;

abendit:
file log;
put _all_;
abort;

run;

Overview of the IMS DATA Step Interface � Example 5: Issuing DLET Calls 181

DLET Call
When issuing a delete call (DLET), DL/I requires that the sequence field of the

segment be formatted in the output buffer. The DL/I PUT statement formats the
sequence field. Alternatively, if the current INFILE is a DL/I INFILE and the last DL/I
INPUT statement retrieved the DL/I segment to be deleted, then the following SAS
statement formats the output buffer with the contents of the retrieved segment
(including the sequence field) and executes the DLET call:

put _infile_;

“Example 5: Issuing DLET Calls” on page 181 demonstrates this technique.

Example 5: Issuing DLET Calls
The following example deletes all WIRETRAN segments with a transaction date of

03/31/95:

data _null_;
length ssa1 $30;
retain db ’WIRETRN ’ ;
infile acctsam dli call=func dbname=db

ssa=ssa1 status=st;
func = ’GHN ’;
ssa1 = ’WIRETRAN(WIREDATE =03/31/95) ’;
input;
if st = ’ ’ then

do;
file acctsam dli;
func = ’DLET’;
ssa1 = ’ ’;
put _infile_;
if st = ’ ’ then

link abendit;
end;

else
if st = ’GB’ then

do;
error = 0;
stop;

end;
else

link abendit;
return;

abendit:
file log;
put _all_;
abort;

run;

Note: A check for a status code of GB is required in this DATA step because it uses a
qualified SSA and random access processing. The DATA step does not set the end-of-file
condition, and the source logic must check for it to stop the DATA step normally. �

182 IMS DATA Step Examples � Chapter 8

IMS DATA Step Examples

Overview of IMS DATA Step Examples
Complete IMS DATA step examples are presented in this section. Each example

illustrates one or more of the concepts described earlier in this section.
All of these examples are based on the sample databases, DBDs, and PSBs described

in Appendix 2. If you have not read the sample database descriptions, you should do so
before continuing this section.

It is assumed that the installation default values for IMS DATA step system options
are the same as the default values described in Appendix 1. Statement options used in
these examples that are not IMS DATA step statement extensions (for example, the
HEADER= option in the FILE statement) are described in SAS Language Reference:
Dictionary.

Example 6: Issuing Path Calls
This example produces a report that shows the distribution of checking account

balances by ZIP code in the ACCTDBD database. SAS data set DISTRIBC is created
from data in the CUSTOMER and CHCKACCT segments. The segments are retrieved
with get-next calls using an unqualified SSA for the CUSTOMER segment with an *D
command code and an SSA for the CHCKACCT segment. Thus, both the CUSTOMER
and CHCKACCT segments are returned. The new SAS data set contains three
variables: CHECK_AMOUNT (from the CHCKACCT segment), ZIPRANGE (created
from the CUSTZIP value in the CUSTOMER segment), and BALRANGE (created from
the BALANCE variable). The distribution information is produced by the TABULATE
procedure from the DISTRIBC data set.

The numbered comments following this program correspond to the numbered
statements in the program:

u data distribc;
v length ziprange $11;
w keep ziprange

check_amount
balrange;

x retain ssa1 ’CUSTOMER*D ’
ssa2 ’CHCKACCT ’;

y infile acctsam dli ssa=(ssa1,ssa2) status=st
pcbno=3;

U input @162 zip_code $char10.
@238 check_amount pd5.2;

V if st = ’ ’ and
st = ’CC’ and
st = ’GA’ and
st = ’GK’ then

W if st = ’GE’ then
do;

error = 0;
stop;

end;
X else

Overview of the IMS DATA Step Interface � Example 6: Issuing Path Calls 183

do;
file log;
put _all_;

at abort;
end;

ak balrange=check_amount;
al ziprange=substr(zip_code,1,4)

||’0-’||substr(zip_code,1,4)||’9’;
title ’Checking Account Balance Distribution

By ZIP Code’;

am proc format;
value balrang
low-249.99 = ’under $250’
250.00-1000.00 = ’$250 - $1000’
1000.01-high = ’over $1000’;

an proc tabulate data=distribc;
class ziprange balrange;
var check_amount;
label balrange=’balance range’;
label ziprange=’ZIP code range’;
format ziprange $char11. balrange balrang.;
keylabel sum= ’$ total’ mean =’$ average’

n=’# of accounts’;
table ziprange*(balrange all),

check_amount*(sum*f=14.2 mean*f=10.2 n*f=4);
run;

u The DATA statement specifies DISTRIBC as the name of the SAS
data set created by this DATA step.

v The length of the new variable ZIPRANGE is set.

w The new data set will contain only the three variables specified in
the KEEP statement.

x The RETAIN statement specifies values for the two SSA variables,
SSA1 and SSA2. SSA1 is an unqualified SSA for the CUSTOMER
segment with the command code for a path call, *D. This command
code means that the CUSTOMER segment is returned along with
the CHCKACCT segment that is its child. SSA2 is an unqualified
SSA for the CHCKACCT segment. Without the *D command code in
SSA1, only the target segment, CHCKACCT, would be returned.

These values are retained for each iteration of the DATA step.
The RETAIN statement, which initializes the variables, satisfies the
requirement that the length of an SSA variable be specified before
the DL/I INFILE statement is executed.

y The INFILE statement specifies ACCTSAM as the PSB. The DLI
specification tells SAS that the step will access DL/I resources. Two
variables containing SSAs are identified by the SSA= option, SSA1
and SSA2. Their values were set by the earlier RETAIN statement.
The STATUS= option specifies the ST variable for status codes
returned by DL/I. The PCBNO= option specifies which PCB to use.

184 Example 6: Issuing Path Calls � Chapter 8

These defaults are in effect for the other DL/I INFILE options: all
calls are get-next calls, the input buffer has a length of 1000 bytes,
and the segment, and PCB mask data are not returned. No qualified
SSAs are used; therefore, program access is sequential.

U The DL/I INPUT statement specifies positions and informats for the
necessary variables in both the CUSTOMER and CHCKACCT
segments because the path call returns both segments. When this
statement executes, the GN call is issued. If successful,
CUSTOMER and CHCKACCT segments are placed in the input
buffer and the ZIP_CODE and CHECK_AMOUNT values are then
moved to SAS variables in the program data vector.

V If the qualified GN call issued by the DL/I INPUT statement is not
successful (that is, it obtains any return code other than blank, CC,
GA, or GK), the automatic SAS variable _ERROR_ is set to 1 and the
DO group (statements 8 through 10) is executed.

W If the ST variable value is GE (a status code meaning that the
segment or segments were not found), SAS stops execution of the
DATA step. _ERROR_ is reset to 0 so that the contents of the input
buffer and program data vector are not printed on the SAS log. This
statement is included because of a DL/I feature. In a program
issuing path calls, DL/I sometimes returns a GE status code when it
reaches end-of-database. The GB (end-of-database) code is returned
if another get call is issued after the GE code. Therefore, in this
program, the GE code can be considered the end-of-file signal rather
than an error condition.

X For any other non-blank status code, all values from the program
data vector are written to the SAS log.

at The DATA step execution terminates and the job aborts.

ak If the qualified GN call is successful, BALRANGE is assigned the
value of CHECK_AMOUNT.

al The ZIPRANGE variable is created using the SUBSTR function with
the ZIP_CODE variable.

am PROC FORMAT is invoked to create a format for the BALRANGE
variable. These formats are used in the PROC TABULATE output.

an PROC TABULATE is invoked to process the DISTRIBC data set.

The following output shows the results of this example.

Overview of the IMS DATA Step Interface � Example 7: Updating Information in the CUSTOMER Segment 185

Output 8.7 Results of Issuing Path Calls

Checking Account Balance Distribution By ZIP code

--
	check_amount		

			# of
			acc-
			oun-
	$ total	$ average	ts
-------------------------------+--------------+----------+----			
ZIP code range	balance range		
---------------+---------------			
22210-22219	over $1000	4410.50	1470.17
	---------------+--------------+----------+----		
	All	4410.50	1470.17
---------------+---------------+--------------+----------+----			
25800-25809	balance range		

	over $1000	8705.76	4352.88
	---------------+--------------+----------+----		
	All	8705.76	4352.88
---------------+---------------+--------------+----------+----			
26000-26009	balance range		

	under $250	220.11	110.06
	---------------+--------------+----------+----		
	$250 - $1000	826.05	826.05
	---------------+--------------+----------+----		
	over $1000	2392.93	2392.93
	---------------+--------------+----------+----		
	All	3439.09	859.77
---------------+---------------+--------------+----------+----			
26040-26049	balance range		

	$250 - $1000	353.65	353.65
	---------------+--------------+----------+----		
	All	353.65	353.65
---------------+---------------+--------------+----------+----			
26500-26509	balance range		

	$250 - $1000	1280.56	640.28
	---------------+--------------+----------+----		
	All	1280.56	640.28
--

Example 7: Updating Information in the CUSTOMER Segment

This example uses GHN calls to retrieve CUSTOMER segments and then tests the
values of the STATE and COUNTRY fields. If a segment has a valid value for STATE
but does not have COUNTRY=’UNITED STATES’, the COUNTRY value is changed to
UNITED STATES and the corrected segment is replaced using a REPL call.

Follow the notes corresponding to the numbered statements in the following code for
a detailed explanation of this example:

filename tranrept ’<your.sas.tranrept>’ disp=old;
data _null_;
u length ssa1 $ 9;
v infile acctsam dli ssa=ssa1 call=func pcbno=4

status=st;
w func = ’GHN ’;
x ssa1 = ’CUSTOMER’;

186 Example 7: Updating Information in the CUSTOMER Segment � Chapter 8

y input @12 customer_name $char40.
@140 state $char2.
@142 country $char20.;

U if st = ’ ’ and
st = ’CC’ and
st = ’GA’ and
st = ’GK’ then

link abendit;
V if country = ’UNITED STATES’ &

state < ’Z ’ &
state > ’A ’ then

do;
W oldland = country;
X country = ’UNITED STATES’;
at file acctsam dli;
ak func = ’REPL’;
al ssa1 = ’ ’;
am put @1 _infile_

@142 country;
an if st = ’ ’ then

link abendit;
ao file tranrept header=newpage notitles;
ap put @10 customer_name

@60 state
@65 oldland;

aq end;
ar return;

as newpage: put / @15
’Customers Whose Country was Changed to

UNITED STATES’
// @17 ’Name’ @58 ’State’ @65 ’old Country’;

bt return;

abendit:
file log;
put _all_;
abort;

run;
filename tranrept clear;

u The length of SSA1, an SSA variable specified in the INFILE
statement, is set before execution of the DL/I INFILE statement, as
required.

v The INFILE statement specifies ACCTSAM as the PSB, and the DLI
specification tells SAS that this step will access DL/I resources. The
SSA= option identifies SSA1 as a variable that contains a Segment
Search Argument. (The length of SSA1 was established by the
LENGTH statement.) The CALL= option specifies FUNC as the
variable containing DL/I call functions, and STATUS is used to
return the status code. The value of PCBNO is used to select the
appropriate PCB for this program. This value is carried over in
successive executions of the DATA step.

Overview of the IMS DATA Step Interface � Example 7: Updating Information in the CUSTOMER Segment 187

These defaults are in effect for other DL/I INFILE options: the
input and output buffers are 1000 bytes in length, and segment
names and PCB mask data are not returned. Program access is
sequential.

w The FUNC variable is assigned a value of GHN, so the next DL/I
INPUT statement issues a get-hold-next call.

x The SSA1 variable is assigned a value of CUSTOMER. The GHN call is
qualified to retrieve a CUSTOMER segment.

y The DL/I INPUT statement specifies positions and informats for
some of the fields in the CUSTOMER segment. When this statement
executes, a qualified GHN call is issued. If the call is successful, a
CUSTOMER segment is retrieved and placed in the input buffer.
Since variables are named in the INPUT statement, the segment
data is moved to SAS variables in the program data vector.

U When a call is not successful (that is, when the DL/I status code is
something other than blank, CC, GA, or GK), the automatic SAS
variable _ERROR_ is set to 1. If the status code is set to GB
(indicating end of database), and if the DATA step is processing
sequentially (as this one is), the DATA step is stopped automatically
with an end-of-file return code sent to SAS.

V If the call is successful, the values of COUNTRY and STATE are
checked. If COUNTRY is not UNITED STATES, and the STATE value
is alphabetic, a DO group (statements 8 through 17) executes.

W The value of COUNTRY is assigned to a new variable called
OLDLAND.

X COUNTRY’s value is changed to UNITED STATES.

at A DL/I FILE statement indicates that an update call is to be issued.
Notice that the FILE statement specifies the same PSB named in
the DL/I INFILE statement, as required.

ak The value of FUNC is changed from GHN to REPL. If the FUNC
value is not changed, an update call cannot be issued.

al The value of SSA1 is changed from CUSTOMER to blanks. Since
the REPL call uses the segment retrieved by the GHN call, an SSA
is not needed.

am The DL/I PUT statement formats the CUSTOMER segment in the
output buffer and issues the REPL call. The entire segment must be
formatted, even though the value of only one field, COUNTRY, is
changed.

an If the REPL call is not successful (that is, the status code from DL/I
was not blank), all values from the program data vector are written
to the SAS log and the DATA step aborts.

ao If the REPL call is successful, the step goes on to execute another
FILE statement. This is not a DL/I FILE statement; instead, it
specifies the fileref (TRANREPT) of an output file for a printed
report on the replaced segments. The HEADER= option points to the
NEWPAGE subroutine. Each time a new page of the update report
is started, SAS links to NEWPAGE and executes the statement.

ap The PUT statement specifies variables and positions to be written to
the TRANREPT output file.

188 Example 8: Using the Blank INPUT Statement � Chapter 8

aq The DO group is terminated by the END statement.

ar Execution returns to the beginning of the DATA step when this
RETURN statement executes.

as This PUT statement executes when a new page starts in the output
file TRANREPT. The HEADER= option in the FILE TRANREPT
statement points to the NEWPAGE label, so when a new page
begins, SAS links to this labeled statement and prints the specified
heading.

bt After printing the heading, SAS returns to the PUT statement
immediately after the FILE TRANREPT statement (item 16) and
continues execution of the step.

Example 8: Using the Blank INPUT Statement
This program calculates customer balances by retrieving a CUSTOMER segment

and then all CHCKACCT and SAVEACCT segments for that customer record. The
CUSTOMER segments are retrieved by qualified get-next calls, and the CHCKACCT
and SAVEACCT segments are retrieved by qualified get-next-within-parent calls. A GE
or GB status when retrieving the CHCKACCT and SAVEACCT segments indicates that
there are no more of that segment type for the current parent segment (CUSTOMER).

The numbered comments following this program correspond to the numbered
statements in the program:

u data balances;
v length ssa1 $9;
w keep soc_sec_number

chck_bal
save_bal;

x chck_bal = 0;
save_bal = 0;

y infile acctsam dli pcbno=4 call=func ssa=ssa1
status=st;

U func = ’GN ’;
V ssa1 = ’CUSTOMER ’;

W input @;
X if st = ’ ’ and

st = ’CC’ and
st = ’GA’ and
st = ’GK’ then
link abendit;

at input @1 soc_sec_number $char11.;
ak st = ’ ’;
al func = ’GNP ’;
am ssa1 = ’CHCKACCT ’;

an do while (st = ’ ’);
ao input @;
ap if st = ’ ’ then

do;

Overview of the IMS DATA Step Interface � Example 8: Using the Blank INPUT Statement 189

aq input @13 check_amount pd5.2;
ar chck_bal=chck_bal + check_amount;
as end;
bt end;

bk if st = ’GE’ then
link abendit;

bl st = ’ ’;
bm _error_ = 0;
bn input;
bo ssa1 = ’SAVEACCT ’;

bp do while (st = ’ ’);
input @;
if st = ’ ’ then

do;
input @13 savings_amount pd5.2;
save_bal = save_bal + savings_amount;

end;
end;

if st = ’GE’ then
error = 0;

else
link abendit;

return;

bq abendit:
file log;
put _all_;
abort;

run;

br proc print data=balances;
title2 ’Customer Balances’;

run;

u The DATA step creates a new SAS data set called BALANCES.

v The length of SSA1, an SSA variable specified in the INFILE
statement, is set before execution of the DL/I INFILE statement, as
required.

w The KEEP statement tells SAS that the variables
SOC_SEC_NUMBER, CHCK_BAL, and SAVE_BAL are the only
variables to be included in the BALANCES data set.

x The CHCK_BAL and SAVE_BAL variables are assigned an initial
value of 0 and are reset to 0 for each new customer.

y The INFILE statement specifies ACCTSAM as the PSB, and the DLI
specification tells SAS that this step will access DL/I resources. The
SSA= option identifies SSA1 as a variable that contains an SSA.
(The length of SSA1 was established by the LENGTH statement.)
The CALL= option specifies FUNC as the variable containing DL/I

190 Example 8: Using the Blank INPUT Statement � Chapter 8

call functions, and the PCBNO= option specifies which database
PCB should be used.

These defaults are in effect for the other DL/I INFILE statement
options: the input buffer is 1000 bytes in length, and segment
names and PCB mask data are not returned. There are no qualified
SSAs in the program, so access is sequential.

U The FUNC variable is assigned a value of GN, so the next DL/I
INPUT statement will issue a get-next call.

V The SSA1 variable is assigned a value of CUSTOMER, so the GN
call will retrieve the CUSTOMER segment.

W The only specification in the DL/I INPUT statement is the trailing @
sign. When the statement executes, the GN call is issued and, if the
call is successful, a CUSTOMER segment is retrieved and placed in
the input buffer. Since no variables are named in the INPUT
statement, the segment data is not moved to SAS variables in the
program data vector. Instead, the segment is held in the input
buffer for the next DL/I INPUT statement that executes (that is, the
next DL/I INPUT statement does not issue a call but uses the data
already in the buffer).

X When a call is not successful (that is, when the DL/I status code is
something other than blank, CC, GA, or GK), the automatic SAS
variable _ERROR_ is set to 1. If the status code is set to GB
(indicating end of database) and if the DATA step is processing
sequentially (as this one is), the DATA step is stopped automatically
with an end-of-file return code sent to SAS.

at If the call is successful, this DL/I INPUT statement executes. It
moves the SOC_SEC_NUMBER value from the input buffer (where
the segment was placed by the previous DL/I INPUT statement) to a
SAS variable in the program data vector.

ak The value of the ST variable for status codes is reset to blanks.

al The value of the FUNC variable is reset to GNP. The next call issued
will be a get-next-within-parent call.

am The SSA1 variable is reset to CHCKACCT, so the next call will be for
CHCKACCT.

an This DO/WHILE statement initiates a DO-loop (statements 15
through 20) that iterates as long as blank status codes are returned.

ao Again, the only specification in this DL/I INPUT statement is the
trailing @ sign. When the statement executes, the GNP call is
issued for a CHCKACCT segment. If the call is successful, a
CHCKACCT segment is retrieved and placed in the input buffer.
The segment data is not moved to SAS variables in the program
data vector. Instead, the segment is held in the input buffer for the
next DL/I INPUT statement that executes.

ap If a blank status code is returned, the GNP call was successful, and
a DO-group (statements 17 and 18) executes.

aq This DL/I INPUT statement moves the CHECK_AMOUNT value (in
the PD5.2 format) from the input buffer to a SAS variable in the
program data vector.

Overview of the IMS DATA Step Interface � Example 9: Using the Qualified SSA 191

ar The variable CHCK_BAL is assigned a new value by adding the
value of CHECK_AMOUNT just obtained from the CHCKACCT
segment.

as The END statement signals the end of the DO-group.

bt This END statement ends the DO-loop.

bk If the GNP call is not successful and returns a non-blank status code
other than GE, the DATA step stops and the job abends.

bl If the GNP call is not successful and returns a GE status code, the
remainder of the step executes. (The GE status code indicates that
all checking accounts for the customer have been processed.) In this
statement, the ST= variable is reset to blanks.

bm _ERROR_ is reset to 0 to prevent SAS from printing the contents of
the input buffer and program data vector to the SAS log.

bn The blank INPUT statement releases the hold placed on the input
buffer by the last INPUT @ statement. This enables you to issue
another call with the next DL/I INPUT statement.

bo The SSA1 variable is reset to SAVEACCT, so the next call will be
qualified for SAVEACCT.

bp This DO/WHILE statement initiates a DO loop that is identical to
the one described in items 14 through 20, except that the GNP calls
retrieve SAVEACCT segments rather than CHCKACCT segments.
The GNP calls also update SAVE_BAL.

bq The ABENDIT code, if linked to, aborts the DATA step.

br The PROC PRINT step prints the BALANCES data set created by
the IMS DATA step.

The following output shows the results of this example.

Output 8.8 Results of Using the Blank INPUT Statement

Customer Balances

soc_sec_
OBS chck_bal save_bal number

1 3005.60 784.29 667-73-8275
2 826.05 8406.00 434-62-1234
3 220.11 809.45 436-42-6394
4 2392.93 9552.43 434-62-1224
5 0.00 0.00 232-62-2432
6 1404.90 950.96 178-42-6534
7 0.00 0.00 131-73-2785
8 353.65 136.40 156-45-5672
9 1243.25 845.35 657-34-3245
10 7462.51 945.25 667-82-8275
11 608.24 929.24 456-45-3462
12 672.32 0.00 234-74-4612

Example 9: Using the Qualified SSA
In this example, path calls with qualified SSAs are used to produce a report showing

which accounts in the ACCTDBD database had checking account debits on March 28,

192 Example 9: Using the Qualified SSA � Chapter 8

1995. The numbered comments following this program correspond to the numbered
statements in the program:

filename tranrept ’your.sas.tranrept’ disp=old;
data _null_;
u retain ssa1 ’CHCKACCT*D ’

ssa2 ’CHCKDEBT(DEBTDATE =032895) ’;

v infile acctsam dli ssa=(ssa1,ssa2) status=st
pcbno=4;

w input @1 check_account_number $char12.
@13 check_amount pd5.2
@18 check_date mmddyy8.
@26 check_balance pd5.2
@41 check_debit_amount pd5.2
@46 check_debit_date mmddyy8.
@54 check_debit_time time8.
@62 check_debit_desc $char40.;

x if st = ’ ’ and
st = ’CC’ and
st = ’GA’ and
st = ’GK’ then

y if st = ’GB’ | st = ’GE’ then
do;

error = 0;
stop;

end;
U else

do;
file log;
put _all_;

V abort;
end;

W file tranrept header=newpage notitles;
X put @10 check_account_number

@30 check_debit_amount dollar13.2
@45 check_debit_time time8.
@55 check_debit_desc;

at return;
ak newpage: put / @15 ’Checking Account Debits

Occurring on 03/28/95’
// @08 ’Account Number’ @37 ’Amount’

@49 ’Time’ @55 ’Description’ //;
al return;
run;
filename tranrept clear;

u The RETAIN statement specifies values for the two SSA variables,
SSA1 and SSA2.

SSA1 is an SSA for the CHCKACCT segment with the command
code for a path call, *D. This command code means that the
CHCKACCT segment is returned as well as the target segment,

Overview of the IMS DATA Step Interface � Example 9: Using the Qualified SSA 193

CHCKDEBT. SSA2 is a qualified SSA specifying that CHCKDEBT
segments for which DEBTDATE=032895 be retrieved.

These values are retained for each iteration of the DATA step.
The RETAIN statement satisfies the requirement that the length of
an SSA variable be specified before the DL/I INFILE statement.

v The INFILE statement specifies ACCTSAM as the PSB. The DLI
specification tells SAS that the step will access DL/I resources. Two
variables containing SSAs are identified by the SSA= option, SSA1
and SSA2. (Their values were set by the earlier RETAIN
statement.) The STATUS= option specifies the ST variable for status
codes returned by DL/I, and the PCBNO= option specifies the PCB
selection.

These defaults are in effect for the other DL/I INFILE options: all
calls are get-next calls, the input buffer length is 1000, and the
segment names and PCB mask data are not returned.

w When the DL/I INPUT statement executes, the GN call is issued. If
successful, CHCKACCT and CHCKDEBT segments are placed in the
input buffer, and the values are then moved to SAS variables in the
program data vector. The DL/I INPUT statement specifies positions
and informats for the variables in both the CHCKACCT and
CHCKDEBT segments because the path call returns both segments.

x If the qualified GN call issued by the DL/I INPUT statement is not
successful (that is, it obtains any return code other than blank, CC,
GA, or GK), _ERROR_ is set to 1 and the program does further
checking.

y If the ST variable value is GB (a status code meaning that the
end-of-file has been reached) or GE (segment not found), _ERROR_ is
reset to 0 so that the contents of the input buffer and program data
vector are not printed to the SAS log, and SAS stops processing the
DATA step. In a program issuing path calls with qualified SSAs,
DL/I might first return a GE status code when it reaches end-of-file.
Then, if another get call is issued, DL/I returns the GB status code.
Therefore, in this program, we treat a GE code as a GB code.

In a sequential-access program with unqualified SSAs, this
statement is not necessary because the end-of-file condition stops
processing automatically. However, when a program uses qualified
SSAs, the end-of-file condition is not set on because DL/I might not
be at the end of the database. Therefore, you need to check status
codes and stop the step.

U For any other non-blank return code, all values from the program
data vector are written to the SAS log.

V The DATA step execution terminates, and the job abends.

W If the GN call is successful, the step goes on to execute another
FILE statement. This is not a DL/I FILE statement. Instead, it
specifies the fileref (TRANREPT) of an output file for a printed
report on the retrieved segments.

The HEADER= option points to the NEWPAGE statement label
(statement 11). When a new page begins, SAS links to the labeled
statement and prints the specified heading.

194 Example 9: Using the Qualified SSA � Chapter 8

X The PUT statement specifies variables and positions to be written to
the output file.

at Execution returns to the beginning of the DATA step when this
RETURN statement executes.

ak The PUT statement labeled NEWPAGE executes when a new page
is started in the output file TRANREPT. This PUT statement writes
the title for the report at the top of the new page.

al After printing the heading, SAS returns to the PUT statement
immediately after the FILE TRANREPT statement (statement 8)
and continues execution of the step.

195

C H A P T E R

9
How to Use the IMS DATA Step
Interface

Introduction to Using the IMS DATA Step Interface 195
z/OS DL/I System Calls 196

Fast Path DL/I Database Access 197

Main Storage Databases (MSDB) and Data Entry Databases (DEDB) 197

FLD Call 197

POS Call 198
Non-Database Access Calls 199

Using Non-Database Access Calls 199

I/O PCBs 199

TP PCBs 199

Feedback Data 200

Basic CHKP Call 201
CHKP Calls in IMS/ESA BMP Regions 202

LOG Call 203

ROLL Call 204

ROLB Call 205

IMS/ESA BMP System Calls 205
DEQ Call 205

ROLB Call 206

CMD Call 208

GCMD Call 209

IMS/ESA Message Queue Access 210
Get Calls That Use the I/O PCB 210

ISRT Calls to Message Queues 212

Notes on Inserting Message Segments 213

PURG Calls for Message Segments 214

CHNG Call to TP PCBs 214

Introduction to Using the IMS DATA Step Interface

The SAS/ACCESS interface to IMS can access databases through a DLI or DBB
batch region, and an IMS/ESA DB/DC BMP region.* Chapter 8, “Overview of the IMS
DATA Step Interface,” on page 151 describes DATA step programming statements and
DL/I statements that are available with the IMS DATA step interface. This section
describes Fast Path DL/I database access and non-database access calls.

* Beginning with Version 6, the SLI region type is not supported; SLI functionality is supported through BMP regions.
Databases that are allocated to CICS control regions can be accessed by SAS applications through a BMP region by using
the DBCTL facility of IMS/ESA and CICS/ESA.

196 z/OS DL/I System Calls � Chapter 9

z/OS DL/I System Calls
The following table summarizes the functions and region types for non-database

access calls that are supported by the IMS DATA step interface.

Table 9.1 Summary of Fast Path and Non-Database Access Calls

Function Purpose Valid Region Types Notes

CHKP create the synchronization point,
recovery

all IMS DATA step
interface region types

OS/VS option not supported. In
transaction-processing BMPs, next call must
be GU using I/O PCB.

CHNG change destination for messages IMS/ESA BMP regions sets the destination for a modifiable TP PCB

CMD issue IMS/ESA commands from
a program

IMS/ESA BMP regions when CC status returned, must next issue
GU to retrieve response

DEQ release a class of segments
enqueued with the Q command
code

IMS/ESA BMP regions specify class (A-J) of segments to dequeue

FLD access fields in MSDBs IMS/ESA BMP regions Fast Path Facility only

GCMD retrieve additional response
segments to a command if more
than one

IMS/ESA BMP regions functions as a GN to the queue after first
response segment retrieved with GU

GN retrieve additional segments of a
message with more than one
segment

IMS/ESA BMP regions uses I/O PCB

GU retrieve the first segment of a
message

IMS/ESA BMP regions uses I/O PCB

ISRT format and send message
segment to the queue

IMS/ESA BMP regions uses I/O or TP PCB

LOG insert a record to the DL/I
system log

z/OS DL/I regions uses I/O PCB

POS return position information from
DEDBs

IMS/ESA BMP regions Fast Path Facility only

PURG terminate the current message
being inserted; insert the first
segment of the next message

IMS/ESA BMP regions uses TP PCB

How to Use the IMS DATA Step Interface � FLD Call 197

Function Purpose Valid Region Types Notes

ROLB back out database updates since
last sync point

IMS/ESA BMP regions
and batch DL/I regions in
IMS/ESA Release 3

in BMP regions, also backs out messages
inserted to the queue since the last
synchronization point. Next call must be GU
using I/O PCB if ROLB requested return of
previous message.

ROLL back out database updates since
last sync point, and abend

IMS/ESA BMP regions,
batch DL/I regions in
IMS/ESA Release 3, and
CICS/VS shared DL/I
regions

in BMP regions also backs out messages
inserted to the queue since the last
synchronization point

Fast Path DL/I Database Access

Main Storage Databases (MSDB) and Data Entry Databases (DEDB)
The following two Fast Path database types are supported by the IMS DATA step

interface by using a BMP region:
� Main storage databases (MSDBs) store and provide access to an installation’s most

frequently used data, which resides in virtual storage during execution. The data
is stored in segments, and each segment can be available to all computers or to
specific computers.

� Data entry databases (DEDBs) provide a high level of availability for, and efficient
access to, large volumes of detailed data. They are hierarchic structures that
contain a special type of segment that is used for the fast collection of detailed
information. The segments are called sequential dependent segments because they
are stored in time sequence as they are committed to the database.

Standard DL/I database calls can be used with a PCB that references an MSDB or
DEDB to access database segments. Two additional calls are available:

� The FLD call enables read and update access to a field in an MSDB.
� The POS call returns information about the position of the current sequential

dependent segment in a DEDB and free space in the DEDB area.

The IMS DATA step interface supports the FLD and POS calls from a BMP region.

FLD Call
The FLD call is used to verify and to update the contents of one or more fields in an

MSDB segment. Individual field verification or change specifications are specified in
field search arguments (FSAs). (The format and use of FSAs are described in the IBM
publication IMS/ESA: Application Programming: EXEC DLI Commands for CICS and
IMS.) FSAs are passed to DL/I in the I/O area. Therefore, in the IMS DATA step
interface, the PUT statement is used to format the FSAs in the output buffer and to
execute the FLD call.

Like any DL/I call, the FLD call returns a status code. In addition, DL/I returns
abnormal status information for each FSA in the call. If a non-blank status code is
returned from a FLD call, it might be necessary to examine the contents of the FSA
return codes. The DL/I INFILE statement option FSARC= specifies a 200-byte
character variable to which the first 200 FSA status code bytes can be returned.

198 POS Call � Chapter 9

The following example issues a FLD call against an MSDB called INVNTORY:

ssa1=’PRODUCT (PRODUCT = LOCKS)’;
infile msdbpsb dli call=cfunc dbname=database

ssa=ssa1 fsarc=fsa_rc;
file msdbpsb dli;
cfunc = ’FLD ’;
database = ’INVNTORY’;
put @1 ’QUANTITY H100*QUANTITY -100*ORDERS +1 ’;

The call accesses a segment called PRODUCT containing data on locks. The FLD call
performs these functions:

� verifies that the QUANTITY field is greater than 100

� updates the QUANTITY field by subtracting 100 from its current value

� updates the ORDERS field by adding 1 to its value.

If the QUANTITY field value is not greater than 100 when the FLD call is executed,
the return code for the first FSA contains a D. The following statements check for
errors in the call and print an appropriate message on the SAS log for this error:

if _error_ then do;
file log;
if substr(fsa_rc,1,1) = ’D’
then put / ’*** Quantity of Product Locks Less

Than 100 ***’;
put _all_;
error=0;
end;

POS Call

The POS call is used with a DEDB to perform one of the following:

� Retrieve the position of a specific sequential dependent segment.

� Retrieve the position of the last inserted sequential dependent segment.

� Find out how much free space is available within a DEDB area.

In an IMS DATA step program, the POS call is issued with a DL/I INPUT statement
and a DB PCB. After a POS call is issued, the input buffer is formatted with the
requested data as explained in the IBM publication IMS/ESA: Application
Programming: EXEC DLI Commands for CICS and IMS.

The SAS statements below execute a POS call for a DEDB called ORDERS:

retain ssa1 ’PRODUCT (PRODUCT = LOCKS)’;
infile dedbpsb dli call=cfunc dbname=database

ssa=ssa1;
cfunc = ’POS ’;
database = ’ORDERS ’;
input @3 areaname $char8.

@11 cycl_cnt $pib4.
@15 vsam_rba $pib4.;

The call obtains the position of the last inserted ORDRITEM sequential dependent
segment for the locks PRODUCT segment.

How to Use the IMS DATA Step Interface � TP PCBs 199

Non-Database Access Calls

Using Non-Database Access Calls
Some DL/I calls communicate with DL/I for reasons other than database access.

This section describes how to use the non-database calls in IMS DATA step programs.
Most non-database calls require either an I/O PCB or a TP PCB. The basic CHKP

call, the LOG call, the ROLL call, and the ROLB call, however, are supported in all
DL/I region types that can be accessed through z/OS.

Also, some calls can be executed only from an IMS/ESA BMP region. All of these
calls are described in the following sections

I/O PCBs
An I/O PCB is a program communication block that is used only in z/OS DL/I

environments. An I/O PCB is similar to a DB PCB, but an I/O PCB communicates
non-database access requests to DL/I instead of database requests. The type of DL/I
region executed and an option specified when PSBs are generated determine whether
an I/O PCB is included in a PSB. The IMS/ESA control region automatically provides
an I/O PCB for BMP regions. The I/O PCB is generated in batch DL/I regions if the
CMPAT=YES option is specified in the PSBGEN statement when the PSB is generated.

If an I/O PCB is present, it is always the first PCB in the PSB. Therefore, be careful
in how you specify the DL/I INFILE statement options PCBNO=, PCB=, and
DBNAME= when you need the I/O PCB. The value of PCBNO= must be 1. If the
DBNAME= option is specified, that variable’s value must be set to blanks. Finally, if a
PCB= variable is specified, it must have a value of 1.

In all z/OS DL/I regions, the I/O PCB is used to issue the CHKP and LOG calls. In
an IMS/ESA BMP region, the I/O PCB is also used to read transaction messages from
the IMS/ESA message queues, to insert response messages to the computer that
originated the transaction, and to communicate certain system calls that are unique to
the IMS/ESA DB/DC system.

TP PCBs
A TP PCB is a program communication block that is used with the IMS DATA step

interface only in IMS/ESA BMP regions. It is similar to the I/O PCB, but there are two
important differences:

� A TP PCB is used to insert messages only to computer or transaction message
queues. A TP PCB cannot be used for a Get call to a message queue.

� Unlike an I/O PCB, a TP PCB can direct a message to a destination (transaction
or computer message queue) other than the computer that originated the message.

There are two kinds of TP PCBs: nonmodifiable and modifiable. A nonmodifiable TP
PCB has a fixed destination that is specified when the PSB is generated. The
destination can be either a computer or transaction message queue. A modifiable TP
PCB does not have a destination associated with it when the PSB is generated. Instead,
the program must set the destination before using the PCB to insert a message to the
message queue. The destination can be changed between messages so that more than
one destination can be accessed by one TP PCB.

When TP PCBs are present, they follow the I/O PCB (if any) and precede the DB
PCBs. Unless the TP PCB is the first PCB in the PSB, you must use the PCB= option

200 Feedback Data � Chapter 9

in the DL/I INFILE statement to select the appropriate TP PCB. You cannot use the
DBNAME= option because no DBD name is associated with a TP PCB.

Feedback Data
Just as information from DB PCBs is available to the SAS program through the

STATUS= and PCBF= variables after a DL/I call, so is information from the I/O and TP
PCBs.* The format of the data in the PCBF= variable differs, however, according to the
PCB type.

If a DL/I call uses the I/O PCB, the PCBF= variable data is formatted as shown in
the following table.

Table 9.2 Format of I/O PCB Feedback Data

Bytes Description

1-8 These bytes of the PCBF= variable contain the
name of the logical terminal (LTERM) that
issued the message.

9-10 These bytes are reserved for IMS/ESA usage.

11-12 These bytes contain the DL/I status code. The
status code can also be obtained by specifying
the STATUS= option in the DL/I INFILE
statement.

13-16 These bytes contain the date that the message
was queued. The date is in packed decimal,
right aligned, Julian date format (YYDDD).

17-20 The time that the message was queued is
contained in these bytes in packed decimal
format (HHMMSS.S).

21-24 The input message number assigned by
IMS/ESA is contained in these bytes in IB4.
(full-word binary) format.

25-32 These bytes contain the Message Output
Descriptor (MOD) name. An MOD name is
connected to this PCB if Message Format
Services (MFS) is used. If MFS is not used,
there is no MOD, and this field is blank.

33-40 These bytes contain the user identification
data. The contents vary according to the
source of the message

If a DL/I call uses a TP PCB, the data in the PCBF= variable is formatted as shown
in the following table.

* IMS/ESA: Application Programming: EXEC DLI Commands for CICS and IMS, an IBM publication, describes the PCB
mask data.

How to Use the IMS DATA Step Interface � Basic CHKP Call 201

Table 9.3 Format of TP PCB Feedback Data

Bytes Description

1-8 These bytes of the PCBF= variable contain the
name of the destination associated with the PCB.

9-10 These bytes are reserved for IMS/ESA usage.

11-12 These bytes contain the DL/I status code. The
status code can also be obtained by specifying the
STATUS= option in the DL/I INFILE statement.

Basic CHKP Call
The basic CHKP call can be issued in batch DL/I regions as well as in online DL/I

regions. This call establishes a program synchronization point.* (Synchronization
points are described in “General Considerations for Sharing Resources” on page 35.)

The following example shows SAS programming statements that issue a CHKP call.
The example is run using the SAS system option IMSREGTP=DLI:

data _null_;
retain chkpnum 0;
infile acctsam dli call=func pcb=pcbindex

status=st;
file acctsam dli;
func = ’CHKP’;
pcbindex = 1;
chkpnum = chkpnum +1;
put @1 ’SAS’

@4 chkpnum z5.;
if st = ’ ’ then

return;
file log;
put _all_;
abort;

run;

The CHKPNUM variable, first referenced in the RETAIN statement, is used to build
a checkpoint ID. A checkpoint ID is an 8-byte value that is written to the DL/I log record
to identify the program checkpoint. A checkpoint ID is not required but is very useful
and should be included routinely in programs that issue CHKP calls. In this example,
the checkpoint ID is built in the output buffer. If the same sequence of statements is
used for each CHKP call, the checkpoint ID is incremented by 1 for each call.

The PCB= variable, PCBINDEX, has a value of 1. This indicates that the first
eligible PCB is used for the CHKP call. A CHKP call requires the I/O PCB that is the
first PCB in the PSB (see “I/O PCBs” on page 199).

Note: An I/O PCB is always generated for PSBs in a BMP region. If you are going
to issue a CHKP call under DL/I, you must use the CMPAT=YES option in the
PSBGEN statement for batch regions DLI and DBB. If an I/O PCB is not present, you
get the message that the call is invalid for a DB PCB. �

The CHKP call is successful if _ERROR_=0 and the STATUS= variable (ST) is blank.
Otherwise, the STATUS= variable contains a status code that indicates the cause of the

* The OS/VS checkpoint option of the CHKP call in an IMS/ESA DL/I region is not supported in the IMS DATA step interface.

202 CHKP Calls in IMS/ESA BMP Regions � Chapter 9

failure. In particular, an XD status code in an IMS/ESA BMP region indicates that the
IMS/ESA control region is being shut down.

CHKP Calls in IMS/ESA BMP Regions
A CHKP call performs an additional function when it is issued in an IMS/ESA BMP

transaction-processing program (that is, when the SAS system option IMSBPIN=
specifies a valid transaction code and the PCB used is type TP). In addition to
establishing a synchronization point, the call returns the first segment of the next
message to the call’s I/O area. Since a CHKP call is issued by a DL/I PUT statement,
the I/O area is the SAS output buffer.

You cannot read from the output buffer in a DATA step, but you can access the
message segments that are placed in the output buffer. You format a GU call that uses
the I/O PCB. When the DL/I INPUT statement executes, the SAS/ACCESS interface
remembers that the output buffer contains data from a previous CHKP call. Instead of
issuing the GU call, the SAS/ACCESS interface moves the segment from the output
buffer to the input buffer, where it can be read. Therefore, in a BMP
transaction-processing program, the first call issued after a CHKP call must be a GU
that references the I/O PCB.*

Consider the previous example in “Basic CHKP Call” on page 201, which shows SAS
statements that issue a CHKP call. If you issue the CHKP call in a BMP
transaction-processing program, additional statements are needed. This example issues
one CHKP call and moves a message segment to the input buffer.

In this example, change trancode in the OPTIONS statement to a valid transaction
code at your site. This example is run using the SAS system options IMSREGTP=BMP
and IMSBPIN=trancode:

options imsbpin=trancode;
data _null_;

retain chkpnum 0;
infile acctsam dli call=func pcb=pcbindex

status=st;
file acctsam dli;
func = ’CHKP’;
pcbindex = 1;
chkpnum = chkpnum +1;
put @1 ’SAS’

@4 chkpnum z5.;
if st = ’ ’ then
do;

func = ’GU ’;
input @;
if st = ’ ’ then
if st= ’QC’ then

do;
error = 0;
stop;

end;
else

link abendit;
end;

* This is not the call sequence that would be used if programming in PL/I, COBOL, or Assembler, but it is consistent with the
actions taken by DL/I after a CHKP call.

How to Use the IMS DATA Step Interface � LOG Call 203

else
if st = ’QC’ then
do;

error = 0;
stop;

end;
else

link abendit;
stop;

abendit:
file log;
put _all_;
abort;

run;
options imsbpin=*;

If DL/I did not return the first segment of the next message automatically after a
CHKP call, the GU call would be necessary to retrieve the next message.

LOG Call
A LOG call inserts user log records in the DL/I log with the I/O PCB (see “I/O PCBs”

on page 199). To insert a log record, you must specify the following:
� the text of the log record
� a valid log code
� a value for the ZZ field
� the value of the LL field, which is the sum of the lengths of the log record, log

code, ZZ field, and LL field

In an IMS DATA step program, the LOG call is issued with the DL/I PUT statement.
The PUT statement must format the log record being inserted. The following
statements from a sample program insert a log record with a code of ’A0’x in the IMS
log. The example can be run using the SAS system options IMSREGTP=DLI or
IMSREGTP=BMP:

data _null_;
infile acctsam dli call=func pcb=pcbindex

status=st;
file acctsam dli;
func = ’LOG ’;
pcbindex = 1;
ll = 23;
zz = ’0000’x;
logcode = ’A0’x;
logsegm = ’Text of Log Record’;
put @1 ll pib2.

@3 zz
@5 logcode
@6 logsegm;

if st = ’ ’ then
do;
file log;
put _all_;
abort;

204 ROLL Call � Chapter 9

end;
stop;

run;

After the LOG call, you can check the values of the STATUS= variable and _ERROR_
to see whether the call was successful. If _ERROR_=0, the log record was inserted
properly. Otherwise, the STATUS= variable contains an error code that indicates why
the call was not successful.

If the PSB is generated with LANG=PLI, then the PUT statement must be modified
because the LL field has a 4-byte length:

put @1 ll pib4.
@5 zz
@7 logcode
@8 logsegm;

The value of the LL variable does not change.

ROLL Call
In an online access region, the ROLL call has two purposes:
� to back out any DL/I updates to database segments or message queues that have

been made since the last program synchronization point
� to abend the program with a user 0778 completion code

The ROLL call performs the same functions in a batch DL/I region if the following
conditions are present:

� A DASD log data set is used.
� The IMS DATA step interface option IMSDLBKO= specifies a value of Y.

Otherwise, the ROLL call in a batch DL/I region only causes the program to abend
with a user 0778 completion code. In this latter case, the database back-out utility
must be run with the log data set in order to back out any database updates made since
the last program synchronization point.

The following example shows statements that issue a ROLL call. This example is run
using the SAS system option IMSREGTP=DLI:

data _null_;
infile acctsam dli call=func pcb=pcbindex
status=st;

file acctsam dli;
func = ’ROLL’;
pcbindex = 1;
put;
if st = ’ ’ then
do;

file log;
put _all_;
abort;

end;
stop;

run;

How to Use the IMS DATA Step Interface � IMS/ESA BMP System Calls 205

ROLB Call
A ROLB call is used in a batch DL/I region to back out any DL/I database updates

that have been made since the last program synchronization point. ROLB differs from
the ROLL call because it does not cause an 0778 abend. The ROLB call requires use of
the I/O PCB (see “I/O PCBs” on page 199).

The ROLB call can be issued in batch DL/I regions if the following is true:
� a DASD log data set is used
� the IMS DATA step interface option IMSDLBKO= specifies a value of Y.

Otherwise, the ROLB call can be issued only from an IMS/ESA BMP region, as
described in “IMS/ESA Message Queue Access” on page 210.

The following sequence of SAS statements issues a ROLB call. This example is run
using the SAS system options IMSREGTP=DLI and IMSDLBKO=Y:

options imsdlbko=y;
data _null_;
infile acctsam dli call=func pcb=pcbindex

status=st;
file acctsam dli;
func = ’ROLB’;
pcbindex = 1;
put;
if st = ’ ’ then

do;
file log;
put _all_;
abort;

end;
stop;

run;

The ROLB call has been successfully executed if _ERROR_=0 after the call;
otherwise, you can check the value of the STATUS= variable to see why the call did not
complete successfully.

IMS/ESA BMP System Calls

DEQ Call
The DEQ call is used in a BMP region to dequeue a class of database segments that

have been enqueued with the Q command code of a Get call. The DEQ call is issued with
the PUT statement and requires the use of the I/O PCB. The PUT statement specifies
the class of segments to be dequeued. The following sequence of SAS statements
dequeue the segments that have been enqueued to Class A with a QA command code in
a Get call. This example is run using the SAS system option IMSREGTP=BMP:

data _null_;
infile tranpsb dli call=func pcb=pcbindex

status=st;
file tranpsb dli;
func = ’DEQ ’;
pcbindex = 1;

206 IMS/ESA BMP System Calls � Chapter 9

put @1 ’A’;
if st = ’ ’ then
do;

file log;
put _all_;
abort;

end;
stop;

run;

The call has been successfully executed if _ERROR_=0 after the call. Otherwise, the
STATUS= variable contains a status code that indicates the reason for the failure.

ROLB Call
The ROLB call is used in a BMP region to back out any DL/I updates to database

segments or message queues that have been made since the last program
synchronization point. The ROLB call is issued with a PUT statement and requires the
use of the I/O PCB.

Examples 1 to 3 are run using the SAS system options IMSREGTP=BMP and
IMSBPIN=trancode. Example 1 shows a sequence of SAS statements that issue a
ROLB call.

options imsbpin=trancode;
data _null_;

infile acctsam dli call=func pcb=pcbindex
status=st;

file acctsam dli;
func = ’ROLB’;
pcbindex = 1;
put;
if st = ’ ’ then
do;

file log;
put _all_;
abort;

end;
stop;

run;

The call has been successfully executed if _ERROR_=0 after the call. Otherwise, the
ST variable contains a status code that indicates the reason for the failure.

If the ROLB call is issued in a BMP transaction processing program and the DL/I
PUT statement issuing the call formats non-blank data in columns 1 through 6, the call
also returns the first segment of the previous message. Any non-blank data can be
written in columns 1 through 6 of the output buffer.

When these conditions are fulfilled, the IMS DATA step interface saves the returned
message segment. The next call must be a GU that uses the I/O PCB. The DATA step
interface intercepts the GU call when the INPUT statement executes, so the call is not
actually issued. Instead, the returned segment is moved to the input buffer where it
can be read.

Example 2 shows a sequence of SAS statements that issue a ROLB call and then a
GU call with the I/O PCB:

/* put a message in the queue */
data _null_;

infile tranpsb dli call=func pcb=pcbindex

How to Use the IMS DATA Step Interface � IMS/ESA BMP System Calls 207

status=st;
file tranpsb dli;
func = ’ISRT’;
pcbindex = 2;
ll = 33;
zz = ’0000’x;
msgsegm = ’trancode Message for Example # 2.’;
put @1 ll pib2.

@3 zz
@5 msgsegm;

if st = ’ ’ then
do;
file log;
put _all_;
abort;

end;
stop;

run;
data _null_;
infile acctsam dli call=func pcb=pcbindex

status=st;
pcbindex = 1;
file acctsam dli;
func = ’ROLB’;
put @1 ’SAVEIO’;
if st = ’ ’ then

if st = ’QC’ then
error = 0;

else
link abendit;

func = ’GU ’;
input @;
if st = ’ ’ then

error = 0;
else

link abendit;
stop;

abendit:
file log;
put _all_;
abort;

run;

Example 3 shows a sequence of SAS statements that issue a ROLB call and with no
GU call to the message queue:

data _null_;
infile acctsam dli call=func pcb=pcbindex

status=st;
file acctsam dli;
func = ’ROLB’;
pcbindex = 1;
put @1 ’SAVEIO’;
if st = ’ ’ and

208 IMS/ESA BMP System Calls � Chapter 9

st = ’QC’ then
link abendit;

return;

abendit:
file log;
put _all_;
abort;

run;
options imsbpin=*;

The message segment has been successfully moved if _ERROR_=0 after the INPUT
statement executes.

If the PUT statement above is changed to PUT;, the message segment would not be
returned by the ROLB call.

CMD Call
A SAS program that executes in a BMP region can insert commands to IMS/ESA

with the CMD call if the following conditions are met:

� the IMS/ESA security enables the PSB and transaction to do so

� BMPREAD= does not specify Y.

The CMD call is issued by a PUT statement and uses the I/O PCB.
For example, the following sequence of SAS statements issues the ’/START DB

ACCTDBD. ’ command. This example is run using the SAS system options
IMSREGTP=BMP and IMSBPIN=trancode :

options imsbpin=trancode;
data _null_;

infile tranpsb dli call=func pcb=pcbindex
status=st;

file tranpsb dli;
func = ’CMD ’;
pcbindex = 1;
ll = 23;
zz = ’0000’x;
put @1 ll pib2.

@3 zz
@5 ’/START DB ACCTDBD. ’;

if st = ’ ’ then
do;

file log;
put _all_;
abort;

end;
run;
options imsbpin=*;

If _ERROR_=0 after the call, the command was issued properly. If a blank STATUS=
code is returned, the command might have completed or it might be in progress,
depending on the IMS/ESA command issued.

If a CC status code is returned, the command returned a response message to the
output buffer and the IMS DATA step interface saved the response. To retrieve the
response, the next call must be a GU that uses the I/O PCB, as is done after CHKP and
ROLB calls in the IMS DATA step interface. If subsequent response segments are

How to Use the IMS DATA Step Interface � IMS/ESA BMP System Calls 209

queued, a CC status code is returned as a result of the GU call. The program can issue
GCMD calls (see “GCMD Call” on page 209) to retrieve the subsequent response
segments.

See the IBM publication IMS/ESA: Application Programming: EXEC DLI
Commands for CICS and IMS for more information about the CMD call.

If the PSB is generated with LANG=PLI, the format specified for the LL field must
be changed to PIB4.:

put @1 ll pib4.
@5 zz
@7 ’/START DB D1MK0001.’;

However, the value of the LL variable does not change.

GCMD Call
A SAS program that issues CMD calls can retrieve additional response segments

with the GCMD call. The GCMD call acts like a GN to the queue and is issued with a
DL/I INPUT statement. The first segment must have been retrieved with a GU call by
using the I/O PCB.

The following sequence of statements issues a GCMD call. This example is run using
the SAS system options IMSREGTP=BMP and IMSBPIN=trancode :

data _null_;
infile tranpsb dli call=func pcb=pcbindex

status=st;
func = ’GU ’;
pcbindex = 1;
input @;
if st = ’CC’ then

do;
func = ’GCMD’;
input @;
if st = ’ ’ or

st = ’QD’ then
do;
error = 0;
stop;

end;
else

link abendit;
end;

else
if st = ’QC’ then
do;

error = 0;
stop;

end;
else
link abendit;

return;

210 IMS/ESA Message Queue Access � Chapter 9

abendit:
file log;
put _all_;
abort;

run;
options imsbpin=*;

If _ERROR_=0 after the call, the next response segment is in the input buffer. If a
QD status code is returned, there are no more response segments for this response.

IMS/ESA Message Queue Access
If you use the IMS DATA step interface to access IMS data and use that data in

programs with a BMP region, you can access the IMS/ESA control region message
queues as well as DL/I databases. A BMP program accesses message queues in two
ways:

� A program that is transaction driven reads a transaction message from the
message queues using the I/O PCB.

� A program can insert messages to computer message queues or transaction
message queues. When responding to the computer that originated a transaction,
the I/O PCB is used. When inserting a message to a computer queue that did not
originate the message or to a transaction queue, a TP PCB is used.

See the IBM publication IMS/ESA: Application Programming: EXEC DLI
Commands for CICS and IMS for more information about IMS/ESA data
communications programming. This section describes the use of the IMS DATA Step
interface to issue DL/I message queue access calls.

Get Calls That Use the I/O PCB
To retrieve message segments for transaction processing, an IMS DATA step

interface program
� must have the IMS DATA step interface option IMSBPIN= set to a valid

transaction code
� issues Get calls with the I/O PCB using DL/I INPUT statements

To retrieve the first segment of any message, use a GU call. To retrieve subsequent
segments of the same transaction message, issue a GN call. You can use the same
sequence of SAS statements that issued a GU call for the first segment of a message,
but the value of FUNC must be changed to GN. (For more information about GU and
GN calls, see “z/OS DL/I System Calls” on page 196.)

In this example, change trancode in the OPTIONS statement to a valid transaction
code at your site. This example is run using the SAS system options IMSREGTP=BMP
and IMSBPIN=trancode :

options imsbpin=trancode;
data _null_;

infile acctsam dli call=func pcb=pcbindex
status=st;

func = ’GU ’;
pcbindex = 1;
input @;
if st = ’ ’ then
do;

func = ’GN ’;

How to Use the IMS DATA Step Interface � IMS/ESA Message Queue Access 211

do while (st = ’ ’);
input @;
if st = ’ ’ then
if st = ’QD’ then

do;
error = 0;
stop;

end;
else

link abendit;
end;

end;
else

if st = ’QC’ then
do;

error = 0;
stop;

end;
else
link abendit;

stop;

abendit:
file log;
put _all_;
abort;

run;
options imsbpin=*;

A transaction message segment has been successfully retrieved if _ERROR_=0 or if
the STATUS= variable is blank after the call. If _ERROR_ does not equal 0, check the
value of the STATUS= variable. When _ERROR_=1 and ST=’QC’ or ST=’QD’, there are
no more messages in the queue. To find out if there are more messages in the queue,
issue another GU call.

The format of a retrieved message segment in the SAS input buffer differs depending
on the language that generated the PSB. If an Assembler PSB is used, the message
segment is formatted as shown in the following table.

Table 9.4 Assembler PSB Input Buffer Message Segment Format

Bytes Description

1-2 These bytes of the SAS buffer contain a value
that is the length of the segment data plus 4 (2
for the LL field and 2 for the ZZ field) in the
PIB2. format.

3-4 These bytes contain the ZZ fields and are
reserved for IMS usage.

5-n The segment data begin at byte 5. If this is the
first segment of the message, the transaction
code (up to 8 bytes in length) is in the first
bytes of the message data.

If a PL/I PSB is used, the message segment is formatted as shown in the following
table.

212 IMS/ESA Message Queue Access � Chapter 9

Table 9.5 PL/I PSB Input Buffer Message Segment Format

Bytes Description

1-4 These bytes of the SAS buffer contain a value
that is the length of the segment data plus 4 (2
for the LL field and 2 for the ZZ field) in the
PIB4. format. (The length here will be 2 bytes
less than the total message segment.)

5-6 These bytes contain the ZZ fields and are
reserved for IMS usage.

7-n The segment data begins at byte 7. If this is
the first segment of the message, the
transaction code (up to 8 bytes in length) is in
the first bytes of the message data.

ISRT Calls to Message Queues
A SAS program executing in a BMP region can insert messages to the IMS/ESA

control region message queues with an ISRT call and the I/O or TP PCBs. For message
segments to be inserted, the following must be true:

� Either IMSBPIN= or IMSBPOUT= must specify a valid IMS/ESA destination.
� BMPREAD= must not equal Y.
� The message segment text must be specified.
� A value must be assigned to the ZZ field.
� The value of the LL field must be specified. The LL field contains the length of the

message segment, which is the sum of the lengths of the text, the ZZ field, and the
LL field.

The following SAS statements insert a message segment. This example uses the
second PCB in the PSB, which is assumed to be a TP PCB. In this example, change
trancode in the OPTIONS statement to a valid transaction code at your site. This
example is run using the SAS system options IMSREGTP=BMP and
IMSBPIN=trancode :

options imsbpin=trancode;
data _null_;

infile tranpsb dli call=func pcb=pcbindex
status=st;

file tranpsb dli;
func = ’ISRT’;
pcbindex = 2;
ll = 35;
zz = ’0000’x;
msgsegm = ’trancode Text of Message Segment’;
put @1 ll pib2.

@3 zz
@5 msgsegm;

if st = ’ ’ then
do;

file log;
put _all_;
abort;

end;

How to Use the IMS DATA Step Interface � IMS/ESA Message Queue Access 213

stop;
run;

data _null_;
infile acctsam dli call=func pcb=pcbindex
status=st;

func=’GU ’;
pcbindex= 1;
input @;
if st = ’ ’ then
if st = ’QC’ then

do;
error = 0;
stop;

end;
else

do;
file log;
put _all_;
abort;

end;
stop;

run;
options imsbpin=*;

If _ERROR_=0 after the ISRT call, the segment was inserted properly. Otherwise, the
STATUS= variable contains a status code that indicates why the call was not successful.

If the PSB is generated with LANG=PLI, the PUT statement must be modified
because the length of the LL field is 4 bytes. For example:

put @1 ll pib4.
@5 zz
@7 msgsegm;

The value of the LL variable does not change.

Notes on Inserting Message Segments

� If the destination of the message is a transaction queue, the text of the first
segment of the message must contain the transaction code. This code must match
the destination in the TP PCB.

� If Message Format Services (MFS) is used, a Message Output Descriptor (MOD) is
associated with the PCB used for the call. If you want to change the MOD that is
associated with the PCB, specify an SSA value of "#MODNAME=modname" when
the first message segment is inserted.* In the previous example, you could add
this statement before the first DL/I PUT statement for the message:

SSA1=’#MODNAME=DFSMO4’;

This causes the message to be formatted with the MOD DFSMO4. The SSA1=’
’; statement should follow the first DL/I PUT so that the MOD is not re-specified
on ISRT calls for subsequent message segments.

* Although a message queue call does not use an SSA, it is provided as a way to specify the MOD.

214 IMS/ESA Message Queue Access � Chapter 9

PURG Calls for Message Segments
You might want your SAS DATA step program to insert multiple messages with one

TP PCB. The requirements for this might vary depending on whether the messages go
to the same destination or to different destinations.

When you insert more than one message to the same destination, you can use a
PURG call to terminate the current message and to insert the first segment of the next
message. You issue the PURG call with a PUT statement that formats the first segment
of the message to be inserted.

For example, consider the following SAS statements:

data _null_;
infile tranpsb dli call=func pcb=pcbindex

status=st;
file tranpsb dli;
func = ’PURG’;
pcbindex = 2;
ll = 27;
zz = ’0000’x;
msgsegm = ’Text of Message’;
put @1 ll pib2.

@3 zz
@5 msgsegm;

if st = ’ ’ then
do;

file log;
put _all_;
abort;

end;
stop;

run;

The PCBINDEX variable is set to 2, so that a TP PCB is used. The values of the LL
and ZZ fields are set by assignment statements, and then the message segment text is
specified. Notice that the PUT statement, which issues the PURG call, formats the
output buffer just as if this were an ISRT call. This example is run using the SAS
system option IMSREGTP=BMP.

If you want to change the MOD, use an SSA variable, as described in “ISRT Calls to
Message Queues” on page 212.

When you insert messages to different destinations with one TP PCB, you cannot use
the PURG call to insert the first segment of the next message. Instead, you should do
one of the following:

� Issue a PURG call with the TP PCB to end the current message. The PUT
statement that issues the PURG call must not format a message segment. The
PUT statement should simply be PUT;

� Issue a CHNG call to change the TP PCB destination.
� Issue an ISRT call to insert the message segment.

“CHNG Call to TP PCBs” on page 214 shows an example of this sequence of calls.
Remember that you must use a modifiable TP PCB in order to change destination
between calls.

CHNG Call to TP PCBs
A CHNG call is issued to set or change the destination for a modifiable PCB. Issue

CHNG calls to alter the destination before the ISRT calls when you need to do the
following:

How to Use the IMS DATA Step Interface � IMS/ESA Message Queue Access 215

� Set a destination for a modifiable TP PCB.

� Insert message segments in more than one message queue by using one modifiable
PCB.

For example, the following SAS statements issue a CHNG call to set the destination
of the third PCB in the PSB to destname, where destname must be a valid IMS/ESA
transaction code or logical computer name. This example is run using the SAS system
option IMSREGTP=BMP:

data _null_;
infile tranpsb dli call=func pcb=pcbindex

status=st;
file tranpsb dli;
func = ’CHNG’;
pcbindex = 3;
put @1 ’destname’;
if st = ’ ’ then

do;
file log;
put _all_;
abort;

end;
stop;

run;

The destination has been changed successfully if _ERROR_=0 after the call.
Otherwise, the STATUS= variable contains a status code that indicates the reason for
the failure.

If a modifiable TP PCB is used to send messages to more than one destination, the
PURG call must be used to complete the current message prior to issuing a CHNG call
to alter the destination for a new message. The following example shows the PURG,
CHNG, and ISRT call sequence. It is run using the SAS system option
IMSREGTP=BMP:

data _null_;
infile tranpsb dli call=func pcb=pcbindex

status=st;
file tranpsb dli;
func = ’PURG’;
pcbindex = 3;
put;
if st = ’ ’ then

do;
func = ’CHNG’;
put @1 ’<destname>’;
if st = ’ ’ then

do;
func = ’ISRT’;
ll = 27;
zz = ’0000’x;
msgsegm = ’Text of Message Segment’;
put @1 ll pib2.

@3 zz
@5 msgsegm;

if st = ’ ’ then
stop;

216 IMS/ESA Message Queue Access � Chapter 9

else
link abendit;

end;
else
link abendit;

end;
else
link abendit;

return;

abendit:
file log;
put _all_;
abort;

run;

The PCBINDEX variable points to the third PCB, which is a modifiable TP PCB. The
PURG call is issued by a DL/I PUT statement. Because this PURG call only terminates
the current message and does not insert a message segment, the DL/I PUT statement
has no specifications. If _ERROR_=0, the PURG call is successful and the program goes
on to issue a CHNG call. The destination specified for the TP PCB is changed.

If the CHNG call is successful, a message segment is built and an ISRT call is
issued. The DL/I PUT statement issuing the ISRT call formats the output buffer.

217

C H A P T E R

10
Advanced Topics for the IMS
DATA Step Interface

Introduction to Advanced Topics for the IMS DATA Step Interface 217
Restarting an Update Program 217

Building Synchronization Points 217

Example 1: Updating a Database 218

Example 2: Incorrectly Updating a Database without Recovery Logic 224

Example 3: Correctly Updating a Database with Recovery Logic 228
SSAs in IMS DATA Step Programs 232

Using the SSA= Option 232

The Concatenation Operator 233

The PUT Function 233

Setting SSAs Conditionally 235

Changing SSA Variable Values between Calls 235

Introduction to Advanced Topics for the IMS DATA Step Interface
This section discusses the use of the IMS DATA step interface in some of the more

advanced areas of DL/I programming, specifically, restarting update programs and
constructing and using SSAs in DATA step programs. Because this information is
intended for experienced DL/I programmers, there is little explanation of DL/I concepts
and facilities in this section. The purpose of this information is to explain how SAS
programs can be used to perform advanced DL/I functions, not to explain these
functions.

Restarting an Update Program

Building Synchronization Points
There is always a risk of abnormal termination in any program. If an update

program ends before processing is completed, you can complete processing by restarting
the program, but you do not want to repeat updates that have already been made. The
synchronization point feature of DL/I helps to prevent duplicate updating in a restarted
program.

If an online access region program or control region abends, the DL/I control region
restores databases up to the last synchronization point. In a batch subsystem, a batch
back-out utility must be executed to back out updates made since the last
synchronization point. After backing out updates, any updates made by the program
before the last synchronization point are intact and any made after the last

218 Example 1: Updating a Database � Chapter 10

synchronization point are not. When an update program is restarted after an abend,
processing must resume at the synchronization point or duplicate updating might occur.

When building synchronization points into an online access region program, keep
these things in mind:

� If the program updates a large number of database records between
synchronization points, the DL/I control region enqueue tables can overflow and
cause the online DL/I system to abend.

� The DL/I control region dynamic log can also overflow, which can cause the online
access region or the whole online system to abend, depending on the online system
used.

� On the other hand, if synchronization points are too frequent, they can tie up the
master console and prevent other IMS messages from being sent.

Your database administration staff can help you determine how frequently
synchronization points should be executed.

Example 1: Updating a Database
This sample program updates the ACCTDBD database with data from wire

transactions in the WIRETRN database. (See Chapter 3, “Defining SAS/ACCESS
Descriptor Files,” on page 41 for complete database information about the WIRETRN
database.) The program takes checkpoints and thereby releases database resources at
regular intervals. Because the program is set up with checkpoints, it is appropriate for
shared update access.

As you study this example, you will notice that the WIRETRAN segments are deleted
from the WIRETRN database as soon as the ACCTDBD segments are successfully
updated. There are no synchronization points between the ACCTDBD segment updates
and the WIRETRAN deletions. Therefore, if an abend occurs and changes are backed
out to the last synchronization point, you know that any WIRETRAN segments
remaining in the database have not been processed. There is no danger of duplicating
updates, and the program is inherently restartable. No special recovery logic is
required for restarts.

The numbered comments following this program correspond to the numbered
statements in the program:

data _null_;
length ssa1 $ 43

ssa2 $ 32
ssa3 $ 9;

retain blanks ’ ’
wirenum 0
chkpnum 0;

u infile acctsam dli ssa=(ssa1,ssa2,ssa3) call=func
pcb=pcbindex status=st segment=seg;

/* get hold next WIRETRAN segment
from WIRETRN database */

func = ’GHN ’;
ssa1 = ’ ’;
ssa2 = ’ ’;
ssa3 = ’ ’;

Advanced Topics for the IMS DATA Step Interface � Example 1: Updating a Database 219

v pcbindex = 5;
w input @1 wiressn $char11.

@12 wireacct $char12.
@24 accttype $char1.
@25 wiredate mmddyy8.
@33 wiretime time8.
@41 wireammt pd5.2
@46 wiredesc $char40.;

if st = ’ ’ then
if st = ’GB’ then

do;
error = 0;
go to reptotal;

end;
else

link abendit;

x if wirenum/5 = chkpnum then
link chkp;

y amount = abs(wireammt);

/* insert debit or credit segment into
ACCTDBD database */

U if accttype = ’C’ then
do;

ssa2 = ’CHCKACCT
(ACNUMBER= ’|| wireacct ||’)’;
if wireammt > 0 then

ssa3 = ’CHCKCRDT’;
else

ssa3 = ’CHCKDEBT’;
end;

else
V if accttype = ’S’ then

do;
ssa2 = ’SAVEACCT
(ACNUMBER= ’ || wireacct || ’)’;
if wireammt > 0 then

ssa3 = ’SAVECRDT’;
else

ssa3 = ’SAVEDEBT’;
end;

W else
do;

file log;
put / ’***** Invalid ’ accttype= ’for ’

wiressn= wireacct= ’*****’;
return;

end;

220 Example 1: Updating a Database � Chapter 10

X ssa1 = ’CUSTOMER
(SSNUMBER= ’ || wiressn || ’)’;

func = ’ISRT’;
pcbindex = 4;
file acctsam dli;

at put @1 amount pd5.2
@6 wiredate mmddyy6.
@14 wiretime time8.
@22 wiredesc $char40.
@62 blanks $char19.;

ak if st = ’ ’ then
if st = ’GE’ then

do;
error = 0;
file log;
if seg = ’CUSTOMER’ then

if accttype = ’C’ then
put / ’***** No CHCKACCT segment with ’

wiressn= wireacct= ’*****’;
else

put / ’***** No SAVEACCT segment with ’
wiressn= wireacct= ’*****’;

else
put / ’***** No CUSTOMER segment with ’

wiressn= ’*****’;
return;

end;
else

link abendit;

/* get hold checking or savings segment from
ACCTDBD database */

al ssa3 = ’ ’;
func = ’GHU’;

input @1 acnumber $char12.
@13 balance pd5.2
@18 stmtdate mmddyy6.
@26 stmt_bal pd5.2;

am if st = ’ ’ then
link abendit;

/* replace checking or savings segment into
ACCTDBD database */

balance = balance + wireammt;
ssa1 = ’ ’;
ssa2 = ’ ’;

Advanced Topics for the IMS DATA Step Interface � Example 1: Updating a Database 221

func = ’REPL’;

put @1 acnumber $char12.
@13 balance pd5.2
@18 stmtdate mmddyy6.
@26 stmt_bal pd5.2;

if st = ’ ’ then
link abendit;

/* delete WIRETRAN segment from WIRETRN
database */

an func = ’DLET’;
ssa1 = ’ ’;
pcbindex = 5;
put @1 wiressn $char11.

@12 wireacct $char12.
@24 accttype $char1.
@25 wiredate mmddyy8.
@33 wiretime time8.
@41 wireammt pd5.2
@46 wiredesc $char40.;

ao if st = ’ ’ then
link abendit;

ap wirenum +1;
return;

aq reptotal:
file log;
put // ’Number of Wire Transactions Posted =’

wirenum 5.
/ ’ Number of CHKP Calls Issued =’

chkpnum 5.;
stop;

ar chkp:
chkpnum +1;
func = ’CHKP’;
pcbindex = 1;
file acctsam dli;
put @1 ’SAS’

@4 chkpnum z5.;
if st = ’ ’ then

link abendit;
func = ’GHU ’;
ssa1 = ’WIRETRAN
(SSNACCT = ’ || wiressn || wireacct || ’)’;

pcbindex = 5;
input;
if st = ’ ’ then

222 Example 1: Updating a Database � Chapter 10

link abendit;
return;

as abendit:
file log;
put _all_;
abort;
run;

u The program uses the ACCTSAM PSB. It contains PCBs for the
ACCTDBD database and a PCB for the WIRETRN database, both of
which are needed in this program.

v PCBINDEX is set to point to the WIRETRN PCB.

w The INPUT statement issues the GHN call to retrieve a WIRETRAN
segment. If the call is not successful, and there is a GB status code
(end-of-database), _ERROR_ is reset to 0 and the program branches
to the REPTOTAL subroutine, which prints a summary report. For
any other non-blank status code, the program skips to the
ABENDIT subroutine, which forces an abend.

x If the GHN call is successful, the program continues with a test to
see if a CHKP call should be issued. Two accumulator variables,
WIRENUM and CHKPNUM, are evaluated. WIRENUM is a value
that is incremented each time an ACCTDBD database record is
successfully updated. CHKPNUM is a value incremented each time
a CHKP call is issued.

A CHKP call is issued any time the WIRENUM value divided by
five equals CHKPNUM. That is, after five successful updates the
program links to the subroutine labeled CHKP to issue the CHKP
call. After the CHKP call, the program repositions itself in the
database and continues processing the DATA step (see item 18).

y The program goes on to set up for the REPL call that updates the
balance information in the CHCKACCT and SAVEACCT segments
of the ACCTDBD database. The absolute value of WIREAMMT is
saved.

U The value of the ACCTTYPE field is checked. If the ACCTTYPE is C
(checking), a qualified SSA for the CHCKACCT segment is built by
concatenating literal values with the value of the WIREACCT
variable from WIRETRAN. The value of WIREAMMT is checked to
build another, unqualified SSA that specifies the segment type to
insert. If WIREAMMT is greater than 0, the SSA specifies the
CHCKCRDT segment. If WIREAMMT is less than or equal to 0, the
SSA specifies CHCKDEBT.

V These statements are identical to the preceding group of statements,
except that they build SSAs that define a savings account segment
path rather than a checking account segment path.

W If the value of ACCTTYPE is not C or S, the account type is not valid
for the DATA step and an explanatory message is written to the log.
Processing returns to the beginning of the DATA step again.

X A qualified SSA for the CUSTOMER segment is built by
concatenating literals with the value of WIRESSN from
WIRETRAN. An ISRT call using the ACCTDBD PCB is set up.

Advanced Topics for the IMS DATA Step Interface � Example 1: Updating a Database 223

at The ISRT call is issued. Depending on the ACCTTYPE and the
value of WIREAMMT, the inserted segment is a CHCKCRDT,
CHCKDEBT, SAVECRDT, or SAVEDEBT segment, as specified by
the SSAs. Since all four transaction segment types have the same
format, only one PUT statement is needed.

ak This series of statements checks the status code after the ISRT call
and writes explanatory messages to the SAS log if the status code is
GE (segment not found). If the status code is a non-blank code other
than GE, the program skips to the ABENDIT subroutine. Note that
a FILE statement is issued, changing the output destination from
the DL/I database to the SAS log.

al If the ISRT call is successful, the account balance must be updated
to reflect the amount of the processed transaction. First, a GHU call
is set up. The variable SSA3 is set to blank, but SSA1 (for the
CUSTOMER segment) and SSA2 (for the CHCKACCT or
SAVEACCT segment) are still in effect. The INPUT statement
issues the GHU call, which retrieves the parent CHCKACCT or
SAVEACCT segment for the segment just added by the ISRT call.

am If the GHU call fails, the program skips to the ABENDIT
subroutine. Otherwise, the program updates the BALANCE value
by adding the value of WIREAMMT from the wire transaction and
issues a REPL call to replace the CHCKACCT or SAVEACCT
segment retrieved by the GHU call. If the REPL call fails, the
program branches to the ABENDIT subroutine.

an If the REPL call is successful, a DLET call is issued for the
WIRETRN database. The WIRETRAN segment just used to update
the ACCTDBD database (retrieved with a GHN or GHU call earlier)
is deleted. Because wire transaction segments are deleted as they
are processed, this program can be restarted. That is, if the program
stops for some reason (such as a system failure), it can be started
again without any danger of duplicate transactions being added to
the ACCTDBD database.

ao If the DLET call is not successful, the program links to the
ABENDIT subroutine.

ap If the DLET call is successful, the WIRENUM accumulator variable
is incremented, and processing returns to the beginning of the DATA
step.

aq This subroutine is executed when a get call to the WIRETRN
database returns a GB (end-of-database) status code (see item 2).

ar This subroutine issues the CHKP call after every fifth update (see
item 4). If the CHKP call is not successful, the program links to the
ABENDIT subroutine. If the CHKP call is successful, the database
position has been lost. Therefore, a GHU call is set up to re-retrieve
the WIRETRAN segment that is retrieved by the previous GHN call.
Because the values from the segment are still in the program data
vector, the INPUT statement issuing the GHU call does not need to
specify variable names.

If the GHU call fails for any reason, the program links to the
ABENDIT subroutine. If the call succeeds, the program resumes
processing at the assignment statement that follows the LINK
CHKP statement.

224 Example 2: Incorrectly Updating a Database without Recovery Logic � Chapter 10

as These statements are executed when a bad status code is returned
by one of the calls in the program. The contents of the program data
vector are printed on the SAS log, and the program abends.

Example 2: Incorrectly Updating a Database without Recovery Logic
Unless a program is structured so that it can be restarted without duplicating

updates, special recovery logic should be included. The previous example shows a data
program designed so that it can be restarted if necessary. The following example is not
designed to be restarted and does not include special recovery logic. We include it as an
example of the kind of program that should not be used for updating in a shared
environment because it could result in erroneous data.

This program updates the ACCTDBD database with wire transactions that are stored
in a sequential file rather than in the WIRETRN database. The program is similar to
“Example 1: Updating a Database” on page 218, but it is not designed to be restarted.
Example program 3 illustrates the modifications to this program to add recovery logic.

The numbered comments following this sample program correspond to the numbered
statements in the example:

filename tranin ’<your.sas.tranin>’ disp=shr;
data _null_;

length ssa1 $31
ssa2 $32
ssa3 $9;

retain blanks ’ ’
wirenum 0
chkpnum 0;

/* get data from TRANIN flatfile */

u infile tranin eof=reptotal;
input @1 cust_ssn $char11.

@12 acct_num $char12.
@24 accttype $char1.
@25 wiredate mmddyy8.
@33 wiretime time8.
@41 wireammt pd5.2
@46 wiredesc $char40.;

if _error_ then
link abendit;

v if wirenum/5 = chkpnum then
link chkp;

w amount = abs(wireammt);
x if accttype = ’C’ then

do;
ssa2 = ’CHCKACCT
(ACNUMBER =’ || acct_num || ’)’;

if wireammt < 0 then
ssa3 = ’CHCKCRDT’;

else
ssa3 = ’CHCKDEBT’;

Advanced Topics for the IMS DATA Step Interface � Example 2: Incorrectly Updating a Database without Recovery Logic 225

end;
else

if accttype = ’S’ then
do;

ssa2 = ’SAVEACCT
(ACNUMBER =’ || acct_num || ’)’;

if wireammt < 0 then
ssa3 = ’SAVECRDT’;

else
ssa3 = ’SAVEDEBT’;

end;
else

do;
file log;
put / ’***** Invalid ’ accttype= ’for ’

cust_ssn= acct_num= ’*****’;
return;

end;

/* insert debit or credit segment into
ACCTDBD database */

y infile acctsam dli ssa=(ssa1,ssa2,ssa3) call=func
pcb=pcbindex status=st segment=seg;

ssa1 = ’CUSTOMER(SSNUMBER =’ || CUST_SSN || ’)’;
func = ’ISRT’;
pcbindex = 4;
file acctsam dli;
put @1 amount pd5.2

@6 wiredate mmddyy6.
@14 wiretime time8.
@22 wiredesc $char40.
@62 blanks $char19.;

U if st = ’ ’ then
if st = ’GE’ then

do;
error = 0;
file log;
if seg = ’CUSTOMER’ then

if accttype = ’C’ then
put / ’***** No CHCKACCT segment with ’

cust_ssn= acct_num= ’ *****’;
else

put / ’***** No SAVEACCT segment with ’
cust_ssn= acct_num= ’ *****’;

else
put / ’***** No CUSTOMER segment with

’ cust_ssn= ’*****’;
return;

end;
else

link abendit;

226 Example 2: Incorrectly Updating a Database without Recovery Logic � Chapter 10

/* get hold checking or savings segment from
ACCTDBD database */

ssa3 = ’ ’;
V func = ’GHU’;

input @1 acnumber $char12.
@13 balance pd5.2
@18 stmtdate mmddyy6.
@26 stmt_bal pd5.2;

if st = ’ ’ then
link abendit;

balance = balance + wireammt;

/* replace checking or savings segment into
ACCTDBD database */

ssa1 = ’ ’;
ssa2 = ’ ’;
func = ’REPL’;

W put @1 acnumber $char12.
@13 balance pd5.2
@18 stmtdate mmddyy6.
@26 stmt_bal pd5.2;

if st = ’ ’ then
link abendit;

X if wireammt > 0 then
debtnum +1;

else
crdtnum +1;

at wirenum +1;
return;

reptotal:
file log;
put // ’Number of debit transactions posted =’

debtnum 8.
/ ’Number of credit transactions posted =’
crdtnum 8.;

stop;

ak chkp:
chkpnum +1;
func = ’CHKP’;
pcbindex = 1;
file acctsam dli;
put @1 ’SAS’

@4 chkpnum z5.;

Advanced Topics for the IMS DATA Step Interface � Example 2: Incorrectly Updating a Database without Recovery Logic 227

if st = ’ ’ then
link abendit;

return;
abendit:

file log;
put _all_;

abort;
run;
filename tranin clear;

u The standard INFILE statement specifies the external sequential
file containing the data to update ACCTDBD. The fileref is TRANIN.
When the end-of-file condition is set, the program branches to the
REPTOTAL subroutine to print a summary report. The standard
INPUT statement reads a record from TRANIN. If any error occurs,
the program links to the ABENDIT subroutine.

v As in the previous example, this program issues CHKP calls after
every fifth update. If the value of WIRENUM divided by five is
equal to the value of CHKPNUM, the program links to a section
that issues the CHKP call.

w The DATA step sets up for the REPL call that will update balance
information in the CHCKACCT and SAVEACCT segments of the
ACCTDBD database. The absolute value of WIREAMMT is saved.

x Depending on the value of ACCTTYPE, SSAs are built for the
CHCKACCT and either the CHCKDEBT or CHCKCRDT segments,
or for the SAVEACCT and either the SAVEDEBT or SAVECRDT
segments.

y The DL/I INFILE statement specifies the ACCTSAM PSB. An ISRT
call for the ACCTDBD database is formatted and issued. Depending
on the account type and transaction type, a new CHCKCRDT,
CHCKDEBT, SAVECRDT, or SAVEDEBT segment is inserted.

U This section checks status codes and prints explanatory messages on
the SAS log if the status code is GE (segment not found). For other
non-blank status codes, the program links to the ABENDIT
subroutine.

V If the ISRT call is successful, a GHU call is issued to retrieve the
parent of the added segment. The status code is checked after the
call and, if it is not successful, the program links to the ABENDIT
routine.

W If the GHU call is successful, the account balance is updated by a
REPL call. The status code is checked after the call and, if it is not
successful, the program links to the ABENDIT routine.

X Accumulator variables count the number of debits and credits posted
by the program. These values are used to print a summary report.

at The WIRENUM variable is incremented. It is used to determine
whether or not a CHKP call is needed (see item 2).

ak This section is like the one in “Example 1: Updating a Database” on
page 218, but no GHU call is issued to re-establish database position
because there is no database position to maintain. (This is because

228 Example 3: Correctly Updating a Database with Recovery Logic � Chapter 10

the wire transactions are not coming from an IMS database on
which the program can reposition.)

Example 3: Correctly Updating a Database with Recovery Logic
This example is a modified version of “Example 2: Incorrectly Updating a Database

without Recovery Logic” on page 224. The modifications consist of the recovery logic
added to enable the program to be restarted. The same sequential file is used to update
the ACCTDBD database.

The numbered comments following this program describe the statements added to
enable a restart:

filename tranin ’<your.sas.tranin>’ disp=shr;
u filename restart ’<your.sas.restart>’ disp=shr;
data _null_;

length ssa1 $31
ssa2 $32
ssa3 $9
chkpnum 5;

retain wireskip
wirenum 0
chkpnum 0
first 1
debtnum
crdtnum
errnum 0
blanks ’ ’;

infile restart eof=process;
input @1 chkpid 5.

@6 chkptime datetime13.
@19 chkdebt 8.
@27 chkcrdt 8.
@35 chkerr 8.;

wireskip = chkdebt + chkcrdt + chkerr;

file log;
put ’Restarting from checkpoint ’ chkpid

’taken at ’ chkptime datetime13.
’ to bypass ’ wireskip ’trans already processed’;

do while(wireread < wireskip);
infile tranin;
input @1 cust_ssn $char11.

@12 acct_num $char12.
@24 accttype $char1.
@25 wiredate mmddyy8.
@33 wiretime time8.
@41 wireammt pd5.2
@46 wiredesc $char40.;

wireread + 1;
end;

Advanced Topics for the IMS DATA Step Interface � Example 3: Correctly Updating a Database with Recovery Logic 229

debtnum = chkdebt;
crdtnum = chkcrdt;
wirenum = debtnum + crdtnum;
errnum = chkerr;

v process:
infile tranin eof=reptotal;
input @1 cust_ssn $char11.

@12 acct_num $char12.
@24 accttype $char1.
@25 wiredate mmddyy8.
@33 wiretime time8.
@41 wireammt pd5.2
@46 wiredesc $char40.;

if _error_ then
link abendit;

if wirenum/5 = chkpnum or first =1 then
do;

link chkp;
first =0;

end;

amount = abs(wireammt);

if accttype = ’C’ then
do;

ssa2 = ’CHCKACCT
(ACNUMBER= ’ || acct_num || ’)’;
if wireammt < 0 then

ssa3 = ’CHCKCRDT’;
else

ssa3 = ’CHCKDEBT’;
end;

else
if accttype = ’S’ then

do;
ssa2 = ’SAVEACCT
(ACNUMBER= ’ || acct_num || ’)’;
if wireammt < 0 then

ssa3 = ’SAVECRDT’;
else

ssa3 = ’SAVEDEBT’;
end;

w else
do;

file log;
put / ’***** Invalid ’ accttype= ’for ’

cust_ssn= acct_num= ’*****’;
go to outerr;

end;

infile acctsam dli ssa=(ssa1,ssa2,ssa3) call=func
pcb=pcbindex status=st segment=seg;

230 Example 3: Correctly Updating a Database with Recovery Logic � Chapter 10

ssa1 = ’CUSTOMER(SSNUMBER= ’ || cust_ssn || ’)’;
func = ’ISRT’;
pcbindex = 4;
file acctsam dli;
put @1 amount pd5.2

@6 wiredate mmddyy6.
@14 wiretime time8.
@22 wiredesc $char40.
@62 blanks $char19.;

if st = ’ ’ then
if st = ’GE’ then

do;
error = 0;
file log;
if seg = ’CUSTOMER’ then

if accttype = ’C’ then
put / ’***** No CHCKACCT segment with ’

cust_ssn= acct_num= ’*****’;
else
put / ’***** No SAVEACCT segment with ’

cust_ssn= acct_num= ’*****’;
else

put / ’***** No CUSTOMER segment with ’
cust_ssn= ’*****’;

go to outerr;
end;

else
link abendit;

ssa3 = ’ ’;
func = ’GHU ’;
input @1 acnumber $char12.

@13 balance pd5.2
@18 stmtdate mmddyy6.
@26 stmt_bal pd5.2;

if st = ’ ’ then
link abendit;

balance = balance + wireammt;
ssa1 = ’ ’;
ssa2 = ’ ’;
func = ’REPL’;
put @1 acnumber $char12.

@13 balance pd5.2
@18 stmtdate mmddyy6.
@26 stmt_bal pd5.2;

if st = ’ ’ then
link abendit;

if wireammt > 0 then
debtnum = debtnum +1;

else

Advanced Topics for the IMS DATA Step Interface � Example 3: Correctly Updating a Database with Recovery Logic 231

crdtnum = crdtnum +1;
wirenum = wirenum +1;
return;

reptotal:
file log;
put // ’Number of debit transactions posted =’

debtnum 8.
/ ’Number of credit transactions posted =’

crdtnum 8.;
stop;

x chkp:
chkpnum +1;
chkptime = datetime();
file log;
put @1 ’Next checkpoint will be’

@25 chkpnum
@30 chkptime datetime13.
@43 debtnum
@51 crdtnum
@59 errnum;

func = ’CHKP’;
pcbindex = 1;
file acctsam dli;
put @1 ’SAS’

@4 chkpnum z5.;
if st = ’ ’ then

link abendit;
return;

outerr:
errnum = errnum +1;
return;

abendit:
file log;
put _all_;
abort;

run;
filename tranin clear;
filename restart clear;

u This group of statements initiates the restart, if a restart is
necessary. The standard INFILE statement points to a file with
fileref RESTART. The RESTART file has one record, a "control card"
with data that will determine where processing should resume in the
sequential input file. The data in the RESTART file is taken from
the last checkpoint message written on the SAS log by the program
that ended before completing processing. The message includes the
number and time of the last checkpoint, and the values of the
accumulator variables counting the number of debit transactions
posted (CHCKDEBT), credit transactions posted (CHCKCRDT), and
the number of bad records in the TRANIN file (CHKERR).

232 SSAs in IMS DATA Step Programs � Chapter 10

The RESTART DD statement can be dummied out to execute the
program normally (not as a restart). If RESTART is dummied out in
the control language, end-of-file occurs immediately, and the
program skips to the PROCESS subroutine (see item 6), as indicated
by the EOF= option.

The WIRESKIP variable is the sum of CHCKDEBT, CHCKCRDT,
and CHKERR; that is, WIRESKIP represents the number of records
in TRANIN that were processed by the program before the last
checkpoint.

A message is written to the SAS log that shows the checkpoint
from which processing resumes.

To position itself at the correct TRANIN record, the program
reads the number of records indicated by the WIRESKIP variable.
In other words, the program re-reads all records that were read in
the first execution of the program, up to the last checkpoint.

The values of DEBTNUM, CRDTNUM, WIRENUM, and
ERRNUM are reset so that the final report shows the correct
number of transactions. Otherwise, the report would show only the
number of transactions processed in the restarted execution.

v These statements are the same as the statements in “Example 2:
Incorrectly Updating a Database without Recovery Logic” on page
224 except that they are labeled "PROCESS." If the program is not
being restarted, end-of-file for the INFILE RESTART occurs
immediately, and the program branches to this subroutine.

w If the value of ACCTTYPE is anything but C or S, the TRANIN
record is a bad record. The program prints a message on the SAS
log and branches to the OUTERR subroutine, which increments the
ERRNUM accumulator variable.

x The CHKP call is issued by this group of statements. This group is
like that in “Example 2: Incorrectly Updating a Database without
Recovery Logic” on page 224 except that a message about the
checkpoint is also printed on the SAS log. This message provides the
necessary information for a restart.

Note that the message is written to the SAS log before the CHKP
call is actually issued, so it is possible that a system failure could
occur between the time the message is written and the time the call
is issued. Therefore, if a restart is necessary, you should verify that
the last checkpoint referenced in the SAS log is the same as the last
checkpoint in the DL/I log. This can be done by comparing
checkpoint IDs.

SSAs in IMS DATA Step Programs

Using the SSA= Option
When a DATA step program uses qualified calls, you designate variables containing

the SSAs with the SSA= option in the DL/I INFILE statement. The values of SSA
variables do not have to be constants. They can be built by the program using SAS

Advanced Topics for the IMS DATA Step Interface � The PUT Function 233

assignment statements, functions, and operators. You can construct SSAs conditionally
and change SSA variable values between calls.

The Concatenation Operator
One of the techniques for building an SSA is to incorporate the value of another

variable in the SSA variable’s value. This can be accomplished with the concatenation
operator (||), as in this example:

ssa1=’CUSTOMER(SSNUMBER =’||ssn||’)’;

This statement assigns a value to SSA1 that consists of the literal
CUSTOMER(SSNUMBER =, the current value of the variable SSN, and the close
parenthesis. If the current value of SSN is 303-46-4887, the SSA is

CUSTOMER(SSNUMBER =303-46-4887)

Note: The concatenation operator acts on character values. If you use a numeric
variable or value with the concatenation operator, the numeric value is converted
automatically to character using the BEST12. format. If the value is less than 12 bytes,
it is padded with blanks and, if longer than 12 bytes, it could lose precision when
converted. If you want to insert a numeric value via concatenation, you should convert
the value to character with the PUT function (described in the next section). �

The PUT Function
SSA variables in a DATA step program must be character variables. However, you

might sometimes need to qualify an SSA with a numeric value. To insert a numeric
value in an SSA character variable, you can use the SAS PUT function.* For more
information about the PUT statement, see SAS Language Reference: Dictionary.

The PUT function’s form is as follows:

PUT(argument1, format)

Argument1 is a variable name or a constant, and format is a valid SAS format of the
same type (numeric or character) as argument1. The PUT function writes a character
string that consists of the value of argument1 output in the specified format. The result
of the PUT function is always a character value, regardless of the type of the function’s
arguments. For example, in the following statement the result of the PUT function is a
character string assigned to the variable NEWDATE, a character variable.

newdate=put(datevalu,date7.);

The result is a character value even though DATEVALU and the DATE7. format are
numeric. If DATEVALU=38096, the value of NEWDATE is:

newdate=’20APR64’

Using the PUT function, you can translate numeric values for use in SSAs. For
example, to select WIRETRAN segments with WIREAMMT values less than $500.00,
you could construct an SSA like this:

maxamt=500;
ssa1=’WIRETRAN(WIREAMMT <’||put(maxamt,pd5.2)||’)’;

* The PUT function can also be used to format a character value with any valid character format.

234 The PUT Function � Chapter 10

First, you assign the numeric value to be used as the search criterion to a numeric
variable. In this case, the value 500 is assigned to the numeric variable MAXAMT.
Then you construct the qualified SSA using concatenation and the PUT function. The
PUT function’s result is a character string consisting of the value of MAXAMT in PD5.2
format.

Consider a more complicated example using the ACCTDBD database. In this case,
you want to select all checking accounts for which the last statement was issued a
month ago today or more than 31 days ago.

The following SAS statements illustrate one approach to constructing an SSA to
select the appropriate accounts. The numbered comments after this example correspond
to the numbered statements:

data _null_;
u tday = today();
v d = day(tday);

m = month(tday);
y = year(tday);

w if d = 31 then
if m = 5 or

m = 7 or
m = 10 or
m = 12 then
d = 30;

x if m = 3 then
if d < 28 then

d = 28;
if m = 1 then

do;
m = 12;
y = y - 1;

end;
else

m = m - 1;

y datpmon = mdy(m,d,y);
U datem31 = tday - 31;

V ssa1 = ’CHCKACCT
(STMTDATE= ’ || put(datpmon,mmddyy6.) ||
’| STMTDATE> ’ || put(datem31,mmddyy6.) || ’)’;

stop;
run;

u Use the SAS function TODAY to produce the current date as a SAS
date value and assign it to the variable TDAY.

v Use the SAS functions DAY, MONTH, and YEAR to extract the
corresponding parts of the current date and assign them to
appropriate variables.

w Modify D values to adjust when previous month has fewer than 31
days.

x Modify the month variable (M) to contain the prior month value.

Advanced Topics for the IMS DATA Step Interface � Changing SSA Variable Values between Calls 235

y Assign the SAS date value for last month, the same day as today, to
the variable DATPMON.

U Subtract 31 from the SAS date representing today’s date and assign
the value to the variable DATEM31.

V To build the SSA, concatenate these elements:

� a literal that is composed of the segment name (CHCKACCT),
a open parenthesis, search field name (STMTDATE), and the
relational operator =.

� a character string consisting of the value of DATPMON output
in the MMDDYY6. format. The character string is the result of
the PUT function.

� a literal consisting of the Boolean operator | (or), the search
field name (STMTDATE), and the relational operator >.

� a character string consisting of the value of DATEM31 output
in the MMDDYY6. format. The character string is the result of
the PUT function.

� a literal consisting of a close parenthesis.

If these statements are executed on 28 March 1995, the value of
SSA1 is

CHCKACCT(STMTDATE =02/28/95|STMTDATE >02/28/95)

Setting SSAs Conditionally
Using SAS IF-THEN/ELSE statements, SSA variables can be assigned values

conditionally. Consider “Example 2: Incorrectly Updating a Database without Recovery
Logic” on page 224 in which the ACCTDBD database is updated with transaction
information stored in a standard sequential file with fileref TRANIN. Each TRANIN
record contains data for one deposit or withdrawal transaction for a checking or savings
account. The program uses the TRANIN records to construct new CHCKDEBT,
CHCKCRDT, SAVEDEBT, or SAVECRDT segments and then inserts the new segment
in the ACCTDBD database. Notice that the concatenation operator (||) is used to
incorporate the value of the ACCT_NUM variable in the SSA.

The program first reads a record from the TRANIN file and then determines whether
the data is for a checking or a savings account by evaluating the value of the variable
ACCTTYPE. If ACCTTYPE=’C’, the program constructs a qualified SSA for a
CHCKACCT segment. Next, the program determines whether the record represents a
debit or credit transaction and builds an unqualified SSA for a CHCKDEBT or
CHCKCRDT segment, as appropriate.

If ACCTTYPE=’S’, a qualified SSA for a SAVEACCT segment is built, and then an
unqualified SSA for a SAVEDEBT or SAVECRDT segment is set up.

Changing SSA Variable Values between Calls
A DATA step program can issue multiple calls within a DATA step execution, and the

value of an SSA variable can be changed between each call. An example of this is the
following code, which is used in “Example 4: Issuing REPL Calls” on page 179 in
Chapter 9, “How to Use the IMS DATA Step Interface,” on page 195:

data _null_;
set ver6.newaddr;

236 Changing SSA Variable Values between Calls � Chapter 10

length ssa1 $31;
infile acctsam dli ssa=ssa1 call=func status=st
pcbno=4;

ssa1 = ’CUSTOMER(SSN =’ || ssn || ’)’;
func = ’GHU ’;
input;
if st = ’ ’ then

do;
func = ’REPL’;
ssa1 = ’ ’;
file acctsam dli;
put _infile_ @;
put @52 newaddr1 $char30.

@82 newaddr2 $char30.
@112 newcity $char28.
@140 newstate $char2.
@162 newzip $char10.;

if st = ’ ’ then
link abendit;

end;
else

if st = ’GE’ then
do;

error = 0;
stop;

end;
else

link abendit;
return;

abendit:
file log;
put _all_;
abort;

run;

These statements are part of a program that updates CUSTOMER segments in the
ACCTDBD database with information from the SAS data set VER6.NEWADDR.
CUSTOMER segments are retrieved using GHU calls with a qualified SSA, SSA1. Once
a segment is retrieved, the data from the SAS data set is overlaid on the old values of
the segment and a REPL call is issued. Since a REPL call acts on a segment retrieved
previously, no SSA is needed. Therefore, the value of the SSA1 variable is changed to
blanks before the REPL call is issued.

237

P A R T5

Appendixes

Appendix 1.SAS System Options for IMS Databases 239

Appendix 2.Example Data 261

Appendix 3.Recommended Reading 289

238

239

A P P E N D I X

1
SAS System Options for IMS
Databases

Introduction to SAS System Options for IMS Databases 239
Specifying System Options 239

Invocation and Session Options 239

Restrictable Options 240

Displaying the Current Values of the Options 240

Overriding Option Defaults 240
Most Frequently Altered Options 241

SAS System Options for IMS 241

Quick Reference for Options 258

Introduction to SAS System Options for IMS Databases
The SAS/ACCESS interface to IMS uses a group of SAS system options to specify the

type of DL/I region through which DL/I calls are executed and to provide the DL/I
region execution parameters. For example, either the IMSREGTP= option or its alias,
DLIRGNTP=, specifies the type of DL/I region to be invoked. Appropriate defaults are
assigned for the system options when the SAS/ACCESS interface is installed at a site.

The next section provides more information about how to use SAS options for IMS. In
later sections, the options are divided into two sections according to their operating
system. Each reference section includes a quick reference table for the options, followed
by a longer description of each option.

Specifying System Options

Invocation and Session Options
The system options described in this appendix fall into two categories:
� Invocation options are processed when SAS is initialized. They can be specified in

the following ways:

� in the default OPTIONS table
� in a system or user configuration file
� in the OPTIONS parameter of the host command that you use to invoke SAS

at your site

� Session options can be specified when SAS is invoked, in the configuration file, or
in an OPTIONS statement.

240 Restrictable Options � Appendix 1

“SAS System Options for IMS” on page 241 indicates whether each option is an
invocation option or a session option.

Restrictable Options
The DBA or SAS support personnel at your installation might choose to restrict an

invocation option to a particular value for security or data integrity reasons. Session
options cannot be restricted; you can override them any time during a SAS session by
using an OPTIONS statement. If you try to override a restricted invocation option, you
get an error message.

You can use two methods to determine which invocation options are restricted at
your installation:

� Ask the SAS support personnel or DBA who installed the SAS/ACCESS interface
to IMS at your site.

� Invoke SAS with the VERBOSE option. In the list of options that appears, the
restricted invocation options (if any) follow the VERBOSE option.

Note: From a TSO session under z/OS, the list of options might be displayed
only briefly on your computer before the SAS session comes up. In this case, you
will need to exit SAS in order to see the list of options. �

Displaying the Current Values of the Options
To check your installation’s current settings for the SAS system options for IMS,

check the settings for the options (except for DLIREAD and BMPREAD) by executing
PROC OPTIONS with the IMS option:

proc options ims;
run;

To see the values of DLIREAD and BMPREAD, use PROC OPTIONS without the
IMS option. The OPTIONS procedure is documented in the Base SAS Procedures Guide.

Overriding Option Defaults
Most option defaults are probably correct for your applications, and you might never

need to override the default settings. In fact, many of the options might specify
information that is unfamiliar to a DL/I applications programmer. However, if you
decide that one or more of the defaults is not appropriate for your IMS application, you
can override the default value(s) as follows:

� You can override the default value of an unrestricted invocation option in any of
the following ways:

� when you invoke SAS
� in the system configuration file (if one is used)
� in the user configuration file (if one is specified)
� in the default options (DFLTOPTS) table
� in the OPTIONS parameter at invocation of the CLIST (TSO)
� in the OPTIONS parameter in the cataloged procedure (batch only).

Note: You cannot override the default value of any invocation option, whether
restricted or unrestricted, during a SAS session. For example, your installation
might specify that the invocation option DLIREAD= is unrestricted, and set the

SAS System Options for IMS Databases � SAS System Options for IMS 241

value of that option at Y so that programs using a batch region can issue only get
calls by default. Because DLIREAD= is not restricted, you can specify the
following at invocation time to override the default value of Y.

DLIREAD=N;

However, you cannot override the value of DLIREAD= during a SAS session. �
� You can override the default value of a session option by specifying the option in

any of the following ways:
� in an OPTIONS statement
� in the system configuration file (if one is used)
� in the user configuration file (if one is specified)
� in the Default Options (DFLTOPTS) table
� in the OPTIONS parameter at invocation of the CLIST (TSO)
� in the OPTIONS parameter in the cataloged procedure (batch only)

For more information about overriding SAS system options, see the SAS companion
for your operating system.

Most Frequently Altered Options
If you need to override any options, it will probably be the following:

IMSREGTP=
specifies the type of DL/I region that is used to execute DL/I calls. It is altered
whenever you want to execute calls through a DL/I region that is not the
installation default.

If you use a batch DLI or DBB region, you are not likely to alter any other system
option. If you use an online access region (BMP), you might need to change one or more
of these options:

IMSBPIN= IMSBPOUT=
identify message queues for access in advanced DL/I programming when running
a BMP region. This option is valid only for the IMS DATA step interface.

IMSID=
identifies the IMS subsystem that contains the databases that you want to access.
You might need to use this option with a BMP, DLI, or DBB region in order to
specify a test or production system.

SAS System Options for IMS
Since Version 6, the first three letters of all SAS system options for IMS are IMS. If

the option applies only to certain region types, the next two letters indicate the region
type: DL for DLI or DBB and BP for BMP. Some options such as IMSSPIE apply to
more than one region type. These options do not include one of the region-type codes.

Most of the SAS system options for IMS parallel the functions of DL/I parameters.
For example, the option IMSBPAGN= specifies a value for the AGN parameter, which is
used in BMP regions. If you need more information about IMS parameters, refer to
your IBM documentation.

Note: For the DATA step interface, the SLI region type–and hence, the SLICWTO,
SLIREAD, and CICSID options–are no longer supported. Sites that use CICS as

242 BMPREAD= SAS System Option � Appendix 1

opposed to IMS/DC can gain access to CICS dedicated databases by using the IMS-ESA
or CICS-ESA DBCTL feature. This feature enables an application like SAS software to
access the databases through a BMP region. �

The following sections describe the SAS system options for IMS.

BMPREAD= SAS System Option

Specifies whether a SAS IMS program accessing databases is restricted to get calls within a BMP
region.

Valid in: SAS invocation

Category: DATA step

Default: N

Restriction: Assigned a value that you cannot override.

Syntax
BMPREAD=N | Y

N
specifies that programs are not restricted to get calls, and update calls can be issued
within a BMP region.

Y
causes SAS to return a status code of SE and to set _ERROR_=1 when a DL/I update
call is issued.

DLIREAD= SAS System Option

Specifies whether a SAS IMS program accessing databases is restricted to get calls within a DLI
region.

Valid in: SAS invocation
Category: DATA step

Default: N

Restriction: Assigned a value that you cannot override.

Syntax
DLIREAD= N | Y

SAS System Options for IMS Databases � IMSBPCPU= SAS System Option 243

N
specifies that programs are not restricted to get calls, and update calls can be issued
within a DLI region.

Y
DLIREAD=Y causes SAS to return a status code of SE and to set _ERROR_ =1 when
a DL/I update call is issued.

IMSBPAGN= SAS System Option

Specifies a value for the AGN (application group name) parameter.

Valid in: SAS invocation, OPTIONS statement
Category: Engine, DATA step
Default: IMSBPAGN=*
Tip: Not restrictable

Syntax
IMSBPAGN=value

BMPAGN=value

value
specifies the value of the AGN parameter. The AGN parameter can be used to limit
BMP region execution to particular PSBs.

*
specifies that the AGN parameter is null in the attach parameter list.

IMSBPCPU= SAS System Option

Specifies a value for the CPUTIME parameter.

Valid in: SAS invocation, OPTIONS statement
Category: Engine, DATA step
Default: IMSBPCPU=0
Tip: Not restrictable

Syntax
IMSBPCPU=value

BMPCPUTM=value

244 IMSBPDCA= SAS System Option � Appendix 1

0
specifies that no task timing will be done for the BMP region.

value
non-zero value specifies a maximum number of minutes used for execution of the
BMP region.

IMSBPDCA= SAS System Option

Specifies a value for the DIRCA parameter.

Valid in: SAS invocation, OPTIONS statement
Category: Engine, DATA Step
Default: IMSBPDCA=0
Range: 0-99
Tip: Not restrictable

Syntax
IMSBDCA=value

BMPDIRCA=value

0
enables IMS/ESA to calculate the maximum size of the dependent region inter-region
communication area required by any non-dynamic PSB in the control region.

value
a non-zero value that specifies the size of the DIRCA in 1K blocks.

IMSBPIN= SAS System Option

Assigns a value for the IN parameter, which specifies the TRANCODE of the message queue that is
accessed.

Valid in: SAS invocation, OPTIONS statement
Category: DATA step
Default: IMSBPIN=*
Tip: Not restrictable

Syntax
IMSBPIN=value

SAS System Options for IMS Databases � IMSBPOBA= SAS System Option 245

BMPIN=value

*
specifies that the IN parameter is null in the attach parameter list and that no
transaction queue is to be read.

value
specifies the value of the IN parameter. Use this option only when you intend to read
from transaction queues with the I/O PCB.

IMSBPNBA= SAS System Option

Specifies a value for the NBA parameter.

Valid in: SAS invocation, OPTIONS statement
Category: DATA step
Default: IMSBPNBA=0
Range: 0-999
Tip: Not restrictable

Syntax
IMSBPNBA=value

BMPNBA=value

0
specifies that the database is not a Fast Path database.

value
specifies the NBA parameter, which is the number of Fast Path database buffers
made available in the common service area.

IMSBPOBA= SAS System Option

Specifies a value for the OBA parameter.

Valid in: SAS invocation, OPTIONS statement
Category: DATA step
Default: IMSBPOBA=0
Range: 0-999

246 IMSBPOPT= SAS System Option � Appendix 1

Tip: Not restrictable

Syntax
IMSBPOBA=value

BMPOBA=value

0
specifies that a Fast Path database is not being used.

value
specifies the OBA parameter, which is the number of additional page-fixed Fast Path
database buffers made available if the normal allotment is used.

IMSBPOPT= SAS System Option

Assigns a character value to the OPT parameter.

Valid in: SAS invocation, OPTIONS statement
Category: Engine, DATA step
Default: IMSBPOPT=C
Tip: Not restrictable

Syntax
IMSBPOPT= C | N | W

BMPOPT= C | N | W

C
specifies that the BMP region is canceled automatically. The OPT parameter
specifies the action taken if the control region is not active.

N
specifies that the console operator is asked for a decision. The OPT parameter
specifies the action taken if the control region is not active.

W
specifies that the region waits for the control region to be started. The OPT
parameter specifies the action taken if the control region is not active.

IMSBPOUT= SAS System Option

Specifies a value for the OUT parameter.

SAS System Options for IMS Databases � IMSBPSTI= SAS System Option 247

Valid in: SAS invocation, OPTIONS statement
Category: DATA step
Default: IMSBPOUT=*
Restriction: Specify this option only if you intend to write to the IMS/ESA message
queue with the I/O PCB, and the IN parameter is not specified.
Tip: Not restrictable

Syntax
IMSBPOUT=value

BMPOUT=value

*
specifies that the OUT parameter is null in the attach parameter list.

value
specifies the OUT parameter, which specifies the TRANCODE or LTERM that is the
destination of a message insert.

IMSBPPAR= SAS System Option
Specifies the value of the PARDLI parameter.

Valid in: SAS invocation, OPTIONS statement
Category: Engine, DATA step
Default: IMSBPPAR=0
Tip: Not restrictable

Syntax
IMSBPPAR= 0 | 1

BMPARDLI= 0 | 1

0
specifies that DL/I processing is performed within the BMP region.

1
specifies that all IMS processing for the BMP region is performed in the IMS/ESA
control region.

IMSBPSTI= SAS System Option
Specifies whether the BMP timer is set.

248 IMSBPUPD= SAS System Option � Appendix 1

Valid in: SAS invocation, OPTIONS statement
Category: Engine, DATA step
Default: IMSBPSTI=0
Tip: Not restrictable

Syntax
IMSBPSTI= 0 | 1

BMPSTIMR= 0 | 1

0
specifies that the BMP timer is not set.

1
specifies that the BMP timer is set.

IMSBPUPD= SAS System Option

Specifies whether a SAS IMS program that accesses databases can issue update calls in a BMP
region.

Valid in: SAS invocation
Category: Engine
Default: IMSBPUPD=Y
Restriction: Assigned a value that you cannot override.

Syntax
IMSBPUPD= Y | N

Y
enables update processing of databases within a BMP region.

N
causes SAS to return an error message that indicates that you are not authorized to
update the database if an update call is issued.

IMSDEBUG= SAS System Option

Specifies whether the DL/I call function code, segment search arguments, and status code
returned from DL/I calls issued by the IMS engine should be displayed in the SAS log.

SAS System Options for IMS Databases � IMSDLBKO= SAS System Option 249

Valid in: SAS invocation, OPTIONS statement

Category: Engine, DATA step

Default: N

Tip: Not restrictable

Syntax
IMSDEBUG= N | Y | value

N
causes no DL/I calls to be displayed.

Y
causes the first 50 DL/I calls to be displayed.

value
a number between 1 and 9999 that causes that number of DL/I calls to be displayed
starting with the first one.

IMSDLBKO= SAS System Option

Determines the value of the BKO parameter when SAS invokes an IMS/ESA DLI or DBB region.

Valid in: SAS invocation, OPTIONS statement

Category: Engine, DATA step

Default: IMSDLBKO=*

Tip: Not restrictable

Syntax
IMSDLBKO= * | Y | N

DLIBKO= * | Y | N

*
specifies that the BKO parameter is null in the IMS region parameter list, so the
default IMS action is taken.

Y
specifies that a DASD log data set must be used. When IMSDLBKO=Y and the SAS
session abends, all database updates since the last CHKP call are backed out
automatically unless the system crashed.

N
specifies that a DASD log data set must not be used.

250 IMSDLBUF= SAS System Option � Appendix 1

Note: The BKO parameter setting determines whether updates in a disk log are
backed out automatically if the program abends. �

IMSDLBUF= SAS System Option

Specifies a value for the BUF parameter.

Valid in: SAS invocation, OPTIONS statement
Category: Engine, DATA step
Default: IMSDLBUF=16
Range: 0-999
Tip: Not restrictable

Syntax
IMSDLBUF= value

DLIBUF= value

value
The BUF parameter specifies the number of 1K blocks that are available in the
ISAM/OSAM buffer pool. When the DFSVSAMP DD control statements are used,
they override the specification.

IMSDLDBR= SAS System Option

Determines the value used as the DBRC (database recovery control facility) parameter when SAS
invokes a DLI or DBB region.

Valid in: SAS invocation, OPTIONS statement
Category: Engine, DATA step
Default: IMSDLDBR=*
Tip: Not restrictable

Syntax
IMSDLDBR= * | Y | N

DLIDBRC= * | Y | N

*
specifies that the DBRC parameter is null in the IMS/ESA parameter list, so the
default IMS action is taken.

SAS System Options for IMS Databases � IMSDLFMT= SAS System Option 251

Y
specifies that DBRC is used during execution of IMS/ESA (the default IMS action if
IMS/ESA is generated with DBRC).

N
specifies that DBRC is not used in the execution of IMS/ESA.

IMSDLEXC= SAS System Option

Specifies a value for the EXCPVR parameter.

Valid in: SAS invocation, OPTIONS statement

Category: Engine, DATA step
Default: IMSDLEXC=0

Tip: Not restrictable

Syntax
IMSDLEXC= 0 | 1

DLIEXCPV= 0 | 1

0
specifies that the ISAM/OSAM database buffer pool is not long-term page-fixed.

1
specifies that the ISAM/OSAM database buffer pool is long-term page-fixed.

IMSDLFMT= SAS System Option

Specifies a value for the FMTO parameter.

Valid in: SAS invocation, OPTIONS statement

Category: Engine, DATA step

Default: IMSDLFMT=P
Tip: Not restrictable

Syntax
IMSDLFMT= P | T | N

DLIFMT= P | T | N

252 IMSDLIRL= SAS System Option � Appendix 1

P
ignores processing of the FDDL table.

T
specifies that a formatted dump will contain IMS/ESA data areas and that the
formatted dump delete list (FDDL) is processed (the default IMS action).

N
suppresses production of a formatted dump.

IMSDLIRL= SAS System Option

Determines the value of the IRLM parameter when SAS invokes a DLI or DBB region.

Valid in: SAS invocation, OPTIONS statement

Category: Engine, DATA step

Default: IMSDLIRL=*

Tip: Not restrictable

Syntax
IMSDLIRL= * | Y | N

DLIRLM= * | Y | N

*
specifies that the IRLM parameter is null in the IMS/ESA parameter list so that the
default IMS action is taken.

Y
specifies that IRLM is to be used in this execution of IMS/ESA (the default IMS
action if IMS/ESA was generated with IRLM).

N
specifies that IRLM is not to be used in this execution of IMS/ESA.

IMSDLIRN= SAS System Option

Specifies an IRLM subsystem name.

Valid in: SAS invocation, OPTIONS statement

Category: Engine, DATA step

Default: IMSDLIRN=*

Tip: Not restrictable

SAS System Options for IMS Databases � IMSDLMON= SAS System Option 253

Syntax
IMSDLIRN= * | name

DLIRLMNM= * | name

*
specifies that the parameter is null in the attach parameter list, and no IRLM
subsystem is used.

name
specifies the IRLM subsystem name at initialization.

IMSDLLOG= SAS System Option

Specifies a value for the LOGA parameter.

V5 Alias: DLILOGA=
Valid in: SAS invocation, OPTIONS statement
Category: Engine, DATA step
Default: IMSDLLOG=0
Tip: Not restrictable

Syntax
IMSDLLOG= 0 | 1

DLILOGA= 0 | 1

0
specifies that BSAM is used to access the IEFRDER log data set.

1
specifies that OSAM is used to access the IEFRDER log data set.

IMSDLMON= SAS System Option

Specifies a value for the MON parameter.

Default: IMSDLMON=N
Valid in: SAS invocation, OPTIONS statement
Category: Engine, DATA step
Tip: Not restrictable

254 IMSDLSRC= SAS System Option � Appendix 1

Syntax
IMSDLMON= N | Y

DLIMON= N | Y

N
specifies that DB Monitor output is not produced (also the default IMS action).

Y
produces DB Monitor records on the IMSMON file (if allocated), or on the IEFRDER
log if the IMSMON file is not allocated.

IMSDLSRC= SAS System Option

Specifies a value for the SRCH parameter.

Valid in: SAS invocation, OPTIONS statement
Category: Engine, DATA step
Default: IMSDLSRC=0
Tip: Not restrictable

Syntax
IMSDLSRC= 0 | 1

DLISRCH= 0 | 1

0
specifies a standard module search for directed load.

1
specifies that the job pack area (JPA) and link pack area (LPA) are searched before a
PDS in a directed load.

IMSDLSWP= SAS System Option

Determines the value of the SWAP parameter when SAS invokes an IMS/ESA DLI or DBB region.

V5 Alias: DLISWP=
Valid in: SAS invocation, OPTIONS statement
Category: Engine, DATA step
Default: IMSDLSWP=*
Tip: Not restrictable

SAS System Options for IMS Databases � IMSID= SAS System Option 255

Syntax
IMSDLSWP= * | Y | N

DLISWP= * | Y | N

*
specifies that the SWAP parameter is null in the IMS/ESA parameter list so that the
default IMS action is taken.

Y
specifies that the address space is swappable

N
specifies that the address space is not swappable.

IMSDLUPD= SAS System Option

Specifies whether a SAS IMS program that accesses databases through the engine can issue
update calls within a DLI or DBB region.

Valid in: SAS invocation
Category: Engine
Default: IMSDLUPD=Y
Restriction: Assigned a value that you cannot override.

Syntax
IMSDLUPD= Y | N

Y
enables update processing of databases within a DLI or DBB region.

N
causes SAS to return an error message indicating that you are not authorized to
update the database if an update call is issued.

IMSID= SAS System Option

Specifies a value for the IMSID parameter (the subsystem identifier) when SAS attaches a BMP,
DLI, or DBB region.

Valid in: SAS invocation

256 IMSIOB= SAS System Option � Appendix 1

Category: Engine, DATA step
Default: IMSID=*
Restriction: Assigned a value that you cannot override.

Syntax
IMSID= * | value

*
specifies that the parameter is null in the attach parameter list, and therefore the
identifier specified at IMS/ESA definition is used.

value
specifies to establish communication with the control region that has the same
IMSID value during initialization.

IMSIOB= SAS System Option

Specifies a value for the number of OSAM I/O requests that can be active concurrently.

Valid in: SAS invocation, OPTIONS statement
Category: Engine, DATA step
Default: IMSIOB=*
Tip: Not restrictable

Syntax
IMSIOB= * | 999

*
specifies that the value is null in the attach parameter list.

999
for IMS/VS Release 2.2.0, enter a value of 999 to disable OSAM processing. This
option is provided by an IBM APAR and PTF to eliminate CSA shortages due to the
allocation of OSAM blocks.

IMSREGTP= SAS System Option

Determines the type of IMS region invoked.

V5 Alias: DLIRGNTP=

SAS System Options for IMS Databases � IMSTEST= SAS System Option 257

Valid in: SAS invocation
Category: Engine, DATA step
Default: IMSREGTP=DLI
Restriction: Assigned a value that you cannot override.

Syntax
IMSREGTP= DLI | DBB | BMP

DLIRGNTP= DLI | DBB | BMP

DLI | DBB
specifies to invoke a batch region using PSB or ACB libraries.

BMP
specifies to invoke an IMS region.

IMSSPIE= SAS System Option

Specifies a value for the SPIE parameter when SAS invokes a DLI, DBB, or BMP region.

Valid in: SAS invocation, OPTIONS statement
Category: Engine, DATA step
Default: IMSSPIE=0
Tip: Not restrictable

Syntax
IMSSPIE= 0 | 1

DLISPIE= 0 | 1

0
specifies to enable a user SPIE (if any) to remain in effect while processing DL/I calls.

1
specifies to negate the user SPIE while processing the DL/I calls but reinstates it
before returning to the application program.

IMSTEST= SAS System Option

Specifies a value for the TEST parameter when SAS invokes a DLI, DBB, or BMP region.

258 IMSWHST= SAS System Option � Appendix 1

Valid in: SAS invocation, OPTIONS statement

Category: Engine, DATA step

Default: IMSTEST=0

Tip: Not restrictable

Syntax
IMSTEST= 0 | 1

DLITEST= 0 | 1

0
specifies that the addresses in the user call lists are not checked for validity.

1
specifies the addresses in the user call lists are checked for validity.

IMSWHST= SAS System Option

Specifies whether the IMS engine should retrieve records if qualified segment search arguments
are not generated to be passed to IMS.

Valid in: SAS invocation

Category: Engine

Default: IMSWHST=N

Restriction: Assigned a value that you cannot override.

Syntax
IMSWHST= N | Y

N
specifies that records should be retrieved for processing regardless of whether
qualified segment search arguments are passed to IMS.

Y
specifies that records should be retrieved for processing only if qualified segment
search arguments are passed to IMS.

Quick Reference for Options

The following table summarizes SAS system options for IMS.

SAS System Options for IMS Databases � Quick Reference for Options 259

Table A1.1 SAS System Options for IMS

V6 and later
Option Default Invocation Session Restrict Engine

DATA
Step

N Y Y Y

N Y Y Y

IMSBPAGN * Y Y Y Y

IMSBPCPU 0 Y Y Y Y

IMSBPDCA 0 Y Y Y Y

IMSBPIN * Y Y Y

IMSBPNBA 0 Y Y Y

IMSBPOBA 0 Y Y Y

IMSBPOPT C Y Y Y Y

IMSBPOUT * Y Y Y

IMSBPPAR 0 Y Y Y Y

IMSBPSTI 0 Y Y Y Y

IMSBPUPD Y Y Y Y

IMSDEBUG N Y Y Y Y

IMSDLBKO * Y Y Y Y

IMSDLBUF 16 Y Y Y Y

IMSDLDBR * Y Y Y Y

IMSDLEXC 0 Y Y Y Y

IMSDLFMT P Y Y Y Y

IMSDLIRL * Y Y Y Y

IMSDLIRN * Y Y Y Y

IMSDLLOG 0 Y Y Y Y

IMSDLMON N Y Y Y Y

IMSDLSRC 0 Y Y Y Y

IMSDLSWP * Y Y Y Y

IMSDLUPD Y Y Y Y

IMSID * Y Y Y Y

IMSIOB * Y Y Y Y

IMSREGTP DLI Y Y Y Y

IMSSPIE 0 Y Y Y Y

IMSTEST 0 Y Y Y Y

IMSWHST N Y Y Y

260

261

A P P E N D I X

2
Example Data

Introduction to IMS Example Data 261
Access Descriptors for IMS 262

ACCTDBD Database Access Descriptor 262

EMPLINF2 Database Access Descriptor 264

WIRETRAN Database Access Descriptor 265

View Descriptors Based on the Access Descriptors for IMS 266
ACCTDBD Database View Descriptors 266

EMPLINF2 Database View Descriptors 268

WIRETRAN Database View Descriptor 268

Creating SAS Data Sets for IMS 269

MYDATA.BIRTHDAY Data Set 269

MYDATA.CHECKS Data Set 269
MYDATA.CHGDATA Data Set 270

MYDATA.CHKCRED Data Set 270

MYDATA.CHKDEBD Data Set 272

MYDATA.EMPLDATA Data Set 276

MYDATA.INITSEG Data Set 279
MYDATA.PHONENUM Data Set 280

MYDATA.SAVCRED Data Set 281

MYDATA.SAVDEBD Data Set 282

MYDATA.CUSTOMER Data Set 284

MYDATA.NEWADDR Data Set 285
VER6.SSNUMS Data Set 285

SAS Statements for Loading DB2 Table BANKCHRG 286

Creating SAS Data Set MYDATA.BANK 286

Loading DB2 Table BANKCHRG from MYDATA.BANK 287

DB2 View Descriptor for BANKCHRG 287

Introduction to IMS Example Data
This appendix lists the data in the sample IMS databases ACCTDBD and

EMPLINF2, and the DB2 table BANKCHRG that are used in the examples in this
document. It also includes the data in the descriptor files and SAS data files that are
used in the examples in Chapter 4, “ IMS Data in SAS Programs,” on page 49 and
Chapter 5, “Browsing and Updating IMS Data,” on page 69. See Chapter 3, “Defining
SAS/ACCESS Descriptor Files,” on page 41 for complete information about the
WIRETRN database.

Sample JCL for allocating the IMS databases, creating DBDs, creating PSBs, and
creating needed flat files is provided in the SAS Sample Library files. If you want to
run these examples, see “About the Example Data in the Document” on page 9 or

262 Access Descriptors for IMS � Appendix 2

contact your on-site SAS support personnel for information about how to access the files
in the SAS Sample Library provided with this release.

Access Descriptors for IMS

ACCTDBD Database Access Descriptor
This section describes the MYLIB.ACCOUNT access descriptor for the ACCTDBD

database that is used in the examples. This section provides the statements used to
create the ACCOUNT access descriptor in batch, interactive line, or noninteractive
mode. The ACCTDBD database is described in detail in Chapter 2, “IMS Essentials,”
on page 11.

JCL statements;
proc access dbms=ims;

create mylib.account.access;
dbd=acctdbd dbtype=hdam;
record=’customer_record’ sg=customer sl=225;

item=soc_sec_number lv=2 dbf=$11.
key=u
se=ssnumber;

item=customer_name lv=2 dbf=$40.
se=custname;

item=’address info’ lv=2;
item=addr_line_1 lv=3 dbf=$30.

se=custadd1;
item=addr_line_2 lv=3 dbf=$30.

se=custadd2;
item=city lv=3 dbf=$28.

se=custcity;
item=state lv=3 dbf=$2.

se=custstat;
item=country lv=3 dbf=$20.

se=custland;
item=zip_code lv=3 dbf=$10.

se=custzip;
item=home_phone lv=2 dbf=$12.

se=custhphn;
item=office_phone lv=2 dbf=$12.

se=custophn;

record=’checking_account_record’ sg=chckacct
sl=40;

item=check_account_number lv=2 dbf=12.
key=u
se=acnumber;

item=check_amount lv=2 dbf=pd5.2
se=stmtamt
dbc=l;

Example Data � ACCTDBD Database Access Descriptor 263

item=check_date lv=2 dbf=6.0
fmt=date7.
se=stmtdate
dbc=mmddyy6.;

item=filler1 lv=2 dbf=$2.;
item=check_balance lv=2 dbf=pd5.2

se=stmtbal
dbc=l;

record=’checking_debit_record’ sg=chckdebt sl=80;
item=check_debit_amount lv=2 dbf=pd5.2

key=y
se=debtamt
dbc=l;

item=check_debit_date lv=2 dbf=6.0
fmt=date7.
se=debtdatd
dbc=mmddyy6.;

item=filler2 lv=2 dbf=$2.;
item=check_debit_time lv=2 dbf=$8.

se=debttime;
item=check_debit_desc lv=2 dbf=$59.

se=debtdesc;

record=’checking_credit_record’ sg=chckcrdt sl=80;
item=check_credit_amount lv=2 dbf=pd5.2

key=y
se=crdtamt
dbc=l;

item=check_credit_date lv=2 dbf=6.0
fmt=date7.
se=crdtdate
dbc=mmddyy6.;

item=filler3 lv=2 dbf=$2.;
item=check_credit_time lv=2 dbf=$8.

se=crdttime;
item=check_credit_desc lv=2 dbf=$59.

se=crdtdesc;

record=’savings_account_record’ sg=saveacct sl=40;
item=savings_account_number lv=2 dbf=12.

key=y
se=acnumber;

item=savings_amount lv=2 dbf=pd5.2
se=stmtamt
dbc=l;

item=savings_date lv=2 dbf=6.0
fmt=date7.
se=stmtdate
dbc=mmddyy6.;

item=filler4 lv=2 dbf=$2.;
item=savings_balance lv=2 dbf=pd5.2

se=stmtbal
dbc=l;

264 EMPLINF2 Database Access Descriptor � Appendix 2

record=’savings_debit_record’ sg=savedebt sl=80;
item=savings_debit_amount lv=2 dbf=pd5.2

key=y
se=debtamt
dbc=l;

item=savings_debit_date lv=2 dbf=6.0
fmt=date7.
se=debtdate
dbc=mmddyy6.;

item=filler5 lv=2 dbf=$2.;
item=savings_debit_time lv=2 dbf=$8.

se=debttime;
item=savings_debit_desc lv=2 dbf=$59.

se=debtdesc;

record=’savings_credit_record’ sg=savecrdt sl=80;
item=savings_credit_amount lv=2 dbf=pd5.2

key=y
se=crdtamt
dbc=l;

item=savings_credit_date lv=2 dbf=6.0
fmt=date7.
se=crdtdate
dbc=mmddyy6.;

item=filler6 lv=2 dbf=$2.;
item=savings_credit_time lv=2 dbf=$8.

se=crdttime;
item=savings_credit_desc lv=2 dbf=$59.

se=crdtdesc;
list all;

run;

EMPLINF2 Database Access Descriptor

This section describes the MYLIB.EMPLOYEE access descriptor for the EMPLINF2
database that is used in the examples and provides the statements that are used to
create the EMPLOYEE access descriptor in batch, interactive line, or noninteractive
mode.

proc access dbms=ims;
create mylib.employee.access;
database=emplinf2 dbtype=hidam;
record=’employee record’ segment=employee

seglng=150;
item=employee_id lv=2 dbf=pd3.0

key=u
se=empid;

item=last_name lv=2 dbf=$10.
se=lastname;

item=first_name lv=2 dbf=$20.
se=frstname;

Example Data � WIRETRAN Database Access Descriptor 265

item=hire_date lv=2 dbf=6.0
fmt=date7.
se=hiredate
dbc=mmddyy6.;

item=birthday lv=2 dbf=7.0
fmt=date7.
se=birthday
dbc=mmddyy6.;

item=ssn lv=2 dbf=$11.
se=ssn;

item=gender lv=2 dbf=$6.
se=gender;

item=status lv=2 dbf=$9.
se=status;

item=phone_extension lv=2 dbf=$9.
se=phone;

item=vacation lv=2 dbf=ib4.
se=vacation
dbc=l;

item=department lv=2 dbf=zd6.0
se=deptment;

item=zip_code lv=2 dbf=$5.
se=zipcode;

item=city_and_state lv=2 dbf=$15.
se=citystat;

item=street lv=2 dbf=$20.
se=street;

item=security lv=2 dbf=rb4.
fmt=10.0
se=security
dbc=l;

item=sick_leave lv=2 dbf=6.2
se=sicklv
dbc=l;

list all;

WIRETRAN Database Access Descriptor
This section describes the MYLIB.WIRETRAN access descriptor for the WIRETRAN

database that is used in examples and provides the statements that are used to create
the WIRETRAN access descriptor in batch, interactive line, or noninteractive mode.
The WIRETRAN database is described in detail in Chapter 3, “Defining SAS/ACCESS
Descriptor Files,” on page 41.

proc access dbms=ims;
create mylib.wiretrn.access;

database=wiretrn dbtype=hdam;
record=’wire transaction’ segment=wiretran

seglng=100;
item=’ssn - account’ lv=2 dbf=$23.

se=ssnacc
key=y;

item=’account type’ lv=2 dbf=$1.
se=accttype;

266 View Descriptors Based on the Access Descriptors for IMS � Appendix 2

item=’wire date’ lv=2 dbf=$8.
se=wiredate;

item=’wire time’ lv=2 dbf=$8.
se=wiretime;

item=’wire amount’ lv=2 dbf=pd5.2
se=wireammt
dbc=l;

item=’wire description’ lv=2 dbf=$40.
se=wiredesc;

an=y;
list all;

run;

View Descriptors Based on the Access Descriptors for IMS

ACCTDBD Database View Descriptors

This section shows the SAS statements that are used to create the view descriptors
for the ACCTDBD database that is used in the examples in this document. The
ACCTDBD database is described in Chapter 2, “IMS Essentials,” on page 11. The view
descriptors are presented here in alphabetical order for easy reference.

You can create all the view descriptors used in the document by using PROC
ACCESS statements. These view descriptors are based on the MYLIB.ACCOUNT
access descriptor shown earlier in this appendix.

proc access dbms=ims ad=mylib.account;
create vlib.account.view psb=accupsb;
select soc_sec_number

customer_name
city
state
zip_code;

list view;

create vlib.cdbtdate.view psb=accupsb;
select check_account_number

check_date;
list view;

create vlib.chckacct.view psb=accupsb;
select soc_sec_number

customer_name
check_account_number
check_date
check_balance;

list view;

Example Data � ACCTDBD Database View Descriptors 267

create vlib.chkcrd.view psb=accupsb pcb=2;
select customer_record

checking_account_record
checking_credit_record;

reset 17 28;
list view;

create vlib.chkdeb.view psb=accupsb pcb=3;
select customer_record

checking_account_record
checking_debit_record;

reset 17 22;
list view;

create vlib.chktrans.view psb=accupsb;
select customer_name

check_account_number
check_date
check_balance;

list view;

create vlib.credits.view psb=accupsb;
select soc_sec_number

check_account_number
check_credit_amount
check_credit_date
check_credit_time
check_credit_desc;

list view;

create vlib.custacct.view psb=accupsb;
select soc_sec_number

customer_name
check_account number;

list view;

create vlib.custinfo.view psb=accupsb;
select 2 3 5 6 7 8 9 10 11 12;

list view;

create vlib.custphon.view psb=accupsb;
select soc_sec_number

customer_name
home_phone
office_phone;

list view;

create vlib.savebal.view psb=accupsb;
select soc_sec_number

customer_name
city
32 36;

list view;

268 EMPLINF2 Database View Descriptors � Appendix 2

create vlib.ssname.view psb=accupsb;
select soc_sec_number

customer_name;
list view;

create vlib.trans.view psb=accupsb;
select soc_sec_number

check_account_number
check_debit_amount;

list view;

run;

EMPLINF2 Database View Descriptors
This section shows the SAS statements that are used to create the view descriptors

for the EMPLINF2 database used in the examples in this document. The view
descriptors are presented here in alphabetical order for easy reference. You can create
all the view descriptors used in the document by using PROC ACCESS statements.
These view descriptors are based on the MYLIB.EMPLOYEE access descriptor shown
earlier in this appendix.

proc access dbms=ims accdesc=mylib.employee;
create vlib.emplload.view psbname=empilpsb;
select employee_record;

list view;

create vlib.emplview.view psbname=empiupsb;
select employee_record;

list view;

create vlib.empbday.view psbname=empiupsb;
select employee_id

last_name
first_name
birthday
phone_extension;

list view;

run;

WIRETRAN Database View Descriptor
This section shows the SAS statements that are used to create the

VLIB.WIREDATA view descriptor for the WIRETRAN database that is used in the
examples in this document. The WIRETRAN database is described in detail in Chapter
3, “Defining SAS/ACCESS Descriptor Files,” on page 41. This view descriptor is based
on the MYLIB.WIRETRAN access descriptor shown earlier in this appendix.

proc access dbms=ims ad=mylib.wiretran;
create vlib.wiredata.view psbname=acctsam

pcbindex=5;
select ’wire transaction’;

Example Data � MYDATA.CHECKS Data Set 269

list view;
run;

Creating SAS Data Sets for IMS

MYDATA.BIRTHDAY Data Set
The SAS data set MYDATA.BIRTHDAY is updated with data from the EMPLINF2

database.

data mydata.birthday;
input @01 employee_id 6.

@08 last_name $10.
@19 birthday date7.;

format employee_id 6.
last_name $10.
birthday date7.;

datalines;
1247 Garcia 04APR54
1078 Gibson 23APR36
1005 Knapp 06OCT38
1024 Mueller 17JUN53

;

proc print data=mydata.birthday;
title2 ’SAS Data Set MYDATA.BIRTHDAY’;

run;

MYDATA.CHECKS Data Set
The SAS data set MYDATA.CHECKS is used to update the ACCTDBD database.

data mydata.checks;
length customer_name $40.;
input customer_name & $

soc_sec_number $11.
check_account_number
check_balance
check_date date7.;

format check_account_number 12.
check_balance 12.2
check_date date7.;

datalines;
COWPER, KEITH 241-98-4542 183352795865
862.31 25MAR95
OLSZEWSKI, STUART 309-22-4573 382654397566
486.00 02APR95
NAPOLITANO, BARBARA 250-36-8831 284522378774
104.20 10APR95
MCCALL, ROBERT 367-34-1543 644721295973

270 MYDATA.CHGDATA Data Set � Appendix 2

571.92 05APR95
;

proc print data=mydata.checks;
title2 ’SAS Data Set MYDATA.CHECKS’;

run;

MYDATA.CHGDATA Data Set
The SAS data set MYDATA.CHGDATA is used to update the ACCTDBD database.

data mydata.chgdata;
input account 12.

charge;
format account 14.

charge dollar7.;
datalines;

345620135872 10
345620134522 7
345620123456 12
382957492811 3
345620134663 8
345620131455 6
345620104732 9
;

proc print data=mydata.chgdata;
title2 ’SAS Data Set MYDATA.CHGDATA’;

MYDATA.CHKCRED Data Set
The SAS data set MYDATA.CHKCRED is used to add the checking credit path to the

ACCTDBD database.

data mydata.chkcred;
/**** CUSTOMER data ***/

input @1 soc_sec_number $11.
@13 customer_name $40. /
@1 addr_line_1 $30.
@32 addr_line_2 $30. /
@1 city $28.
@30 state $2.
@33 country $20.
@54 zip_code $10. /
@1 home_phone $12.
@14 office_phone $12.
/**** CHCKACCT data ***/
@27 check_account_number 12.0
@40 check_amount 12.2
@53 check_date date7. /
@1 filler1 $2.
@4 check_balance 12.2
/**** CHCKCRDT data ***/
@17 check_credit_amount 12.2

Example Data � MYDATA.CHKCRED Data Set 271

@30 check_credit_date date7.
@38 filler3 $2.
@41 check_credit_time $8. /
@1 check_credit_desc $59.;

format check_credit_date date7.;
datalines;

667-73-8275 WALLS, HOOPER J.

345620145345
1563.23 31MAR95 15:42:43

MAIN ST BRANCH DEPOSIT
667-73-8275 WALLS, HOOPER J.

345620154633
1563.23 31MAR95 15:42:43

BAD ACCT_NUM
434-62-1234 SUMMERS, MARY T.

345620104732
400.00 02APR95 10:23:46

ACH DEPOSIT
436-42-6394 BOOKER, APRIL M.

345620135872
50.00 02APR95 12:16:34

ACH DEPOSIT
434-62-1224 SMITH, JAMES MARTIN

345620134564
1342.42 22MAR95 23:23:52

ACH DEPOSIT
434-62-1224 SMITH, JAMES MARTIN

345620134663
120.00 28MAR95 10:26:45

ACH DEPOSIT
178-42-6534 PATTILLO, RODRIGUES

745920057114
1300.00 12JUN95 14:34:12

ACH DEPOSIT
156-45-5672 O’CONNOR, JOSEPH

345620123456
100.00 01APR95 12:24:34

ATM DEPOSIT

272 MYDATA.CHKDEBD Data Set � Appendix 2

657-34-3245 BARNHARDT, PAMELA S.

345620131455
230.00 04APR95 14:24:11

ACH DEPOSIT
667-82-8275 COHEN, ABRAHAM

382957492811
100.00 16APR95 09:21:14

ACH DEPOSIT
456-45-3462 LITTLE, NANCY M.

345620134522
50.00 05APR95 12:14:52

ACH DEPOSIT
234-74-4612 WIKOWSKI, JONATHAN S.

345620113263
672.32 31MAR95

ATM DEPOSIT
;

MYDATA.CHKDEBD Data Set
The SAS data set MYDATA.CHKDEBD is used to add the checking debit path to the

ACCTDBD database.

data mydata.chkdebd;
/**** CUSTOMER data ***/

input @1 soc_sec_number $11.
@13 customer_name $40. /
@1 addr_line_1 $30.
@32 addr_line_2 $30. /
@1 city $28.
@30 state $2.
@33 country $20.
@54 zip_code $10. /
@1 home_phone $12.
@14 office_phone $12.
/**** CHCKACCT data ***/
@27 check_account_number 12.0
@40 check_amount 12.2
@53 check_date date7. /
@1 filler1 $2.
@4 check_balance 12.2
/**** CHCKDEBT data ***/
@17 check_debit_amount 12.2
@30 check_debit_date date7.
@38 filler2 $2.
@41 check_debit_time $8. /

Example Data � MYDATA.CHKDEBD Data Set 273

@1 check_debit_desc $59.;
format check_date date7.;
format check_debit_date date7.;

datalines;
667-73-8275 WALLS, HOOPER J.

345620145345
1266.34 820.00 23MAR95 23:54:53

CHECK 2958
667-73-8275 WALLS, HOOPER J.

345620145345
1266.34 52.00 23MAR95 23:54:53

CHECK 2948
667-73-8275 WALLS, HOOPER J.

345620145345
1266.34 193.00 28MAR95 22:51:43

CHECK 2951
667-73-8275 WALLS, HOOPER J.

345620154633 1303.41 28MAR95
1298.04 . .

434-62-1234 SUMMERS, MARY T.
4322 LEON ST.

GORDONSVILLE VA USA 26001-0670
803-657-1687 345620104732 826.05 27MAR95
825.45 . .

436-42-6394 BOOKER, APRIL M.
9712 WALLINGFORD PL.

GORDONSVILLE VA USA 26001-0670
803-657-1346 345620135872 220.11 26MAR95

234.89 . 30MAR94 22:34:45
CHECK 103
434-62-1224 SMITH, JAMES MARTIN

133 TOWNSEND ST.
GORDONSVILLE VA USA 26001-0670
803-657-3437 345620134564 2392.93 16MAR95

2645.34 432.87 18MAR95 22:13:48
CHECK 1826
434-62-1224 SMITH, JAMES MARTIN

345620134564
2645.34 19.23 18MAR95 22:13:48

CHECK 1821
434-62-1224 SMITH, JAMES MARTIN

274 MYDATA.CHKDEBD Data Set � Appendix 2

345620134564
2645.34 723.23 22MAR95 21:48:12

CHECK 1828
434-62-1224 SMITH, JAMES MARTIN

345620134564
2645.34 82.32 22MAR95 21:48:12

CHECK 1829
434-62-1224 SMITH, JAMES MARTIN

345620134564
2645.34 73.62 26MAR95 21:22:24

CHECK 1830
434-62-1224 SMITH, JAMES MARTIN

345620134564
2645.34 31.23 26MAR95 21:22:24

CHECK 1831
434-62-1224 SMITH, JAMES MARTIN

345620134564
2645.34 162.87 29MAR94 22:51:12

CHECK 1835
434-62-1224 SMITH, JAMES MARTIN

345620134564
2645.34 7.12 29MAR95 22:51:12

CHECK 1836
434-62-1224 SMITH, JAMES MARTIN

345620134564
2645.34 62.34 31MAR95 23:02:12

CHECK 1833
434-62-1224 SMITH, JAMES MARTIN

345620134663 0.00 24MAR95
143.78 25.00 28MAR95 15:53:29

ATM MAIN ST.
178-42-6534 PATTILLO, RODRIGUES

9712 COOK RD.
ORANGE VA USA 26042-1650
803-657-1346 803-657-1345 745920057114 1404.90
10JUN95 1502.78 25.89 10JUN95 11:45:25
CHECK 412
156-45-5672 O’CONNOR, JOSEPH

235 MAIN ST.
ORANGE VA USA 26042-1650

Example Data � MYDATA.CHKDEBD Data Set 275

803-657-5656 803-623-4257 345620123456 353.65
27MAR95 463.23 13.29 28MAR95 22:23:53
CHECK 934
156-45-5672 O’CONNOR, JOESPH

803-657-5656 803-623-4257 345620123456
463.23 32.87 31MAR95 23:35:53

CHECK 931
156-45-5672 O’CONNOR, JOSEPH

345620123456
463.23 50.00 02APR95 10:23:41

ATM GREEN ST
156-45-5672 O’CONNOR, JOESPH

345620123456
463.23 13.42 31MAR95 23:35:53

CHECK 935
657-34-3245 BARNHARDT, PAMELA S.

RT 2 BOX 324
CHARLOTTESVILLE VA USA 25804-0997
803-345-4346 803-355-2543 345620131455
1243.25 29MAR95 1243.25 . .

667-82-8275 COHEN, ABRAHAM
2345 DUKE ST.

CHARLOTTESVILLE VA USA 25804-0997
803-657-7435 803-645-4234 382957492811 7462.51
03APR95 7302.06 . .

456-45-3462 LITTLE, NANCY M.
4543 ELGIN AVE.

RICHMOND VA USA 26502-3317
803-657-3566 345620134522 608.24 25MAR95

831.65 42.73 29MAR95 23:12:34
CHECK 296
456-45-3462 LITTLE, NANCY M.

345620134522
831.65 172.45 29MAR95 23:12:34

CHECK 301
456-45-3462 LITTLE, NANCY M.

345620134522
831.65 38.23 30MAR95 22:51:34

CHECK 297
456-45-3462 LITTLE, NANCY M.

276 MYDATA.EMPLDATA Data Set � Appendix 2

345620134522
831.65 10.00 02APR95 21:51:34

CHECK 298
234-74-4612 WIKOWSKI, JONATHAN S.

4356 CAMPUS DRIVE
RICHMOND VA USA 26502-5317
803-467-4587 803-654-7238 345620113263 672.32
28MAR95 13.28 . .

;

MYDATA.EMPLDATA Data Set
The SAS data set MYDATA.EMPLDATA is used to load the EMPLINF2 database.

data mydata.empldata;
input @01 employee_id 6.

@08 last_name $10.
@19 first_name $20.
@40 hire_date yymmdd6.
@47 birthday yymmdd6.
@54 ssn $11. /
@01 gender $6.
@08 status $9.
@18 phone_extension $9.
@28 vacation 8.2
@37 department 8.
@46 zip_code $5.
@52 city_and_state $15. /
@01 street $20.
@21 security 5.
@27 sick_leave 8.2;

format hire_date yymmdd6.
birthday yymmdd6.;

datalines;
1001 Waterhouse Clifton P.781231 480101 254-43-6089

Male Full Time X5109 8.00 200 78752 Austin,TX
505 Cat Mountain Tr. 310 8.00

1002 Bowman Hugh E. 801230 310714 329-88-6729
Male Full Time X5901 40.00 1000 78741 Austin,TX
47 Cypress Point Cir 310 80.00

1003 Salazar Yolanda 821230 401212 166-88-7516
Female Full Time X5169 80.00 200 78641 Leander,TX
6811 Picket Fence Dr 310 56.00

1004 Knight Althea 841229 500409 942-62-3354
Female Full Time X5218 300 78664 Round Rock,TX
8222 Whitewing Way 110 16.00

1005 Knapp Patrice R. 811230 371004 353-43-1272
Female Full Time X5012 8.00 100 78748 Austin,TX
19 Pack Saddle Pass 110 44.00

1006 Garrett Olan M. 781231 350123 776-94-3545
Male Full Time X5208 80.00 300 78731 Austin,TX
67 Running Doe Ln. 110 60.00

1007 Brown Virgina P.801230 460524 675-29-9081

Example Data � MYDATA.EMPLDATA Data Set 277

Female Full Time X5258 48.00 300 78610 Buda,TX
2713 Nutty Brown Mil 110 32.00
1008 Hernandez Jesse L. 821230 330326 123-12-0987

Male Full Time X5448 56.00 500 78664 Round Rock,TX
4319 Red Stone Lane . 8.00
1009 Jones Michael Y. 850330 310521 543-87-1934

Male Full Time X5713 80.00 800 78748 Austin,TX
23 Moonlight Bend La . 80.00
1010 Smith Janet F. 811230 470807 105-32-9011

Female Full Time X5621 16.00 700 78737 Austin,TX
523 Rim Rock Road . 8.00
1011 Van Hotten Gwendolyn 790201 420913 766-30-9237

Female Full Time X5311 . 400 78641 Leander,TX
623 Fauntleroy Trail . 32.00
1012 Quintero Pedro 810214 480221 339-94-2674

Male Full Time X5348 32.00 400 78741 Austin,TX
77 Button Quail Cove . 40.00
1015 Scholl Madison A. 830304 450319 765-43-0581

Male Full Time X5419 40.00 500 78741 Austin,TX
3910 Covered Wagon . 80.00
1017 Waggonner Merrilee D.850330 360427 586-54-8967

Female Full Time X5914 56.00 1000 78722 Austin,TX
941 Bridgewater Dr. . 40.00
1020 Rudd Fred 601230 . 145-67-6532

Male Part Time . 100
. .

1024 Mueller Patsy 790403 520617 857-51-1838
Female Full Time X5822 40.00 900 78620 Dripping Spring
6935 Cherry Creek Rd 110 40.00
1031 Chan Tai 810502 460704 843-09-7123

Male Full Time X5331 40.00 400 78755 Austin,TX
1412 Arapahoe Trail . 80.00
1049 Fernandez Sophia 830516 440911 764-91-0193

Female Full Time X5847 96.00 900 78744 Austin,TX
4700 Old Stage Trail . 40.00
1050 Ameer David 850530 511010 456-34-6543

Male Full Time X5495 56.00 500 78735 Austin,TX
231 Little Hill Cir. . .
1062 Littlejohn Fannie 850429 540517 978-63-3930

Female Full Time X5653 8.00 700 78660 Pflugerville,TX
813 Lime Rock Dr. 110 48.00
1067 Cahill Jacob 790105 401225 102-78-8765

Male Full Time X5042 60.00 100 78748 Austin,TX
121 Hidden Hollow . 36.00
1071 Canady Frank A. 810331 411119 345-91-4321

Male Full Time X5406 8.00 500 78756 Austin,TX
741 Canyonwood Lane . 8.00
1074 Millsap Joel B. 830831 360612 675-23-8027

Male Full Time X5224 24.00 300 78755 Austin,TX
1201 Broken Bow Pass 110 48.00
1077 Gibson Teddy B. 850929 460423 567-89-2345

Male X5703 80.00 800 78753 Austin,TX
4441 Hansford . 80.00
1078 Gibson George J. 820930 460423 567-89-2346

278 MYDATA.EMPLDATA Data Set � Appendix 2

Male Full Time X5703 80.00 800 78753 Austin,TX
2311 Hansford . 80.00

1083 Savage William D. 791001 530120 211-95-9608
Male Full Time X5505 80.00 600 78737 Austin,TX
97 Cimarron Circle . 48.00

1086 Schmidt Penny 811017 270219 901-45-4567
Female Full Time X5822 80.00 900 78735 Austin,TX
6419 Wild Rose Road . 80.00

1092 Polanski Ivan L. 831130 471011 497-36-7845
Male Full Time X5621 56.00 700 78620 Dripping Spring
2501 Timberline Tr. . .

1101 Nathaniel Darryl 860101 440321 584-86-6945
Male Full Time X5544 40.00 600 78735 Austin,TX
1892 Red River Road 210 8.00

1105 Faulkner Carrie Ann 830102 510817 987-76-7469
Female Full Time X5417 48.00 500 78756 Austin,TX
5649 Foothill Park 110 16.00

1112 Jones Rita M. 790202 481224 890-98-6789
Female Full Time X5271 24.00 300 78735 Austin,TX
907 Hickory Stick . 8.00

1119 Goodson Alan F. 820116 500621 234-67-8901
Male Full Time X5512 48.00 600 78626 Georgetown,TX
11410 Smokey Hill Rd . 16.00

1120 Reid David G. 830214 450815 442-04-0121
Male Full Time X5369 80.00 400 78752 Austin,TX
1322 Lazy Lane 224 80.00

1123 Freeman Leopold 861030 350209 828-26-7282
Male Part Time X5604 . 700 78757 Austin,TX
13 Timber Hills Tr. 106 .

1133 Williamson Janice L. 831103 520519 131-41-9129
Female Full Time X5802 40.00 900 78610 Buda,TX
2706 Frontier Valley . 8.00

1139 Seaton Gary 800403 561003 286-04-6279
Male Full Time X5545 80.00 600 78757 Austin,TX
2111 Wind Ridge Road . 80.00

1145 Juarez Armando 820501 470528 876-19-0378
Male Full Time X5987 48.00 1000 78626 Georgetown,TX
1017 Woodstone Sq. . 16.00

1156 Reed Kenneth D. 840830 550105 875-15-1388
Male Full Time X5307 64.00 400 78641 Leander,TX
1349 Begonia Terrace . 40.00

1161 Richardson Travis Z. 860913 371130 654-54-8127
Male Full Time X5325 88.00 400 78752 Austin,TX
2009 Mountain Lake 110 96.00

1213 Johnson Bradford 840131 540415 321-32-9446
Male Full Time X5446 40.00 500 78724 Austin,TX
678 Buffalo Gap Road . 40.00

1217 Rodriguez Romualdo R. 810131 290209 493-77-4863
Male Full Time X5874 32.00 900 78746 Austin,TX
804 Lazy Brook Lane . 48.00

1219 Kaatz Freddie 830131 570621 181-49-4592
Male Full Time X5387 80.00 400 78753 Austin,TX
4713 Cedar Tree Lane . 80.00

1234 Shropshire Leland G. 850415 490904 555-21-4173

Example Data � MYDATA.INITSEG Data Set 279

Male Full Time X5616 32.00 700 78752 Austin,TX
606 Bull Creek Trail . 40.00
1238 Throckmort Stewart Q.850516 310804 109-07-5098

Male Full Time X5391 40.00 400 78756 Austin,TX
479 Roundup Circle . 40.00
1247 Garcia Francisco 840730 550505 678-23-0123

Male Full Time X5348 80.00 400 78756 Austin,TX
479 Whispering Wind . 72.00
1261 Collins Lillian 810824 510501 302-59-2781

Female Full Time X5616 80.00 700 78664 Round Rock,TX
9117 Beaver Creek Rd . 48.00
1265 Slye Leonard R. 840331 601218 434-21-1300

Male Half Time X5123 . 200 78742 Austin,TX
4106 Main St. . .
1266 Redfox Richard B. 850902 440404 210-65-2786

Male Full Time X5386 48.00 400 78660 Pflugerville,TX
9807 Three Oaks Tr. . 48.00
1272 Smith Garland P. 850413 540405 397-80-8491

Male Full Time X5415 8.00 500 78602 Bastrop,TX
7594 Red Cliff Rd. . 48.00
1313 Smith Jerry Lee 850130 420913 823-10-0951

Male Full Time X5169 . 200 78745 Austin,TX
8203 Friar Tuck Ln. . 16.00
1327 Brooks Ruben R. 820430 520225 789-56-2109

Male Full Time X5347 80.00 400 78744 Austin,TX
2509 Loganberry Dr. . 80.00
1900 Smith John . . .

. 100

. .
;

MYDATA.INITSEG Data Set
The SAS data set MYDATA.INITSEG is used to initially load the ACCTDBD

database.

data mydata.initseg;
/**** CUSTOMER data ***/

input @1 soc_sec_number $11.
@13 customer_name $40. /
@1 addr_line_1 $30.
@32 addr_line_2 $30. /
@1 city $28.
@30 state $2.
@33 country $20.
@54 zip_code $10. /
@1 home_phone $12.
@14 office_phone $12.
/**** CHCKACCT data ***/
@27 check_account_number 12.0
@40 check_amount 12.2
@53 check_date date7. /
@1 filler1 $2.
@4 check_balance 12.2

280 MYDATA.PHONENUM Data Set � Appendix 2

/**** CHCKDEBT data ***/
@17 check_debit_amount 12.2
@30 check_debit_date date7.
@38 filler2 $2.
@41 check_debit_time $8. /
@1 check_debit_desc $59.;

format check_date date7.;
format check_debit_date date7.;

datalines;
667-73-8275 WALLS, HOOPER J.

4525 CLARENDON RD
RAPIDAN VA USA 22215-5600
803-657-3098 803-645-4418 345620145345 1702.19 15MAR95

1266.34 . 19MAR94 21:22:53
CHECK 2947
;

MYDATA.PHONENUM Data Set
The SAS data set MYDATA.PHONENUM is used to update the ACCTDBD database.

data mydata.phonenum;
soc_sec_number = ’667-73-8275’;
home_phone = ’703-657-3098’;
office_phone = ’703-645-4418’;
output;
soc_sec_number = ’434-62-1234’;
home_phone = ’703-645-441 ’;
office_phone = ’ ’;
output;
soc_sec_number = ’178-42-6534’;
home_phone = ’703-657-1346’;
office_phone = ’703-657-1345’;
output;
soc_sec_number = ’156-45-5672’;
home_phone = ’703-657-5656’;
office_phone = ’703-623-4257’;
output;
soc_sec_number = ’657-34-3245’;
home_phone = ’703-345-4346’;
office_phone = ’703-355-5438’;
output;
soc_sec_number = ’456-45-3462’;
home_phone = ’703-657-3566’;
office_phone = ’703-645-1212’;
output;
soc_sec_number = ’416-41-3162’;
home_phone = ’703-657-3166’;
office_phone = ’703-615-1212’;
output;

run;
proc print data=mydata.phonenum;

title2 ’SAS Data Set MYDATA.PHONENUM’;
run;

Example Data � MYDATA.SAVCRED Data Set 281

MYDATA.SAVCRED Data Set

The SAS data set MYDATA.SAVCRED is used to add the savings credit path to the
ACCTDBD database.

data mydata.savcred;
/**** CUSTOMER data ***/

input @1 soc_sec_number $11.
@13 customer_name $40. /
@1 addr_line_1 $30.
@32 addr_line_2 $30. /
@1 city $28.
@30 state $2.
@33 country $20.
@54 zip_code $10. /
@1 home_phone $12.
@14 office_phone $12.
/**** SAVEACCT data ***/
@27 savings_account_number 12.0
@40 savings_amount 12.2
@53 savings_date date7. /
@1 filler4 $2.
@4 savings_balance 12.2
/**** SAVECRDT data ***/
@17 savings_credit_amount 12.2
@30 savings_credit_date date7.
@38 filler6 $2.
@41 savings_credit_time $8. /
@1 savings_credit_desc $59.;

format savings_credit_date date7.;
datalines;

667-73-8275 WALLS, HOOPER J.

459923888253 784.29 28MAR95
672.63 8.45 30MAR95 09:34:18

INTEREST
434-62-1234 SUMMERS, MARY T.

4322 LEON ST.
GORDONSVILLE VA USA 26001-0670

345689404732 8406.0 27MAR95
8364.24 41.82 30MAR95 23:46:03
INTEREST
436-42-6394 BOOKER, APRIL M.

9712 WALLINGFORD PL.
GORDONSVILLE VA USA 26001-0670

144256844728 809.45 21MAR95
1032.23 50.00 26MAR95 12:26:15
INTEREST
434-62-1224 SMITH, JAMES MARTIN

133 TOWNSEND ST.
GORDONSVILLE VA USA 26001-0670

345689473762 130.64 15MAR95
261.64 1.31 30MAR95 23:45:53

282 MYDATA.SAVDEBD Data Set � Appendix 2

INTEREST
434-62-1224 SMITH, JAMES MARTIN

133 TOWNSEND ST.
GORDONSVILLE VA USA 26001-0670

345689498217 9421.79 16MAR95
9374.92 46.07 30MAR95 23:45:32
INTEREST
178-42-6534 PATTILLO, RODRIGUES

9712 COOK RD.
ORANGE VA USA 26042-1650

345689462413 950.96 15MAR95
946.23 4.73 30MAR95 23:44:25

INTEREST
156-45-5672 O’CONNOR, JOESPH

235 MAIN ST.
ORANGE VA USA 26042-1650

345689435776 136.40 27MAR95
284.97 1.43 30MAR95 23:48:56

INTEREST
657-34-3245 BARNHARDT, PAMELA S.

RT 2 BOX 324
CHARLOTTESVILLE VA USA 25804-0997

859993641223 845.35 18MAR95
2553.45 71.44 26MAR95 08:41:28
INTEREST
667-82-8275 COHEN, ABRAHAM

2345 DUKE ST.
CHARLOTTESVILLE VA USA 25804-0997

884672297126 945.25 26MAR95
793.25 52.33 28MAR95 11:45:26

INTEREST
456-45-3462 LITTLE, NANCY M.

345689463822 929.24 25MAR95
924.62 4.62 30MAR95 23:46:01

INTEREST
234-74-4612 WIKOWSKI, JONATHAN S.

4356 CAMPUS DRIVE
RICHMOND VA USA 26502-3317

. . .
. . .

;

MYDATA.SAVDEBD Data Set
The SAS data set MYDATA.SAVDEBD is used to add the savings debit path to the

ACCTDBD database.

data mydata.savdebd;
/**** CUSTOMER data ***/

input @1 soc_sec_number $11.
@13 customer_name $40. /

Example Data � MYDATA.SAVDEBD Data Set 283

@1 addr_line_1 $30.
@32 addr_line_2 $30. /
@1 city $28.
@30 state $2.
@33 country $20.
@54 zip_code $10. /
@1 home_phone $12.
@14 office_phone $12.
/**** SAVEACCT data ***/
@27 savings_account_number 12.0
@40 savings_amount 12.2
@53 savings_date date7. /
@1 filler4 $2.
@4 savings_balance 12.2
/**** SAVEDEBT data ***/
@17 savings_debit_amount 12.2
@30 savings_debit_date date7.
@38 filler5 $2.
@41 savings_debit_time $8. /
@1 savings_debit_desc $59.;

format savings_date date7.;
format savings_debit_date date7.;

datalines;
667-73-8275 WALLS, HOOPER J.

459923888253 784.29 28MAR95
672.63 . .

434-62-1234 SUMMERS, MARY T.
4322 LEON ST.

GORDONSVILLE VA USA 26001-0670
345689404732 8406.00 27MAR95

8364.24 . .

436-42-6394 BOOKER, APRIL M.
9712 WALLINGFORD PL.

GORDONSVILLE VA USA 26001-0670
144256844728 809.45 21MAR95

1032.23 . .

434-62-1224 SMITH, JAMES MARTIN
133 TOWNSEND ST.

GORDONSVILLE VA USA 26001-0670
345689473762 130.64 15MAR95
261.64 132.31 03APR94 14:42:43

MAIN ST BRANCH WITHDRAWAL
434-62-1224 SMITH, JAMES MARTIN

133 TOWNSEND ST.
GORDONSVILLE VA USA 26001-0670

345689498217 9421.79 16MAR95
9374.92 . .

178-42-6534 PATTILLO, RODRIGUES

284 MYDATA.CUSTOMER Data Set � Appendix 2

9712 COOK RD.
ORANGE VA USA 26042-1650

345689462413 950.96 15MAR95
946.23 . .

156-45-5672 O’CONNOR, JOESPH
235 MAIN ST.

ORANGE VA USA 26042-1650
345689435776 136.40 27MAR95

284.97 150.00 31MAR94 12:23:42
ATM GREEN ST
657-34-3245 BARNHARDT, PAMELA S.

RT 2 BOX 324
CHARLOTTESVILLE VA USA 25804-0997

859993641223 845.35 18MAR95
2553.45 . .

667-82-8275 COHEN, ABRAHAM
2345 DUKE ST.

CHARLOTTESVILLE VA USA 25804-0997
884672297126 945.25 26MAR95
793.25 . .

456-45-3462 LITTLE, NANCY M.

345689463822 929.24 25MAR95
924.62 . .

234-74-4612 WIKOWSKI, JONATHAN S.
4356 CAMPUS DRIVE

RICHMOND VA USA 26502-3317
. . .

. . .

;

MYDATA.CUSTOMER Data Set
The SAS data set MYDATA.CUSTOMER is used to update the ACCTDBD database.

data mydata.customer;
/**** CUSTOMER data ***/

input @1 soc_sec_number $11.
@13 customer_name $40. /
@1 addr_line_1 $30.
@32 addr_line_2 $30. /
@1 city $28.
@30 state $2.
@33 country $20.
@54 zip_code $10. /
@1 home_phone $12.
@14 office_phone $12.;

datalines;

Example Data � VER6.SSNUMS Data Set 285

131-73-2785 HUTTLINGER, HORTENSE H.
2785 HILLARY PL

RAPIDAN VA USA 22215-5600
803-657-4097 803-645-4419
232-62-2432 MANNERLY, MAYNARD M.

6525 MORGAN ST
RAPIDAN VA USA 22215-5600
803-657-9066 803-645-4420
;

MYDATA.NEWADDR Data Set
The SAS data set MYDATA.NEWADDR is in Version 6 format and is used to update

the ACCTDBD database.

data mydata.newaddr;
/**** CUSTOMER data ***/
input @1 ssn $11.

/* social security number */
@13 newaddr1 $30.
/* first line of address */
@44 newaddr2 $30. /
/* second line of address */
@1 newcity $28.
/* customer city */
@30 newstate $2.
/* customer state */
@33 newzip $10.;
/* customer zip code */

datalines;
178-42-6534 1111 PAUL PLACE
RAPIDAN VA 22215-5600
156-45-5672 2222 OSCAR DR.
ORANGE VA 26042-1650
;

VER6.SSNUMS Data Set
The SAS data set VER6.SSNUMS is in Version 6 format and is used to update the

ACCTDBD database.

data ver6.ssnums;
input @1 ssnumb $11.

@13 name $40.;
datalines;

267-83-2241 GORDIEVSKY, OLEG
276-44-6885 MIFUNE, YUKIO
352-44-2151 SHIEKELESLAM, SHALA
436-46-1931 NISHIMATSU-LYNCH, CAROL
;

proc print data=mydata.ssnums;
title2 ’SAS Data Set VER6.SSNUMS’;

run;

286 SAS Statements for Loading DB2 Table BANKCHRG � Appendix 2

SAS Statements for Loading DB2 Table BANKCHRG

Creating SAS Data Set MYDATA.BANK
The SAS data set MYDATA.BANK is used to load the DB2 table BANKCHRG.

Note: If you do not have DB2 at your site, change MYDATA.BANK to
MYDATA.BANKCHRG and execute only the following program: �

data mydata.bank;
input @1 ssn $11.

@13 accountn 12.
@26 chckchrg 5.2
@32 atmfee 5.2
@38 loanchrg 6.2;

format accountn 14.
chckchrg 5.2
atmfee 5.2
loanchrg 6.2;

datalines;
667-73-8275 345620145345 3.75 5.00 2.00
434-62-1234 345620104732 15.00 25.00 552.23
436-42-6394 345620135872 1.50 7.50 332.15
434-62-1224 345620134564 9.50 0.00 0.00
178-42-6534 . 0.50 15.00 223.77
156-45-5672 345620123456 0.00 0.00 0.00
657-34-3245 345620132455 10.25 10.00 100.00
667-82-8275 . 7.50 7.50 175.75
456-45-3462 345620134522 23.00 30.00 673.23
234-74-4612 345620113262 4.50 7.00 0.00
;

proc print data=mydata.bank;
title2 ’SAS Data Set MYDATA.BANK’;

run;

Example Data � DB2 View Descriptor for BANKCHRG 287

Loading DB2 Table BANKCHRG from MYDATA.BANK
The following program loads DB2 table BANKCHRG from the SAS data set

MYDATA.BANK. You must have DB2 installed at your site to run this program.

proc dbload dbms=db2 data=mydata.bank;
accdesc=mylibdb2.bankchrg;
table=<owner>.bankchrg;
load;

run;

DB2 View Descriptor for BANKCHRG
The following program creates a DB2 view descriptor for the DB2 table BANKCHRG.

You must have DB2 installed at your site to run this program.

proc access dbms=db2 ad=mylibdb2.bankchrg;
create vlibdb2.bankchrg.view;
select all;
list view;

run;

proc print data=vlibdb2.bankchrg;
title2 ’DB2 Table BANKS.BANKCHRG’;

run;

288

289

A P P E N D I X

3
Recommended Reading

Recommended Reading 289

Recommended Reading

Here is the recommended reading list for this title:
� The Little SAS Book: A Primer
� SAS Language Reference: Concepts

� SAS Language Reference: Dictionary
� Base SAS Procedures Guide
� SAS Companion that is specific to your operating system

For a complete list of SAS publications, go to support.sas.com/bookstore. If you
have questions about which titles you need, please contact a SAS Publishing Sales
Representative at:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: 1-800-727-3228
Fax: 1-919-531-9439
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

Customers outside the United States and Canada, please contact your local SAS office
for assistance.

290

291

Glossary

ACB (Application Control Block)
a DL/I control block that contains the combined information from the Database
Descriptions (DBDs) and Program Specification Blocks (PSBs).

ACBLIB
the data set that contains the DL/I Application Control Blocks. See also Application
Control Block (ACB).

access descriptor
a SAS/ACCESS file that describes data that is managed by SAS, by a database
management system, or by a PC-based software application such as Microsoft Excel,
Lotus 1-2-3, or dBASE. After creating an access descriptor, you can use it as the
basis for creating one or more view descriptors. See also SAS/ACCESS view, view
descriptor.

Application Control Block
See ACB (Application Control Block).

attach parameter list
a set of parameters that are passed to DL/I when the IMS engine or the IMS DATA
step interface is executed in a DL/I environment. The parameters vary for each
region type. Most parameters can be modified with SAS system options that are
specified for the SAS/ACCESS interface to IMS.

batch mode
a method of executing SAS programs in which a file that contains SAS statements
plus any necessary operating environment commands is submitted to the computer’s
batch queue. After you submit the program, control returns to your computer, and
you can perform other tasks. Batch mode is sometimes referred to as running in the
background. The program output can be written to files or printed on an output
device.

batch region
a DL/I processing environment for running batch mode jobs to access DL/I databases.
Database data sets must be allocated to this region. A batch region is supervised by
the DL/I batch control program.

BMP (Batch Message Processing) region
a DL/I processing environment in IMS/ESA DB/DC subsystems and in CICS for
running batch programs that access active online DL/I databases and message

292 Glossary

queues, as well as non-DL/I data sets. Database data sets are allocated to an online
control region, not to the BMP region.

browsing data
the process of viewing the contents of a file. Depending on how the file is accessed,
you can view SAS data either one observation (row) at a time or as a group in a
tabular format. You cannot update data that you are browsing.

call (DL/I)
a request made by the IMS-DL/I engine to DL/I to access one or more segments of a
database or message queue, or to perform some system function.

checkpoint
the result of a CHKP call. A checkpoint establishes a synchronization point in the
execution of the program. A synchronization point is used by DL/I backout services
to determine which updates to back out (cancel) in the event of an abend or system
crash. The program must be restarted at the synchronization point.

checkpoint ID
an eight-byte value that is written to the DL/I log record to identify a program
checkpoint.

child
in a hierarchical database, a segment that is the direct dependent of another
segment, which is called the child’s parent. The data in a dependent segment relies
on the parent segment and on all higher segments for complete identification and
qualification.

command code
a special indicator that is used in a Segment Search Argument (SSA) to modify the
type of call that is being issued. The most commonly used command code is the D
code, which is used to issue a path call.

commit
the process that ends a transaction and that makes permanent any changes to the
database that the user made during the transaction.

DATA step
in a SAS program, a group of statements that begins with a DATA statement and that
ends with either a RUN statement, another DATA statement, a PROC statement, the
end of the job, or the semicolon that immediately follows lines of data. The DATA
step enables you to read raw data or other SAS data sets and to use programming
logic to create a SAS data set, to write a report, or to write to an external file.

DATA step view
a type of SAS data set that consists of a stored DATA step program. A DATA step
view contains a definition of data that is stored elsewhere; the view does not contain
the physical data. The view’s input data can come from one or more sources,
including external files and other SAS data sets. Because a DATA step view only
reads (opens for input) other files, you cannot update the view’s underlying data.

data type
an attribute of every column in a table or database. The data type tells the operating
system how much physical storage to set aside for the column and specifies what type
of data the column will contain. It is similar to the type attribute of SAS variables.

data value
the intersection of a row (observation) and a column (variable) in the rectangular
form of a SAS data set.

Glossary 293

database
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes.

Database Description
See DBD (Database Description).

database management system
See DBMS (database management system).

Database Recovery Control
See DBRC (Database Recovery Control).

DBA (Database Administrator)
the person who is responsible for developing and maintaining database management
systems at a computer site.

DBB region
a DL/I batch processing environment for running programs that can access DL/I
databases as well as non-DL/I data sets. In a DBB region, DL/I accesses the ACBLIB
in order to obtain control block information.

DBD (Database Description)
a DL/I control block that defines the hierarchical data structure and the physical
characteristics of a database to DL/I.

DBDGEN
the utility procedure that generates Database Descriptions (DBDs).

DBDLIB
a data set that contains Database Descriptions (DBDs).

DBMS (database management system)
a software application that enables you to create and manipulate data that is stored
in the form of databases.

DBRC (Database Recovery Control)
an IMS facility that controls the restoration of databases after a system failure.
DBRC also supports data sharing among IMS/ESA subsystems.

dependent segment
a segment that has a parent segment. The data in a dependent segment relies on the
parent segment and on all higher segments for complete identification and
qualification. See also segment.

DL/I (Data Language/I)
the IBM database language for IMS/VS, CICS/OS/VS, CICS/DOS/VS, and DL/I DOS/
VS systems.

DLI region
a DL/I batch processing environment for running programs that can access DL/I
databases as well as non-DL/I data sets. No access to message queues is possible. In
a DLI region, DL/I accesses the DBDLIB and PSBLIB for control block information.

editing data
the process of viewing the contents of a file with the intent and the ability to change
those contents. Depending on how the file is accessed, you can view the data either
one observation at a time or in a tabular format.

engine
a component of SAS software that reads from or writes to a file. Each engine enables
SAS to access files that are in a particular file format.

294 Glossary

feedback data
the data that is returned to the IMS engine (usually in the PCB mask) after a DL/I
call has been issued.

field
in a hierarchical database, the smallest unit of data storage.

file
a collection of related records that are treated as a unit. SAS files are processed and
controlled by SAS and are stored in SAS libraries.

format
a pattern or set of instructions that SAS uses to determine how the values of a
variable (or column) should be written or displayed. SAS provides a set of standard
formats and also enables you to define your own formats.

Get call
a DL/I call that retrieves one or more segments so that the contents of the segments
can be read by the IMS engine.

hierarchical database
a database that is organized as a tree structure of segments. A DL/I database has a
hierarchical data structure.

hierarchical sequence
the standard processing sequence for segments of a database record. The sequence is
basically top-to-bottom, front-to-back, and left-to-right.

hierarchical structure
an arrangement of data in which records occur at distinct levels, with different types
of information at each level. Records are related to other records as ancestors,
descendants, siblings, and so on.

I/O area
a data structure in which the IMS-DL/I engine holds retrieved segments for
processing or output.

I/O PCB (Input/Output Program Communication Block)
a type of DL/I control block that communicates information about non-database
access requests. See also PCB (Program Communication Block).

IMS/ESA
Information Management System/Enterprise System Architecture. IMS/ESA is an
IBM database management system that uses the DL/I database language.

IMS/ESA Resource Lock Manager
See IRLM (IMS/ESA Resource Lock Manager).

index
a component of a SAS data set that enables SAS to access observations in the SAS
data set quickly and efficiently. The purpose of SAS indexes is to optimize
WHERE-clause processing and to facilitate BY-group processing.

interactive line mode
a method of running SAS programs in which you enter one line of a SAS program at
a time at the SAS session prompt. SAS processes each line immediately after you
press the ENTER or RETURN key. Procedure output and informative messages are
returned directly to your display device.

interface view engine
a SAS engine that retrieves data directly from files that have been formatted by
another vendor’s software and which presents the data to SAS in the form of a SAS

Glossary 295

data set. Interface view engines are transparent to users and are not specified in
LIBNAME statements. See also engine.

IRLM (IMS/ESA Resource Lock Manager)
a facility for ensuring database integrity among multiple DL/I subsystems.

key field
a field that identifies and provides access to an occurrence of a segment. A key field
is also called a sequence field.

libref (library reference)
a short name (or alias) for the full physical name of a SAS library. A SAS LIBNAME
statement maps the libref to the full physical name. A libref is the first part of a
multi-level SAS filename and indicates the SAS library in which a SAS file is stored.
For example, in the name SASUSER.ACCTS, SASUSER is the libref, and ACCTS is
a file in the library that the SASUSER libref refers to. See also SAS library.

logical database
a collection of database segments from one or more physical databases. A logical
database enables the IMS-DL/I engine to view a database structure that is different
from the physical structure.

member
a SAS file in a SAS library.

member name
a name that is assigned to a SAS file in a SAS library. See also member type.

member type
a SAS name that identifies the type of information that is stored in a SAS file.
Member types include ACCESS, AUDIT, DMBD, DATA, CATALOG, FDB, INDEX,
ITEMSTOR, MDDB, PROGRAM, UTILITY, and VIEW.

missing value
in SAS, a term that describes the contents of a variable that contains no data for a
particular row or observation. By default, SAS prints or displays a missing numeric
value as a single period, and it prints or displays a missing character value as a
blank space.

noninteractive mode
a method of running SAS programs in which you prepare a file of SAS statements
and submit the program to the operating system. The program runs immediately
and occupies your current session.

observation
a row in a SAS data set. All of the data values in an observation are associated with
a single entity such as a customer or a state. Each observation contains either one
data value or a missing-value indicator for each variable. An observation is
analogous to a row in a database table. However, unlike rows in a database table or
file, observations in a SAS data file have an inherent order.

online access region
a DL/I processing environment for running batch programs that can access active
online DL/I databases. The only type of online access region that the SAS/ACCESS
interface to IMS supports is the BMP region.

parent
in a hierarchical database, a segment that has one or more dependent segments,
which are called its children. The data in a dependent segment rely on the parent
segment and on all higher segments for complete identification and qualification.

296 Glossary

path
a single route through a database, following the hierarchical sequence of segments
from a higher-level segment to a lower-level segment.

path call
a DL/I call to a database that returns multiple segments from a hierarchical path.

PCB (Program Communication Block)
a DL/I control block that defines either a message queue or the part of a database
that can be accessed by the IMS-DL/I engine. A PCB is part of a Program
Specification Block (PSB).

PCB mask
a data structure to which DL/I returns information about the DL/I calls that an
application issues.

physical database
a collection of database segments in a specified hierarchical structure. These
segments are organized according to a particular DL/I access method.

PROC SQL view
a SAS data set that is created by the SQL procedure. A PROC SQL view contains no
data. Instead, it stores information that enables it to read data values from other
files, which can include SAS data files, SAS/ACCESS views, DATA step views, or
other PROC SQL views. A PROC SQL view’s output can be either a subset or a
superset of one or more files. See also SAS data view.

PROC step
a group of SAS statements that call and execute a SAS procedure. A PROC step
usually takes a SAS data set as input.

Program Communication Block
See PCB (Program Communication Block).

Program Specification Block
See PSB (Program Specification Block).

program view
the part of a database that the IMS-DL/I engine can access. The Program
Communication Block (PCB) establishes the program view.

PSB (Program Specification Block)
a DL/I control block that defines the DL/I resources that are used by the IMS-DL/I
engine. Each database that the IMS-DL/I engine uses is defined by a separate
Program Communication Block (PCB) within the PSB.

PSBGEN
the process that generates Program Specification Blocks (PSBs

PSBLIB
the data set that contains the Program Specification Blocks (PSBs).

qualified call
a DL/I call that specifies at least one Segment Search Argument (SSA). See also
Segment Search Argument (SSA).

qualified SSA
a Segment Search Argument that contains one or more qualification statements to
specify search criteria for locating particular segment occurrences. See also Segment
Search Argument (SSA).

random access

Glossary 297

an access mode that is used by the IMS engine or by the IMS DATA step interface.
This access mode is used when a WHERE statement is specified from which the
engine can generate Segment Search Arguments. In the SAS/ACCESS interface to
IMS-DL/I, the distinction between sequential access and random access differs from
that of some other programming languages.

read integrity
a characteristic of database management systems in which database access is
controlled so that two programs cannot access a record simultaneously if one of the
programs is requesting update access. Read integrity guarantees that the data is
always current when read access is granted. See also update integrity.

region type
the kind of DL/I processing environment. The IMS engine uses two categories of
region types: batch regions (DLI or DBB) and online access regions (BMP).

relational database management system
a database management system that organizes and accesses data according to
relationships between data items. The main characteristic of a relational database
management system is the two-dimensional table. Examples of relational database
management systems are DB2, Oracle, SYBASE, and Microsoft SQL Server.

restart
the process of resuming an interrupted program without repeating completed
transactions.

restricted option
a SAS system option that has been installed at your site such that its default setting
cannot be overridden by applications programmers.

return code
a code that is passed to the operating system and that indicates whether a command
or a job step has executed successfully.

root segment
the highest-level segment in a database.

SAS data file
a type of SAS data set that contains data values as well as descriptor information
that is associated with the data. The descriptor information includes information
such as the data types and lengths of the variables, as well as the name of the engine
that was used to create the data. See also SAS data set, SAS data view.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS data view
a type of SAS data set that retrieves data values from other files. A SAS data view
contains only descriptor information such as the data types and lengths of the
variables (columns), plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors’ file
formats. SAS data views can be created by the SAS DATA step and by the SAS SQL
procedure.

SAS library
a collection of one or more files that are recognized by SAS and that are referenced
and stored as a unit. Each file is a member of the library.

298 Glossary

SAS/ACCESS view
a type of file that retrieves data values from files that are stored in other software
vendors’ file formats. You use the ACCESS procedure of SAS/ACCESS software to
create SAS/ACCESS views. See also view descriptor.

search field
a field that is defined to DL/I in the Database Description (DBD) and which can be
used to search for particular segments. A search field does not uniquely identify the
segment.

segment
in a DL/I database, a grouping of related data items in a database structure. The
segment is the unit of data that can be accessed by the IMS engine or by the IMS
DATA step interface.

segment level
the relative distance of a particular segment from the root segment along a
hierarchical path. The segment level is usually represented numerically, with the
root segment at level 1 and its immediate dependents at level 2.

segment occurrence
in a DL/I database, a specific instance in a set of segments that have the same
segment type.

Segment Search Argument
See SSA (Segment Search Argument).

segment type
in a DL/I database, a category of related data elements. There can be multiple
segment occurrences for a particular segment type.

sensitive segment
a segment in a DL/I database that the IMS engine or the IMS DATA step interface
can access. A segment is defined as sensitive for a particular program in the Program
Specification Block (PSB).

sequence field
another term for key field. See key field.

sequential access
a method of file access in which the records are read or written one after the other
from the beginning of the file to the end. Sequential access is the default access mode
that the IMS engine uses to retrieve all segments down one path of a database. In
the SAS/ACCESS interface to IMS, the distinction between sequential access and
random access differs somewhat from that of other programming languages.

siblings
in a hierarchical database, segments that have the same parent segment.

SQL (Structured Query Language)
a standardized, high-level query language that is used in relational database
management systems to create and manipulate database management system
objects. SAS implements SQL through the SQL procedure.

SSA (Segment Search Argument)
the formatted search criteria that are passed to DL/I in order to identify a particular
segment or group of segments to be processed. Multiple SSAs can be specified in one
DL/I call.

status code
a two-byte indicator field that DL/I returns to indicate the relative success of an
attempted call.

Glossary 299

subsystem
a complete DL/I configuration, including the DL/I region controller and service
modules, the DL/I databases, and the IMS engine.

synchronization point
a time at which a) all update commands that have been successfully executed and
applied since the previous synchronization point was established are committed to
the database and b) all DL/I resources that have been held since the previous
synchronization point was established are released. Synchronization points are
established by issuing CHKP calls. By default, the SAS IMS engine generates and
submits a CHKP call at the end of a PROC step or DATA step, whereas the DATA
step interface to IMS generates and submits explicit CHKP calls as coded by the
application logic. Synchronization points can be used to resume the processing of an
interrupted job. See also commit.

twins
segments that represent multiple occurrences of the same segment type under a
single parent.

uncommitted
See commit.

undefined field
a field that is not defined to DL/I in a Database Description (DBD). An undefined
field is neither a sequence field nor a search field. The segment cannot be accessed
by specifying this field to DL/I.

unqualified call
a DL/I call that contains no Segment Search Argument (SSA). See also SSA
(Segment Search Argument).

unqualified SSA
a Segment Search Argument that specifies a segment type only. See also SSA
(Segment Search Argument).

update call
a DL/I call that signals the intent to alter (modify, delete, or add) information in the
database.

update integrity
a characteristic of a database management system in which database access is
controlled so that two programs cannot access a record simultaneously if both
programs are requesting update access. Update integrity guarantees that data is
always current when update access is granted. However, it does not guarantee that
data is always current when read access is granted. See also read integrity.

variable
a column in a SAS data set or in a SAS data view. The data values for each variable
describe a single characteristic for all observations (rows). Each SAS variable can
have the following attributes: name, data type (character or numeric), length,
format, informat, and label. In the ACCESS procedure, variables are created from
the database product’s columns or fields.

view descriptor
a SAS/ACCESS file that defines part or all of the DBMS data that is described by an
access descriptor. See also access descriptor.

300

301

Index

A
ACCDESC= option

ACCESS procedure (IMS) 95
access descriptors 6, 41

creating 18, 42, 98, 101
creating, tools for 121
creating in one PROC step 42
creating in separate PROC steps 44
creating view descriptors from 98
data types in 21
database types in 103
deleting groups 104
deleting items 104
deleting records 104
dropping items from 105
effects of database changes 130
example data 262
inserting groups 107
inserting items 107
inserting records 107
listing items 112
passwords 95
replacing groups 115
replacing items 115
replacing records 115
resetting items 116
selecting items 117
updating 98, 119

ACCESS procedure, IMS 4, 94
database-description statements 99
description 94
editing statements 100
efficient view descriptors 122
introduction 93
invoking 98
options 95
passwords for descriptors 95
syntax 94

add processing 147
ALL argument

LIST statement (ACCESS, IMS) 112
RESET statement (ACCESS, IMS) 117
SELECT statement (ACCESS, IMS) 118

appending IMS data 87
application WHERE expressions 124
ASSIGN statement 101

B
Babbitt, Bruce 122
basic CHKP call 201
batch DL/I subsystem 31
batch mode 7

cataloged procedures 7
DD statements 8

batch region 31
block-level sharing 35, 37
BMPIN_system_option 245
BMPREAD_system_option 242
browsing IMS data 69

FSBROWSE procedure 70
FSVIEW procedure 72
SQL procedure 76
WHERE statement while browsing 73

BY variables
IMS engine and 134

C
call functions 25, 26
CALL= option

DL/I INFILE statement 162
cataloged procedures 7
character set encoding 130
charting data 50
checkpoint IDs 201
child segments 15
CHKP call 201

in IMS/ESA BMP regions 202
CHNG call

to TP PCBs 214
CMD call 208
COB2SAS tool 121
COBOL copybook database definitions 121
combining IMS data

See selecting and combining IMS data
command codes 28, 30
concatenation operator

SSAs 233
CONTENTS procedure

reviewing variables 47
CREATE access descriptor statement 101
CREATE statement

ACCESS procedure (IMS) 101, 102
CREATE view descriptor statement 102
current input source 166
current position indicator 28

302 Index

D
data entry database (DEDB) 20, 197
data modification processing 146

add processing 147
delete processing 146
update processing 147

DATA step interface
See IMS DATA step interface

DATA step views 157
data types 21
database data sets 8
Database (DB) PCB 26
database DBD 122
database description

See DBD (database description)
database-description statements

ACCESS procedure (IMS) 99
database-level sharing 35, 36
database position 28
DATABASE= statement

ACCESS procedure (IMS) 103
database types 20

in access descriptors 103
databases

See IMS databases
See physical databases

DATABASE_statement 103
DATASETS procedure

reviewing variables 47
DB formats 101
DBB regions 31
DBCONTENT= argument

ITEM= statement (ACCESS, IMS) 111
DBD (database description) 17, 19

data types 21
database types 20
for ACCTDBD database 23
for WIRETRAN segment 19

DBD name 103
DBFORMAT= argument

ITEM= statement (ACCESS, IMS) 109
DBMS (IMS) 12
DBMS= option

ACCESS procedure (IMS) 95
DBNAME= option

DL/I INFILE statement 161
DBTYPE= argument

DATABASE= statement (ACCESS, IMS) 103
DD statements 8
DEDB (data entry database) 20, 197
delete processing 146
DELETE statement 104

ACCESS procedure (IMS) 104
deleting IMS data 80
deleting segments 74, 146
dependent segments 14
DEQ call 205
descriptor files 6

defining 41
GROUP keys in 136
updating 119

descriptors
combining segments to define 145
passwords for 95

DL/I calls 25
call functions 26

command codes 30
database position 28
multiple SSAs in DATA step interface 30
PCBs 26
SSAs 28

DL/I FILE statement 176
DL/I INFILE statement 160

options 162
PCB selection options 161

DL/I input buffers 153
DL/I INPUT statement 170

blank statement 188
examples 171, 174
status codes 173
trailing @ 173

DL/I output buffers 153
DL/I PUT statement 176

DLET call 181
example 177
REPL call 178

DLET call 181
DLET call function 26
DLI regions 31
DLIREAD_system_option 242
DROP statement

ACCESS procedure (IMS) 105
DROP_statement 105
dummy fields

for GROUP keys 136

E
editing statements

ACCESS procedure (IMS) 100
engine calls 139

data modification processing 146
data retrieval 139
data retrieval, with secondary index 144

EOF= option
DL/I INFILE statement 166

example data 9, 261
access descriptors 262
creating data sets 269
loading DB2 tables 286
running examples 9
view descriptors 266

execution modes 31
batch DL/I subsystem 31
online DL/I subsystem 33
region types 34

extracting data 123

F
Fast Path DL/I database access 197

FLD call 197
POS call 198

field-level sensitivity 25
field search arguments (FSAs) 197
field types 17
fields 12

defining within record 109
filter notation in ITEM= statement 137
GROUP keys 136
grouping of 14
IMS data 49

Index 303

IMS engine and 135
multiple occurrences of 135
nesting 135
redefined fields 135
segments of varying length 135

filter notation 137
flattened files 132

*U command code 134
FLD call 197
FORMAT= argument

ITEM= statement (ACCESS, IMS) 110
FORMAT statement

ACCESS procedure (IMS) 105
formats

assigning to IMS items 105
DB formats 101

FORMAT_statement 105
FREQ procedure

IMS data 51
FSARC= option

DL/I INFILE statement 163
FSAs (field search arguments) 197
FSBROWSE procedure

browsing IMS data 70
scrolling with 74

FSEDIT procedure
inserting and deleting segments 74
scrolling with 74
updating IMS data 71

FSVIEW procedure
browsing IMS data 72
inserting and deleting segments 74
scrolling with 74
updating IMS data 72

G
GCHART procedure

IMS data 50
GCMD call 209
Generalized Sequential Access Method (GSAM) 21
Get calls 21, 26

I/O PCB and 210
GHN call function 26
GHNP call function 26
GHU call function 26
GN call function 26
GNP call function 26
GROUP BY clause

creating items 63
GROUP keys

dummy fields for 136
in descriptor files 136

GROUP= statement
ACCESS procedure (IMS) 106

groups
adding to access descriptors 107
defining within record 106
deleting from access descriptors 104
replacing in access descriptors 115

GROUP_statement 106
GSAM argument

CREATE statement (ACCESS, IMS) 102
GSAM (Generalized Sequential Access Method) 21
GU call function 26

H
HDAM 20
HIDAM 20
hierarchical database 12
Hierarchical Direct Access Method 20
hierarchical file structure 13
Hierarchical Indexed Direct Access Method 20
Hierarchical Indexed Sequential Access Method 20
Hierarchical Sequential Access Method 20
HISAM 20
HSAM 20

I
I/O PCB 199

Get calls 210
IMS data 49

appending 87
browsing 69, 76
calculating statistics 51
charting 50
deleting 80
fields 49
inserting 80
retrieving 77
selecting and combining 56
updating 69, 76
updating SAS data files with 64, 83
Verson 7 (or later) updates 66

IMS DATA step interface 151
accessing databases 195
DATA step views 157
DL/I FILE statement 176
DL/I INFILE statement 160
DL/I INPUT statement 170
DL/I PUT statement 176
examples 182
Fast Path database access 197
features not supported 5
IMS engine versus 4
multiple SSAs in 30
non-database access calls 199
path calls 182
qualified SSAs 191
restarting update programs 217
SSAs in 232
statement extensions 152
when to use 5
z/OS DL/I system calls 196

IMS databases 12
block-level sharing 37
changing, and effects on descriptors 130
database-level sharing 36
path navigation 16
segment field types 17
segment occurrences 14
segment relationships 15
shared access 34
updating 218, 224, 228

IMS DBMS 12
IMS engine 129, 132

BY variables 134
calls to database 139
DATA step interface versus 4
features not supported 5

304 Index

flattened files 132
missing values 134
special fields 135
when to use 5

IMS/ESA BMP regions
CHKP calls in 202

IMS/ESA BMP system calls 205
CMD 208
DEQ 205
GCMD 209
ROLB 206

IMS/ESA message queue access 210
IMS interface 3, 4
IMSBDCA_system_options 244
IMSBPAGN_system_option 243
IMSBPCPU_system_option 244
IMSBPIN= system option 241
IMSBPNBA_system_option 245
IMSBPOBA_system_option 246
IMSBPOPT_system_option 246
IMSBPOUT= system option 241
IMSBPOUT_system_option 247
IMSBPPAR_system_option 247
IMSBPSTI_system_option 248
IMSBPUPD_system_option 248
IMSDEBUG_system_option 249
IMSDLBKO_system_option 249
IMSDLBUF_system_option 250
IMSDLDBR_system_option 250
IMSDLEXC_system_option 251
IMSDLFMT_system_option 251
IMSDLIRL_system_option 252
IMSDLIRN_system_option 253
IMSDLLOG_system_option 253
IMSDLMON_system_option 254
IMSDLSRC_system_option 254
IMSDLSWP_system_option 255
IMSDLUPD_system_option 255
IMSID= system option 241
IMSID_system_option 256
IMSIOB_system_option 256
IMSREGTP= system option 241
IMSREGTP_system_option 257
IMSSPIE_system_option 257
IMSTEST_system_option 258
IMSWHST= option 29, 124
IMSWHST_system_option 258
indexes

secondary, and data retrieval 144
input buffers

DL/I 153
Input/Output (I/O) PCB 26
Insert calls 21
INSERT statement

ACCESS procedure (IMS) 107
inserting IMS data 80
inserting segments 74
INSERT_statement 107
interface to IMS 3, 4
invocation options 239
ISRT call function 26
ISRT calls 212
ITEM= statement

ACCESS procedure (IMS) 109, 137
items

adding 107

assigning formats to 105
creating 63
deleting 104
dropping 105
listing 112
names 101
renaming 114
replacing 115
resetting 116
selecting 117

ITEM_statement 109

K
KEY= argument

GROUP= statement (ACCESS, IMS) 107
ITEM= statement (ACCESS, IMS) 110

key fields 17
key sensitivity 25

L
LENGTH= option

DL/I INFILE statement 163
LEVEL= argument

GROUP= statement (ACCESS, IMS) 107
ITEM= statement (ACCESS, IMS) 109

LIST statement
ACCESS procedure (IMS) 112

listing items 112
LIST_statement 112
LOG call 203
LRECL= option

DL/I INFILE statement 163

M
main storage database (MSDB) 20, 197
MEANS procedure

IMS data 51
message queue access 210
message segments

inserting 213
PURG calls for 214

missing values
IMS 134

MISSOVER= option
DL/I INFILE statement 166

MODIFY statement
updating IMS data 81

MSDB (main storage database) 20, 197

N
nesting fields 135

O
OBS= option

DL/I INFILE statement 166
observations

IMS data 49
OCCURS= argument

GROUP= statement (ACCESS, IMS) 107
ITEM= statement (ACCESS, IMS) 111

Index 305

online access region 33
online control region 33
online databases 33
online DL/I subsystem 31, 33
OUT= option

ACCESS procedure (IMS) 95
output buffers

DL/I 153
ownership 35

P
parent segments 15
passwords

assigning 96
for descriptors 95
multiple levels of 96

path calls 25, 182
path navigation 16
paths

segments grouped by 15
PCB mask data 27
PCB= option

DL/I INFILE statement 161
PCB selection options 161
PCBF= option

DL/I INFILE statement 163
PCBINDEX= argument

CREATE statement (ACCESS, IMS) 102
PCBNO= option

DL/I INFILE statement 161
PCBs (program communication blocks) 18

Database (DB) PCB 26
DL/I calls 26
Input/Output (I/O) PCB 26

percentages 51
performance

IMS 132
view descriptors and 122

permanent WHERE clause 73
physical databases 18

creating descriptors 18
DBD 19
PSBs 24

POS call 198
printing

view descriptors for 45
PROC ACCESS statement

IMS 95
Program Specification Blocks (PSBs) 24
program views 18

creating descriptors 18
database description 19
PSBs 24

PSBNAME= argument
CREATE statement (ACCESS, IMS) 102

PSBs (Program Specification Blocks) 24
PURG calls 214
PUT function

SSAs 233

Q
qualified calls 28, 29
qualified SSAs 191

QUIT statement
ACCESS procedure (IMS) 113

QUIT_statement 113

R
RANK procedure

IMS data 55
read integrity 35
RECORD= argument

RECORD= statement (ACCESS, IMS) 114
RECORD= statement

ACCESS procedure (IMS) 113
records 12

adding to access descriptors 107
defining fields in 109
defining groups within 106
deleting from access descriptors 104
replacing in access descriptors 115

RECORD_statement 113
recovery logic 224, 228
redefined fields 135
region controllers 31
region types 34
RENAME statement

ACCESS procedure (IMS) 114
RENAME_statement 114
REPL call 178
REPLACE statement

ACCESS procedure (IMS) 115
REPLACE_statement 115
RESET statement

ACCESS procedure (IMS) 116
RESET_statement 116
restrictable options 240
retrieving IMS data

engine calls and 139
secondary index for 144
SQL procedure 77
WHERE statement processing 143

ROLB call 205, 206
ROLL call 204
root segment 14
REPL call function 26

S
SAS/ACCESS interface to IMS 3, 4
SAS data files

updating with IMS data 64, 83
SAS/FSP procedures

browsing and updating IMS data 70
inserting and deleting segments 74
scrolling with 74

SAS names
based on item names 101
generating unique names 119

SASNAME= argument
ITEM= statement (ACCESS, IMS) 110

scrolling
IMS data 74

SEARCH= argument
GROUP= statement (ACCESS, IMS) 107
ITEM= statement (ACCESS, IMS) 110

search fields 17
secondary indexes 144

306 Index

security
IMS security 131
PSBs 25
SAS security 131

SEGLNG= argument
RECORD= statement (ACCESS, IMS) 114

SEGMENT= argument
RECORD= statement (ACCESS, IMS) 114

SEGMENT= option
DL/I INFILE statement 165

segment search arguments
See SSAs (segment search arguments)

segments 12
adding 147
combining, to define descriptors 145
defining 114
deleting 74, 146
dependent segments 14
field types in 17
flattened files 132
grouped by paths 15
IMS data 49
inserting 74
occurrences 14
reading 26
relationships 15
sensitive segments 19
sensitivity 25
sequential dependent 197
source segments 145
target segments 30, 144
type 14
updating 26, 185
variable length 135

SELECT statement
ACCESS procedure (IMS) 117

selecting and combining IMS data 56
SQL procedure 60
WHERE statement 56

selection criteria
for view descriptors 118

SELECT_statement 117
sensitive segments 19
sequence fields 17
sequential dependent segments 197
session options (IMS system options) 239
shared database access 34

block-level 37
considerations for 35
database-level 36

SHISAM 21
SHSAM 21
sibling segments 15
Simple Hierarchical Indexed Sequential Access Method 21
Simple Hierarchical Sequential Access Method 21
source segments 145
SQL procedure

browsing and updating IMS data 76
combining data from various sources 60
creating items with GROUP BY clause 63
inserting and deleting IMS data 80
retrieving and updating IMS data 77
selecting and combining IMS data 60
updating IMS data 79

SSA= option
DL/I INFILE statement 165

SSAs (segment search arguments) 25
changing values, between calls 235
concatenation operator 233
DL/I calls 28
IMSWHST= option 29
in IMS DATA step programs 232
multiple, in DATA step interface 30
PUT function 233
setting conditionally 235
troubleshooting 124

START= option
DL/I INFILE statement 166

statistics, calculating
IMS data 51

status codes
DL/I INPUT statement 173

STATUS= option
DL/I INFILE statement 166

STOPOVER= option
DL/I INFILE statement 166

SUBSET statement
ACCESS procedure (IMS) 118

SUBSET_statement 118
subsetting data

IMS 123, 143
subsetting IF statement

in view descriptors 124
synchronization points 35
system options

current values (IMS) 240
IMS 239, 241
overriding defaults (IMS) 240
specifying (IMS) 239

T
tabular file structure 13
target segments 30, 144
temporary WHERE clause 73
TP PCBs 199

CHNG call to 214
trailing @

DL/I INPUT statement 173
trancode 212
transaction data 64
TSO 8
twin segments 15

U
*U command code 134
undefined fields 17
UNIQUE= statement

ACCESS procedure (IMS) 119
UNIQUE_statement 119
unqualified calls 28
update calls 26, 177
update integrity 35
update processing 147
update programs

restarting 217
UPDATE statement

ACCESS procedure (IMS) 119
UPDATE_statement 119
updating access descriptors 98, 119

Index 307

updating IMS data 69
FSEDIT procedure 71
FSVIEW procedure 72
MODIFY statement 81
SQL procedure 76, 79
WHERE statement while updating 73

updating SAS data files
with IMS data 64

updating view descriptors 98, 119

V
VALIDVARNAME= system option

IMS data 64, 66
variables 13

IMS data 49
reviewing 47

Version 7 (or later) updates 66
VIEW argument

LIST statement (ACCESS, IMS) 112
view descriptor WHERE expressions 123
view descriptors 6, 7, 41

creating 18, 42, 98, 102
creating from access descriptors 98
creating in one PROC step 42
creating in separate PROC steps 44
data types in 21
dropping items from 105
effects of database changes 130
efficiency of 122
example data 266
extracting data 123
failures 130
in SAS programs 45
inefficient WHERE conditions 126

listing items 112

passwords 95

printing data 45

resetting items 117

reviewing variables 47

selecting items for 117

selection criteria for 118

subsetting data 123

subsetting IF statement 124

unacceptable WHERE conditions 126

updating 98, 119

WHERE statement efficiency 125

VIEWDESC= option

ACCESS procedure (IMS) 95

W
WHERE command 73

WHERE conditions

unacceptable 126

WHERE expressions

application WHERE expressions 124

in view descriptors 123

WHERE statement

efficiency of 125

inefficient conditions 126

retrieving data 143

selecting and combining IMS data 56

while browsing or updating IMS data 73

WIRETRAN segment 19

Z
z/OS DL/I system calls 196

Your Turn

We welcome your feedback.

• If you have comments about this book, please send them to
yourturn@sas.com. Include the full title and page numbers (if
applicable).

• If you have comments about the software, please send them to
suggest@sas.com.

SAS® Publishing delivers!
Whether you are new to the workforce or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart.

SAS® Press Series
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from the SAS Press Series. Written by experienced SAS professionals from
around the world, these books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information—SAS documentation. We
currently produce the following types of reference documentation: online help that is built into the software,
tutorials that are integrated into the product, reference documentation delivered in HTML and PDF—free on
the Web, and hard-copy books.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Learning Edition 4.1
Get a workplace advantage, perform analytics in less time, and prepare for the SAS Base Programming
exam and SAS Advanced Programming exam with SAS® Learning Edition 4.1. This inexpensive, intuitive
personal learning version of SAS includes Base SAS® 9.1.3, SAS/STAT®, SAS/GRAPH®, SAS/QC®, SAS/ETS®,
and SAS® Enterprise Guide® 4.1. Whether you are a professor, student, or business professional, this is a
great way to learn SAS.

s u p p o r t . s a s . c o m / L E

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2008 SAS Institute Inc. All rights reserved. 474059_1US.0108

	Contents
	SAS/ACCESS Interface to IMS: Introduction
	Overview of the SAS/ACCESS Interface to IMS
	Introduction to the SAS/ACCESS Interface to IMS
	Purpose of the SAS/ACCESS Interface to IMS
	Using the SAS/ACCESS Interface to IMS
	Three Parts of the SAS/ACCESS Interface to IMS
	How the IMS Engine and DATA Step Interfaces Differ
	When to Use the IMS Engine Interface
	When to Use the IMS DATA Step Interface
	Features Not Supported by the IMS Engine Interface
	Features Not Supported by the IMS DATA Step Interface

	SAS/ACCESS Descriptor Files for IMS
	Using SAS/ACCESS Descriptor Files
	Access Descriptor Files
	View Descriptor Files

	Executing SAS/ACCESS Programs in Batch Mode
	Executing a Cataloged Procedure
	DD Statements

	Executing SAS/ACCESS Programs under TSO
	Overview of SAS/ACCESS Programs under TSO
	Allocating Database Data Sets

	About the Example Data in the Document
	How to Use the Example Data
	Running the Examples in This Document

	IMS Essentials
	Introduction to IMS Essentials
	The IMS DBMS
	Overview of IMS Databases
	Using IMS Databases
	Segment Occurrences
	Segment Relationships
	Path Navigation
	Fields

	Physical Databases and Program Views
	Introduction of Physical Databases and Program Views
	What You Need to Know to Create Descriptors
	Database Description
	DBD for the WIRETRAN Segment
	IMS Database Types
	IMS Data Types
	IMS Data Types in SAS/ACCESS Descriptors
	DBD for the ACCTDBD Database
	Program Specification Block
	Example of a PSB
	Security Options

	DL/I Calls
	Specifying Information in DL/I Calls
	DL/I Call Functions
	Program Communication Block
	Database Position
	Segment Search Arguments
	The IMSWHST= Option for Qualified SSAs
	Multiple SSAs in the DATA Step Interface
	Command Codes

	IMS Execution Modes
	DL/I Subsystems
	Outline of a Batch DL/I Subsystem
	Outline of an Online DL/I Subsystem
	Summary of Region Types

	Shared IMS Database Access
	Sharing Resources
	General Considerations for Sharing Resources
	Database-Level Shared Access
	Block-Level Shared Access

	The IMS Engine Interface: Usage
	Defining SAS/ACCESS Descriptor Files
	Introduction to Defining SAS/ACCESS Descriptor Files
	SAS/ACCESS Descriptor Files Essentials
	Creating and Using Descriptor Files
	Creating Access and View Descriptors in One PROC Step
	Creating Access and View Descriptors in Separate PROC Steps

	Using View Descriptors in SAS Programs
	Example 1: Printing Data
	Example 2: Reviewing Variables

	IMS Data in SAS Programs
	Introduction to Using IMS Data in SAS Programs
	Charting IMS Data
	Calculating Statistics with IMS Data
	Calculating Statistics Using the FREQ Procedure
	Calculating Statistics Using the MEANS Procedure
	Calculating Statistics Using the RANK Procedure

	Selecting and Combining IMS Data
	Methods to Selecting and Combining IMS Data
	Selecting and Combining Data Using the WHERE Statement
	Selecting and Combining Data Using the SAS SQL Procedure
	Combining Data from Various Sources
	Creating New Items with the GROUP BY Clause

	Updating a SAS Data File with IMS Data
	Using a DATA Step to Update a SAS Data File
	Example of VALIDVARNAME=V6

	Example of VALIDVARNAME=V7

	Browsing and Updating IMS Data
	Introduction to Browsing and Updating IMS Data
	Browsing and Updating IMS Data with SAS/FSP Procedures
	Using the SAS/FSP Procedures
	Browsing Data Using the FSBROWSE Procedure
	Updating Data Using the FSEDIT Procedure
	Browsing Data Using the FSVIEW Procedure
	Updating Data Using the FSVIEW Procedure
	Specifying a SAS WHERE Statement While Browsing or Updating Data
	Scrolling with SAS/FSP Procedures
	Inserting and Deleting Segments with SAS/FSP Procedures

	Browsing and Updating IMS Data with the SQL Procedure
	Using the SQL Procedure
	Retrieving and Updating Data with the SQL Procedure
	Updating Data with the SQL Procedure
	Inserting and Deleting Data with the SQL Procedure
	Updating Data with the MODIFY Statement

	Updating SAS Files with IMS Data
	Appending IMS Data with the APPEND Procedure

	SAS/ACCESS Interface to the IMS Engine: Reference
	ACCESS Procedure Reference
	Introduction to ACCESS Procedure Reference
	ACCESS Procedure Syntax for IMS
	Description
	PROC ACCESS Statement Options
	SAS Passwords for SAS/ACCESS Descriptors
	Invoking the ACCESS Procedure
	Database-Description Statements
	Editing Statements
	ACCESS Procedure Statements for IMS
	Tools for Creating IMS Access Descriptors
	Defining Access Descriptors
	COB2SAS Tool
	SAS Macro and DATA Step Code

	Performance and Efficient View Descriptors
	General Information
	Extracting Data Using a View
	Deciding How to Subset Your Data
	View Descriptor WHERE Expression
	Application WHERE Expression
	DATA Step IF Statement
	Combination of Methods
	Writing Efficient WHERE Statements
	Identifying Inefficient SAS WHERE Conditions
	Identifying SAS WHERE Conditions That Are Not Acceptable to IMS

	Advanced User Topics for the SAS/ ACCESS Interface View Engine for IMS
	Introduction to Advanced Topics for the Interface View Engine
	Changing an IMS Database and the Effects on Descriptors
	Changes That Cause Existing View Descriptors to Fail
	Understanding Character Set Encoding
	Ensuring IMS Data Security
	IMS Security
	SAS Security

	Maximizing IMS Performance
	Understanding the IMS Interface
	IMS Interface Concepts
	Understanding the Flattened File Concept
	Using the *U Command Code
	Handling Missing Values
	Using BY Variables
	Handling Special Fields

	IMS Engine Calls to the Database
	Creating the ACCESS Descriptor
	Data Retrieval
	WHERE Statement Processing
	Data Retrieval by Using a Secondary Index
	Combining Segments to Define Descriptors
	Data Modification Processing
	Delete Processing
	Add Processing
	Update Processing

	The IMS DATA Step Interface: Reference
	Overview of the IMS DATA Step Interface
	Introduction to the IMS DATA Step Interface
	DATA Step Statement Extensions
	Overview of DATA Step Extensions
	DL/I Input and Output Buffers
	An Introductory Example of a DATA Step Program

	Example of Using DATA Step Views
	The DL/I INFILE Statement
	Introduction to the DL/I INFILE Statement
	PCB Selection Options
	Other DL/I INFILE Options
	Using the DL/I INFILE Statement

	The DL/I INPUT Statement
	Introduction to the DL/I INPUT Statement
	Example 1: A Get Call
	Using the DL/I INPUT Statement

	The DL/I FILE Statement
	The DL/I PUT Statement
	Introduction to the DL/I PUT Statement
	Example 3: An Update Call
	Using the DL/I PUT Statement
	REPL Call
	Example 4: Issuing REPL Calls
	DLET Call
	Example 5: Issuing DLET Calls

	IMS DATA Step Examples
	Overview of IMS DATA Step Examples
	Example 6: Issuing Path Calls
	Example 7: Updating Information in the CUSTOMER Segment
	Example 8: Using the Blank INPUT Statement
	Example 9: Using the Qualified SSA

	How to Use the IMS DATA Step Interface
	Introduction to Using the IMS DATA Step Interface
	z/OS DL/I System Calls
	Fast Path DL/I Database Access
	Main Storage Databases (MSDB) and Data Entry Databases (DEDB)
	FLD Call
	POS Call

	Non-Database Access Calls
	Using Non-Database Access Calls
	I/O PCBs
	TP PCBs
	Feedback Data
	Basic CHKP Call
	CHKP Calls in IMS/ESA BMP Regions
	LOG Call
	ROLL Call
	ROLB Call
	IMS/ESA BMP System Calls
	IMS/ESA Message Queue Access

	Advanced Topics for the IMS DATA Step Interface
	Introduction to Advanced Topics for the IMS DATA Step Interface
	Restarting an Update Program
	Building Synchronization Points
	Example 1: Updating a Database
	Example 2: Incorrectly Updating a Database without Recovery Logic
	Example 3: Correctly Updating a Database with Recovery Logic

	SSAs in IMS DATA Step Programs
	Using the SSA= Option
	The Concatenation Operator
	The PUT Function
	Setting SSAs Conditionally
	Changing SSA Variable Values between Calls

	Appendixes
	SAS System Options for IMS Databases
	Introduction to SAS System Options for IMS Databases
	Specifying System Options
	Invocation and Session Options
	Restrictable Options
	Displaying the Current Values of the Options
	Overriding Option Defaults
	Most Frequently Altered Options

	SAS System Options for IMS
	Quick Reference for Options

	Example Data
	Introduction to IMS Example Data
	Access Descriptors for IMS
	ACCTDBD Database Access Descriptor
	EMPLINF2 Database Access Descriptor
	WIRETRAN Database Access Descriptor

	View Descriptors Based on the Access Descriptors for IMS
	ACCTDBD Database View Descriptors
	EMPLINF2 Database View Descriptors
	WIRETRAN Database View Descriptor

	Creating SAS Data Sets for IMS
	MYDATA.BIRTHDAY Data Set
	MYDATA.CHECKS Data Set
	MYDATA.CHGDATA Data Set
	MYDATA.CHKCRED Data Set
	MYDATA.CHKDEBD Data Set
	MYDATA.EMPLDATA Data Set
	MYDATA.INITSEG Data Set
	MYDATA.PHONENUM Data Set
	MYDATA.SAVCRED Data Set
	MYDATA.SAVDEBD Data Set
	MYDATA.CUSTOMER Data Set
	MYDATA.NEWADDR Data Set
	VER6.SSNUMS Data Set

	SAS Statements for Loading DB2 Table BANKCHRG
	Creating SAS Data Set MYDATA.BANK
	Loading DB2 Table BANKCHRG from MYDATA.BANK
	DB2 View Descriptor for BANKCHRG

	Recommended Reading
	Recommended Reading

	Glossary
	Index

