
SAS/ACCESS® 9.3 DATA Step
Interface to CA-IDMS
Reference

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2011. SAS/ACCESS® 9.3 DATA Step Interface to CA-IDMS:
Reference. Cary, NC: SAS Institute Inc.

SAS/ACCESS® 9.3 DATA Step Interface to CA-IDMS: Reference

Copyright © 2011, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hardcopy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book:Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is
subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer Software-Restricted Rights
(June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

Electronic book 2, July 2013

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For
more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at support.sas.com/
publishing or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

http://support.sas.com/publishing
http://support.sas.com/publishing

Contents

Recommended Reading . v

Chapter 1 • Overview of the SAS/ACCESS Interface to CA-IDMS . 1
Introduction to SAS/ACCESS DATA Step Interface to CA-IDMS 1
Features of the DATA Step Interface . 1
Prerequisites for Using This Document . 2
Example Data in the Interface to CA-IDMS Document . 2

Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS . 3
Overview of the DATA Step Statement Extensions . 4
Creating DATA Step Views . 8
Using the CA-IDMS INFILE Statement . 10
Guidelines for Using the CA-IDMS INFILE Statement and DML Function Calls 14
Specifying DML Function Calls . 15
Using the CA-IDMS INPUT Statement . 33
Example: Traversing a Set . 38
Example: Using the Trailing @ and the INPUT Statement with No Arguments 43

Chapter 3 • Examples of SAS/ACCESS DATA Step Programs . 47
Introduction to Examples of SAS/ACCESS DATA Step Programs 47
Statements Common to All SAS/ACCESS DATA Step Examples 47
Performing an Area Sweep . 48
Navigating Multiple Set Relationships . 52
Using a SAS Data Set as a Transaction File . 58
Using Information in a SAS Data Set to Locate Records . 63
Supplying Transaction Information and Navigating Set Occurrences 67
Reestablishing Currency on a Record . 71
Using RETURN and GET across Executions of the DATA Step 77

Appendix 1 • CA-IDMS Essentials . 83
Introduction to IDMS Essentials . 83
Data Dictionaries and the DDS . 83
CA-IDMS Networks and Sets . 84
CA-IDMS Documentation . 85

Index . 87

iv Contents

Recommended Reading

• SAS Language Reference: Concepts

• SAS Data Set Options: Reference

• SAS Statements: Reference

• SAS System Options: Reference

• Base SAS Procedures Guide

• SAS/GRAPH: Reference

• SAS/CONNECT User's Guide

• SAS Companion for z/OS

For a complete list of SAS books, go to support.sas.com/bookstore. If you have
questions about which titles you need, please contact a SAS Book Sales Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-3228
Fax: 1-919-677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

v

mailto:sasbook@sas.com
http://support.sas.com/bookstore

vi Recommended Reading

Chapter 1

Overview of the SAS/ACCESS
Interface to CA-IDMS

Introduction to SAS/ACCESS DATA Step Interface to CA-IDMS 1

Features of the DATA Step Interface . 1

Prerequisites for Using This Document . 2

Example Data in the Interface to CA-IDMS Document . 2

Introduction to SAS/ACCESS DATA Step Interface
to CA-IDMS

SAS/ACCESS software provides a DATA step interface between SAS and Computer
Associates Integrated Data Management System (CA-IDMS). Through the DATA step,
you can use INPUT statements and special extensions in the INFILE statement to access
or extract data from the CA-IDMS database.

Note: The DATA step interface enables only Read access to CA-IDMS data. You
cannot update CA-IDMS data through the SAS/ACCESS interface to CA-IDMS.

This document describes the DATA step interface and how to write CA-IDMS INFILE
and INPUT statements.

Features of the DATA Step Interface
The following list describes the major features of the DATA step interface:

• The DATA step interface enables you to access CA-IDMS data by traversing the
network using DML program functions calls. You cannot access data through
Computer Associate's Logical Record Facility (LRF).

• The DATA step interface is a programming interface. You do not have to create
descriptor files to retrieve the CA-IDMS data requested by your application.

• Coding DATA step programs requires knowledge of the database that is being
accessed and the ability to write host-level calls to retrieve CA-IDMS data. In order
to provide transparent access to CA-IDMS data, you can store compiled DATA step
programs as SAS DATA step views.

1

Prerequisites for Using This Document
This document assumes that you understand the SAS DATA step and the statements that
are used in the DATA step. It also assumes that you know how to enter standard SAS
INFILE and INPUT statements. For complete information about DATA steps, INFILE
statements, and INPUT statements, see SAS Statements: Reference.

There are many references to CA-IDMS processing in this document, such as CA-IDMS
functions and status codes. If you are not familiar with the CA-IDMS information, see
the appropriate Computer Associates documentation. You should also read CA-IDMS
Essentials on page 83, which gives an overview of CA-IDMS concepts that are
important in writing DATA step programs for CA-IDMS.

Example Data in the Interface to CA-IDMS
Document

This document contains several examples that demonstrate how to use the DATA step
interface to CA-IDMS. These examples use the CA-IDMS data contained in the
EMPSCHM schema of the Employee database, which is the sample database Computer
Associates ships with their CA-IDMS product. The examples in this document use data
contained in the subschema EMPSS01, which is part of the EMPSCHM schema. For
more information about the Employee database, see your CA-IDMS documentation.

Note: You cannot name a fileref for a task that is the same name as the subschema.

The SAS/ACCESS software sample library file IDMSDS contains the SAS code used in
the examples in this document.

2 Chapter 1 • Overview of the SAS/ACCESS Interface to CA-IDMS

Chapter 2

Using the SAS/ACCESS Interface
to CA-IDMS

Overview of the DATA Step Statement Extensions . 4
Introduction to the CA-IDMS INFILE and CA-IDMS INPUT Statements 4
CA-IDMS Record Currency . 5
CA-IDMS Input Buffer . 5
Introductory Example of a DATA Step Program . 5

Creating DATA Step Views . 8

Using the CA-IDMS INFILE Statement . 10
Definition of the CA-IDMS INFILE STATEMENT . 10
CA-IDMS Environment Options . 11
Other CA-IDMS Options . 11
Standard INFILE Statement Options . 13
Summary of CA-IDMS INFILE Statement Options . 13

Guidelines for Using the CA-IDMS INFILE Statement and
DML Function Calls . 14

Specifying DML Function Calls . 15
Options for CA-IDMS Function Calls . 15
ACCEPT Function Call . 15
BIND Function Call . 17
FIND and OBTAIN Function Calls . 17
FIND/OBTAIN CALC Function . 18
FIND/OBTAIN CURRENT Function . 19
FIND/OBTAIN DBKEY Function . 20
FIND/OBTAIN OWNER Function . 21
FIND/OBTAIN SORT KEY Function . 22
FIND/OBTAIN WITHIN SET or AREA Function . 23
GET Function Call . 25
IF Function Call . 26
RETURN Function Call . 27
Summary of Options Needed to Generate CA-IDMS Function Calls 29
How the CA-IDMS Function Call Is Generated . 32
Using Multiple Sources of Input . 33

Using the CA-IDMS INPUT Statement . 33
Definition of the CA-IDMS INPUT Statement . 33
The Null INPUT Statement . 35
Holding Records in the Input Buffer . 35
Call Status Codes . 36
Handling End of File . 38

Example: Traversing a Set . 38

3

Example: Using the Trailing @ and the INPUT Statement with No Arguments . . 43

Overview of the DATA Step Statement Extensions

Introduction to the CA-IDMS INFILE and CA-IDMS INPUT Statements
Special SAS extensions to the standard SAS INFILE statement enable you to access CA-
IDMS data in a SAS DATA step. The extended statement is referred to as the CA-IDMS
INFILE statement and its corresponding INPUT statement is referred to as the CA-
IDMS INPUT statement. The CA-IDMS INFILE and CA-IDMS INPUT statements
work together to generate and issue calls to CA-IDMS. A CA-IDMS DATA step can
contain standard SAS statements as well as the SAS statements that are used with the
SAS/ACCESS interface to CA-IDMS.

The CA-IDMS INFILE statement defines to SAS the parameters that are needed to build
CA-IDMS calls. The CA-IDMS INFILE statement performs the following tasks:

• names the subschema

• names SAS variables to contain the following information:

• the dictionary name

• the database name

• the node name (for distributed DBMS)

• CA-IDMS functions (for example, OBTAIN or FIND)

• the area name

• the set name

• the record name

• the sort field

• the database key

• the CALC key

• the key offset

• the key length

• the status returned by the call

When it is executed, the CA-IDMS INPUT statement formats and issues the CA-IDMS
function call using the parameters specified in the CA-IDMS INFILE statement.

The CA-IDMS INFILE statement is required in any DATA step that accesses a CA-
IDMS database because the special extensions of the CA-IDMS INFILE statement
specify the variables that set up the CA-IDMS calls. When a CA-IDMS INFILE
statement is used with a CA-IDMS INPUT statement, the database function calls are
issued.

The syntax and usage of the CA-IDMS INFILE and INPUT statements are described in
detail later in this section.

4 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

CA-IDMS Record Currency
You need to understand the concept of currency before using the DATA step interface to
CA-IDMS. CA-IDMS keeps track of the most recently accessed record by its database
location or db-key. As each record is accessed, it becomes current for the run-unit,
record type, set, or area. Some DML calls require that certain currencies are established
before the call is issued. See your CA-IDMS documentation for more information about
currency.

CA-IDMS Input Buffer
A buffer is allocated by SAS as an input area for data retrieval. The length of this buffer
is specified by the LRECL= option in the CA-IDMS INFILE statement. The input buffer
is formatted by CA-IDMS in the same way an input area for any CA-IDMS program is
formatted.

The data INFORMATS specified in the CA-IDMS INPUT statement must match the
original data format. This information can be obtained from CA-IDMS Integrated Data
Dictionary (IDD) or from a COBOL or Assembler copy library, source programs, a SAS
macro library, or other documentation sources. Database Administrator (DBA) staff at
your installation can help you find the segment data formats you need.

Introductory Example of a DATA Step Program
The following example is a simple DATA step program that reads record occurrences
from a CA-IDMS database and creates a SAS data set. Next, the program processes the
SAS data set with PROC PRINT.

The example accesses the EMPLOYEE database with the subschema EMPSS01. This
subschema enables access to all of the DEPARTMENT records. This example uses the
IDMS option in the INFILE statement, which tells SAS that this particular external file
reference is for a CA-IDMS database.

The numbers in the program correspond to the numbered comments following the
program.

1 data work.org_department;
 retain iseq;
2 infile empss01 idms func=func1 record=recname
 area=iarea sequence=iseq errstat=err
 set=iset;

 /* BIND the DEPARTMENT record */
3 if_n_ = 1 then do;
 func1 = 'BIND';
 recname = 'DEPARTMENT';
4 input;
 if (err ne '0000') then go to staterr;
 iseq = 'FIRST';
 end;

 /* Now get the DEPARTMENT records by issuing */
 /* OBTAIN for DEPT record and test for success */

 func1 = 'OBTAIN';

Overview of the DATA Step Statement Extensions 5

 recname = 'DEPARTMENT';
 iarea = 'ORG-DEMO-REGION';
5 input @;
6 if (err ne '0000' and err ne '0307') then go to
 staterr;
 if err eq '0307' then do;
 error = 0;
 /* No more DEPT records so STOP */
 stop;
 end;
7 input
 @1 department_id 4.0
 @5 department_name $char45.
 @50 department_head 4.0;

8 iseq = 'NEXT';
9 return;
 staterr:
10 put @1 'WARNING: ' @10 func1 @17
 'RETURNED ERR =' @37 err;
 atop;
 end;
 run;

11 proc print data=work.org_department;
 run;

1 The DATA statement references a temporary SAS data set called Org_Department,
which is opened for output.

2 The INFILE statement tells SAS to use the EMPSS01 subschema. The IDMS option
tells SAS that EMPSS01 is a CA-IDMS subschema instead of a fileref. This
statement also tells the CA-IDMS interface to use the named SAS variables as
follows:

• FUNC1 to store the function type

• RECNAME to store the record name

• IAREA to store the area name

• ISEQ to store the function call sequence information

• ISET to store the set name

The CA-IDMS INFILE statement also tells the interface to store the error status from
the call in ERR.

3 The first time through the DATA step, all CA-IDMS records that will be accessed
must be bound to CA-IDMS. To bind the DEPARTMENT record type, the program
sets FUNC1 to BIND and RECNAME to DEPARTMENT.

4 The CA-IDMS INPUT statement uses the values in the SAS variables FUNC1 and
RECNAME to generate the first call to CA-IDMS. In this example, the call
generated is a BIND for the DEPARTMENT record. All records must be bound to
CA-IDMS before any data retrieval calls are performed. A null INPUT statement is
used because the BIND function does not retrieve any CA-IDMS data.

5 This INPUT statement also uses the values in the SAS variables FUNC1 and
RECNAME, along with the values in ISEQ and IAREA to generate an OBTAIN
FIRST DEPARTMENT RECORD IN AREA ORG-DEMO-REGION call. However,

6 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

no data is moved into the program data vector because no variables are defined in the
INPUT @; statement. The call holds the contents of the input buffer and enables the
DATA step to check the call status that is returned from CA-IDMS.

6 The program examines the status code returned by CA-IDMS. If CA-IDMS returns
0000, then the program proceeds to the next INPUT statement. If CA-IDMS does not
return 0000 or 0307, then the program branches to the error routine.

7 When this INPUT statement executes, data is moved from the input buffer into the
program data vector.

8 The ISEQ value is changed to NEXT to generate an OBTAIN NEXT
DEPARTMENT RECORD IN AREA ORG-DEMO-REGION.

9 For the subsequent iterations of the DATA step, the RETURN statement causes
execution to return to the beginning of the DATA step.

10 For any unexpected status codes, a message is written to the SAS log and the DATA
step stops.

11 The PRINT procedure prints the contents of the Work.Org-Department data set.

The following output shows the SAS log for this example.

Output 2.1 SAS Log for Introductory DATA Step Program

 1 data work.org_department;
 2 infile empss01 idms func=func1 record=recname area=iarea
 3 sequence=iseq errstat=err set=iset;
 4
 5 err = '0000';
 .
 .
 .
 37 end;
 38 run;

 NOTE: The infile EMPSS01 is:
 Subschema=EMPSS01
 NOTE: 11 records were read from the infile EMPSS01.
 The minimum record length was 0.
 The maximum record length was 56.
 NOTE: The data set WORK.ORG_DEPARTMENT has 9 observations and 3 variables.
 NOTE: The DATA statement used 0.22 CPU seconds and 2629K.
 39 proc print data=work.org_department;
 40 run;

 NOTE: The PROCEDURE PRINT printed page 1.

The following output shows the results of this example.

Note: The log shows that 11 records were read from the infile, but the following results
show only 9 observations. Every time SAS encounters a CA-IDMS INPUT
statement that submits a call, it increments by one an internal counter that keeps
track of how many record occurrences are read from the database. The count is
printed to the SAS log as a NOTE. Because this program contains CA-IDMS INPUT
statements that do not retrieve data, this count can be misleading.

Overview of the DATA Step Statement Extensions 7

Output 2.2 Results of Introductory DATA Step Program

 The SAS System
 Obs department_id department_name department_
 head
 1 2000 ACCOUNTING AND PAYROLL 11
 2 3200 COMPUTER OPERATIONS 4
 3 5300 BLUE SKIES 321
 4 5100 BRAINSTORMING 15
 5 1000 PERSONNEL 13
 6 4000 PUBLIC RELATIONS 7
 7 5200 THERMOREGULATION 349
 8 3100 INTERNAL SOFTWARE 3
 9 100 EXECUTIVE ADMINISTRATION 30

Creating DATA Step Views
The preceding introductory DATA step example can be made into a DATA step view. A
DATA step view is a SAS data set of type VIEW that contains a definition of the data
rather than containing the physical data. For CA-IDMS, a DATA step view is a
compiled version of statements that, when executed, access and retrieve the data from
CA-IDMS.

A DATA step view is a stored SAS file that you can reference in other SAS tasks to
access data directly. A view's input data can come from one or more sources, including
external files and other SAS data sets. Because a DATA step view only reads (opens for
input) other files, you cannot update the view's underlying data.

Note: You cannot name a fileref for a task that has the same name as the CA-IDMS
subschema.

The following DATA step code is part of a SAS macro that is invoked twice to create
two DATA step views. When the DATA step views are referenced in the SET
statements of the subsequent DATA step executions, DEPARTMENT records are read
from the CA-IDMS database and selected record data values are placed in two SAS data
sets. Then, each SAS data set is processed with PROC PRINT.

The numbers in the program correspond to the numbered comments following the
program.

1 %macro deptview(viewname=,p1=,p2=,p3=);
2 data &viewname / view &viewname;
3 keep &p1 &p2 &p3;
 retain iseq;
 infile empss01 idms func=func1 record=recname
 area=iarea sequence=iseq errstat=err
 set=iset;

 /* BIND the DEPARTMENT record */
 if _n_ eq 1 then do;
 func1 = 'BIND';
 recname = 'DEPARTMENT';
 input;
 iseq = 'FIRST';
 end;

8 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

 /* Now get the DEPARTMENT records */
 func1 = 'OBTAIN';
 recname = 'DEPARTMENT';
 iarea = 'ORG-DEMO-REGION';
 input @;
 if (err ne '0000' and err ne '0307') then go to
 staterr;
 if err eq '0307' then do;
 error = 0;
 /* No more DEPT records so STOP */
 stop;
 end;
 input
 @1 department_id 4.0
 @5 department_name $char45.
 @50 department_head 4.0;
 iseq = 'NEXT';
 return;
 staterr:
 put @1 'WARNING: ' @10 func1 @17
 'RETURNED ERR = '@37 err;
 stop;
4 %mend;
5 %deptview(viewname=work.deptname , p1=DEPARTMENT_ID,
 p2=DEPARTMENT_NAME);
6 %deptview(viewname=work.depthead , p1=DEPARTMENT_ID,
 p2=DEPARTMENT_HEAD);

 options linesize=132;
7 data work.deptlist;
 set work.deptname;
8 proc print data=work.deptlist;
 title2 'DEPARTMENT NAME LIST';
9 data work.headlist;
 set work.depthead;
10 proc print data=work.headlist;
 title2 'HEADS OF DEPARTMENTS LIST';

 run;

1 %MACRO defines the start of the macro DEPTVIEW, which contains 4 parameter
variables: one required and three input overrides. VIEWNAME is required; it is the
name of the DATA step view. VIEWNAME can be overridden at macro invocation.
The overrides are P1, P2, and P3. These overrides might not be specified, but one
must be specified to avoid a warning message.

P1
name of the first data item name to keep.

P2
name of the second data item name to keep.

P3
name of the third data item name to keep.

Three data items are allowed because there are 3 input fields in the CA-IDMS
INPUT statement for the database.

Creating DATA Step Views 9

2 The DATA statement specifies the DATA step view name.

3 The KEEP statement identifies the variables that are available to any task that
references this input DATA step view.

4 %MEND defines the end of macro DEPTVIEW.

5 %DEPTVIEW invokes the macro and generates a DATA step view named
Work.DeptName that, when referenced as input, supplies observations containing
values for the variables DEPARTMENT_ID and DEPARTMENT_NAME.

6 %DEPTVIEW invokes the macro and generates a DATA step view named
Work.DeptHead that, when referenced as input, supplies observations containing
values for the variables DEPARTMENT_ID and DEPARTMENT_HEAD.

7 Data set Work.DeptList is created using the DATA step view Work.DeptName as
input.

8 PROC PRINT prints Work.DeptList.

9 Data set Work.HeadList is created using the DATA step view Work.DeptHead as
input.

10 PROC PRINT prints Work.HeadList.

Using the CA-IDMS INFILE Statement

Definition of the CA-IDMS INFILE STATEMENT
If you are unfamiliar with the standard INFILE statement, see SAS Statements:
Reference for more information.

A standard INFILE statement specifies an external file to be read by an INPUT
statement. A CA-IDMS INFILE statement specifies a subschema, which in turn
identifies the CA-IDMS database, records, and elements to be accessed with CA-IDMS
calls. Special extensions in the CA-IDMS INFILE statement specify SAS variables and
constants that are used to build a CA-IDMS call and to handle the data returned by the
call. A subset of the standard INFILE statement options can also be specified in a CA-
IDMS INFILE statement.

Use the following syntax when you issue a CA-IDMS INFILE statement:

INFILE SUBSCHname IDMS <options>;

SUBSCHname
specifies the name of the subschema used to communicate with CA-IDMS in the
current DATA step. A subschema name is required and must immediately follow
INFILE. (A standard INFILE statement would specify a fileref in this position.) You
can open only one subschema per DATA step.

IDMS
tells SAS that this INFILE statement refers to a CA-IDMS database. IDMS is
required and must follow the subschema name.

options
usually define SAS variables that contain CA-IDMS information used to generate
DML calls. These variables are not added automatically to a SAS output data set
(that is, they have the status of variables that are dropped). To include the variables
in an output SAS data set, create separate variables and assign values to them. The

10 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

variables do not need to be predefined before specification in the CA-IDMS INFILE
statement. SAS defines them automatically with the correct type and length. The
following sections describe the options that are valid in the INFILE statement.

CA-IDMS Environment Options
The following options affect how the bind-run call is generated. All of the environment
options are optional. If any of the next four options' values should change during the
execution of the DATA step, a finish call is executed, followed by a new bind-run call.

DANAME=variable
specifies a SAS variable that contains the logical CA-IDMS database name, as
defined in the database name table.

DANODE=variable
specifies a SAS variable that contains the DC/UCF of CA-IDMS where the database
is defined. Use this option only if you are running a Distributed Database System.

DCNAME=variable
specifies a SAS variable that contains the name of the CA-IDMS dictionary where
the subschema is defined. Use this option only if you are using a subschema that is
defined in a dictionary other than the default dictionary.

DCNODE=variable
specifies a SAS variable that contains the DC/UCF system needed to process the
database requests. Use this option only if you are running a Distributed Database
System.

Other CA-IDMS Options
The following list describes additional options that are available only in the CA-IDMS
INFILE statement:

AREA=variable
names a SAS variable that contains the name of the CA-IDMS AREA that you want
to access. The AREA must be included in the subschema that was specified in the
INFILE statement.

DBKEY=variable
names a SAS variable to which the database record's key, db-key, is assigned after
successful execution of an ACCEPT or a RETURN call to the database. A record's
db-key can then be used to access a record directly. In this case, the DBKEY variable
contains the db-key of the record that you want to access directly, along with FIND
or OBTAIN in the FUNC= variable.

ERRSTAT=variable
names a SAS variable to which the CA-IDMS call status is assigned after each CA-
IDMS call. If ERRSTAT= is not specified, call status codes are not returned. The
variable is a character variable with a length of 4.

It is highly recommended that you check the call status codes that CA-IDMS returns,
and this option provides a convenient way to do so. (See “Call Status Codes” on
page 36 for more information about checking call statuses in CA-IDMS DATA
step programs.)

FUNC=variable
names a SAS variable that contains the CA-IDMS call function that is used when the
CA-IDMS INPUT statement is executed. The variable must be assigned a valid CA-

Using the CA-IDMS INFILE Statement 11

IDMS call function code before a CA-IDMS INPUT statement is executed. The
value of the FUNC= variable can be changed between calls. The valid function calls
are BIND, FIND, OBTAIN, ACCEPT, GET, IF, and RETURN. Each of these
function calls is described in “Specifying DML Function Calls” on page 15.

IKEY=variable
specifies a SAS variable that contains the CALC KEY. Owner records of a set can be
predefined to have a CALC key. Using the CALC key enables direct access to the
owner records. The IKEY option is used with the IKEYLEN and KEYOFF options.

IKEYLEN=variable
specifies a SAS variable that contains the length of the CALC key. The SAS variable
for the IKEYLEN option is defined as a numeric variable.

KEYOFF=variable
specifies a numeric SAS variable that is set to the position of the CALC key within
the CA-IDMS record.

LRECL=length
specifies the length of the SAS buffers that are used as I/O areas when CA-IDMS
calls are executed. The length must be greater than or equal to the length of the
longest record accessed. If LRECL= is not specified, the default buffer length is
1000 bytes. Note that the LRECL option on a statement overrides the LRECL system
option. See “CA-IDMS Input Buffer” on page 5 for more information.

RECORD=variable
specifies a SAS variable that contains the name of the CA-IDMS record type that
you want to access. The record type must be included in the subschema that was
specified in the INFILE statement.

SEQUENCE=variable
names a SAS variable that contains the requested record location within the set or
area. This variable can also establish currency and/or determine the direction of the
traversal. Valid values for the SEQUENCE SAS variable are:

• NEXT

• FIRST

• LAST

• PRIOR

• nth

• CURRENT

• OWNER

• DUP

• USING

SET=variable
names a SAS variable that contains the name of the CA-IDMS set that you want to
access. The set must be included in the subschema that was specified in the INFILE
statement.

SORTFLD=variable
names a SAS variable that contains the sort control element to be used in searching
the sorted set. If the FUNC= variable contains RETURN, SORTFLD= will contain
the record's symbolic key, after successful completion of the call to CA-IDMS.

12 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

Standard INFILE Statement Options
The following standard INFILE statement options can be specified in a CA-IDMS
INFILE statement:

OBS=n
specifies, in a CA-IDMS DATA step program, the maximum number of CA-IDMS
function calls to execute. This number includes INPUT statements that do not
retrieve data, such as BIND.

STOPOVER
stops processing if the record returned to the input buffer does not contain values for
all the variables that are specified in the CA-IDMS INPUT statement.

OBS= and STOPOVER are the only standard INFILE options that can be specified in a
CA-IDMS INFILE statement.

One other standard INFILE statement option, the MISSOVER option, is the default for
CA-IDMS INFILE statements and does not have to be specified. The MISSOVER
option prevents SAS from reading past the current record data in the input buffer if
values for all variables specified by the CA-IDMS INPUT statement are not found.
Variables for which data is not found are assigned missing values. Without the default
action of the MISSOVER option, SAS would issue another function call any time the
INPUT statement execution forced the input pointer past the end of the record.

See SAS Statements: Reference for complete descriptions of these options.

Summary of CA-IDMS INFILE Statement Options
The following table summarizes the CA-IDMS INFILE statement options.

Table 2.1 Summary of CA-IDMS INFILE Statement Options

Option Specifies

AREA= the variable that contains the CA-IDMS area name.

DANAME= the variable that contains database to be accessed by the run unit.

DANODE= the variable that contains the central version of CA-IDMS where
the database resides.

DBKEY= the variable that contains a database record's key.

DCNAME= the variable that contains the name of the CA-IDMS dictionary
where the subschema is defined.

DCNODE= the variable that contains the DC/UCF system needed to process
the database requests.

ERRSTAT= the variable to which the CA-IDMS error status is assigned after
each CA-IDMS call.

FUNC= the variable that contains the CA-IDMS call function used when
a CA-IDMS INPUT statement is executed.

Using the CA-IDMS INFILE Statement 13

Option Specifies

IKEY= the variable that contains the value of the CALC KEY.

IKEYLEN= the variable that contains the length of the CALC key.

KEYOFF= the variable that is set to the position of the CALC key within the
CA-IDMS record.

LRECL= the length of the SAS buffers used as I/O areas when CA-IDMS
calls are executed.

<MISSOVER> that SAS does not read past the current record data in the input
buffer if values for all variables specified by the CA-IDMS
INPUT statement are not found. Specified by default.

OBS= the maximum number of CA-IDMS function calls to be issued by
the DATA step.

RECORD= the variable that contains the name of the CA-IDMS record that
you want to access.

SEQUENCE= the variable that contains the requested record location within the
set or area, establishes currency, and determines the direction of
the traversal.

SET= the variable that contains the name of the CA-IDMS set that you
want to access.

SORTFLD= the variable that contains the value of the sort-control element to
be used in searching the sorted set.

STOPOVER that SAS stops processing if the record returned to the input
buffer does not contain values for all variables specified in the
CA-IDMS INPUT statement.

Guidelines for Using the CA-IDMS INFILE
Statement and DML Function Calls

You access CA-IDMS records and sets, one record at a time, using the CA-IDMS
INFILE and INPUT statements.

By specifying options in the INFILE statement, you can generate navigational DML
calls to CA-IDMS. To issue the appropriate DML calls, you need a thorough knowledge
of the database structure.

The CA-IDMS access method that you need to use depends on how the sets were
defined to the database. The access methods are CALC, CURRENT, DBKEY, OWNER,
SORT KEY, or WITHIN.

The DATA step interface determines what type of access method to generate the calls
for, based on the DML function call and options that you specify in the INFILE

14 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

statement. Valid DML functions are OBTAIN, FIND, BIND, ACCEPT, GET, IF, and
RETURN. The OBTAIN and GET functions are the only functions that retrieve a
record's contents from the database.

Specifying DML Function Calls

Options for CA-IDMS Function Calls
The following sections describe which options to use to issue each of the CA-IDMS
function calls: ACCEPT, BIND, FIND, OBTAIN, GET, IF, and RETURN.

Each of the following sections shows the required and optional information that needs to
be specified in INFILE statement option variables. The INFILE statement option
variables are SAS variables assigned in the INFILE statement.

For example, to generate the ACCEPT CURRENCY function call, you must first assign
INFILE statement option variables by using FUNC=, RECORD=, and SEQUENCE=.
Then you can give the variables the values ACCEPT, DEPARTMENT, and CURRENT,
respectively. See the example below for a detailed description of the ACCEPT
CURRENCY function call.

Note: The values of INFILE statement option variables remain set and are used for each
subsequent function call unless you override or reassign their values.

ACCEPT Function Call
The ACCEPT db-key statement moves the db-key of the current record to the DBKEY=
option variable that you have defined in the CA-IDMS INFILE statement. After
accepting the db-key, you can use the FIND or OBTAIN db-key statements to access
records directly by using the db-key that you saved from the ACCEPT db-key function
call.

The db-key is a unique 4-byte identifier assigned to a record when the record is stored in
the database. The db-key remains unchanged until the record is erased or the database is
unloaded and reloaded. Any record in the subschema can be accessed directly using its
db-key, regardless of its location.

Note: If other function calls to CA-IDMS are made before you want to use the db-key
again, it must be copied into another variable. If the db-key is not needed for the next
function call, it must be blanked out, or its value is used in the function call. This
produces unexpected results.

To generate the ACCEPT CURRENCY <record-name | set | area> INTO DBKEY
function call, specify these options:

• FUNC= ACCEPT

• DBKEY= contains the current record's DBKEY

• SEQUENCE= CURRENT | NEXT | PRIOR | OWNER.

And specify one of these options:

• RECORD= the IDMS record name

• SET= the IDMS set name

• AREA= the area the record participates in

Specifying DML Function Calls 15

The following example shows the ACCEPT CURRENCY function call for the
DEPARTMENT record. The numbers in the program correspond to numbered
comments following the program.

 infile empss01 idms func=func1 record=rec1
 dbkey=key1 errstat=err sequence=seq1;
 .
 .
 .
1 func1 = 'ACCEPT';
2 rec1 = 'DEPARTMENT';
3 seq1 = 'CURRENT';
 input;
 if err eq '0000' then do
4 put @1 'DBKEY OF RECORD = ' @19 key1;
 .
 .
 .

1 FUNC1 is assigned the value of ACCEPT.

2 REC1 is assigned the record name DEPARTMENT because you want the db-key of
this record. Before you can issue an ACCEPT function call for a specific record, you
must first establish currency on the record.

3 SEQ1 is set to CURRENT to indicate that you want the db-key of the
DEPARTMENT record that is current of the run unit.

4 After successful execution of the ACCEPT function call, KEY1 contains the db-key
for the current DEPARTMENT record. The PUT statement prints the value of KEY1
on the SAS log.

The following example shows the ACCEPT NEXT function call for the DEPT-
EMPLOYEE set. The numbers in the program correspond to the numbered comments
following the program.

 infile empss01 idms func=func1 set=set1
 dbkey=key1 errstat=err sequence=seq1;
 .
 .
 .
1 func1 = 'ACCEPT';
2 set1 = 'DEPT-EMPLOYEE';
3 seq1 = 'NEXT';
 input;
 if err eq '0000' then do
4 put @1 'DBKEY OF RECORD = ' @19 key1;
 .
 .
 .

1 FUNC1 is assigned the function of ACCEPT.

2 SET1 is assigned the set name that is current of the run unit. For example, if you
have currency on the EMPLOYEE record, the ACCEPT NEXT causes the db-key of
the next record in the DEPT-EMPLOYEE set to be returned from the function call to
CA-IDMS. The next record in the DEPT-EMPLOYEE set could be either an
EMPLOYEE record or a DEPARTMENT record, depending on your location in the
set when the ACCEPT NEXT function call is issued.

16 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

3 SEQ1 is set to NEXT to indicate that you want the db-key from the next record in the
DEPT-EMPLOYEE set.

4 After successful execution of the ACCEPT function call, KEY1 contains the db-key
for the NEXT record. The PUT statement prints the db-key on the SAS log.

You can now save the db-key to use now or later with the OBTAIN or FIND functions.
Using the db-key gives you direct access to the record regardless of established
currencies.

BIND Function Call
The only form of the BIND function that is needed in the CA-IDMS DATA step is the
BIND RECORD. The BIND RECORD statement establishes addressability for a CA-
IDMS record so that its data can be retrieved and placed into the input buffer. A BIND
RECORD must be issued for every record type that the DATA step accesses before any
data is retrieved. The BIND RECORD function call does not retrieve any data from CA-
IDMS. A BIND function call is not necessary if no data is being retrieved, that is, if you
are issuing a FIND, ACCEPT, or RETURN function call.

To generate the BIND RECORD function call, specify these options:

• FUNC= BIND

• RECORD= the IDMS record name

The following example shows the BIND RECORD function call. The numbers in the
program correspond to the numbered comments following the program.

 infile empss01 idms func=func1 record=recname
 .
 .
 .
1 func1 = 'BIND';
2 recname = 'DEPARTMENT';
3 input;
 .
 .
 .

1 FUNC1 is assigned the function of BIND.

2 RECNAME is assigned the value of DEPARTMENT because this is the record on
which you want to perform the BIND RECORD.

3 This INPUT statement generates and submits the BIND RECORD function call to
CA-IDMS.

FIND and OBTAIN Function Calls
The FIND function locates a record in the database. The OBTAIN function locates a
record and moves the data from the record to the input buffer. The FIND and OBTAIN
functions have identical options so that they are discussed together. There are six
formats of the FIND and OBTAIN functions. Each one is described individually.

Specifying DML Function Calls 17

FIND/OBTAIN CALC Function
The FIND/OBTAIN CALC function accesses a record by using its CALC key value.
The record must be stored in the database with a location mode of CALC. The FIND/
OBTAIN CALC DUP function accesses duplicate records with the same CALC key as
the current record, provided that the current record of the same record type had been
accessed using FIND/OBTAIN CALC.

For an example program that locates records directly using CALC key values that have
been stored in a SAS data set, see “Example: Using the Trailing @ and the INPUT
Statement with No Arguments” on page 43.

To generate the FIND | OBTAIN CALC record-name function call, specify these
options:

• FUNC= FIND or OBTAIN

• RECORD= an IDMS record name

• IKEY= a valid IDMS record CALC key

• KEYOFF= the offset into the record where the CALC key is located

• IKEYLEN= the length of the CALC key

To generate the FIND | OBTAIN CALC DUP record-name function call, include this
option:

• SEQUENCE = 'DUP'

The following example shows a FIND CALC function call for the EMPLOYEE record
followed by an OBTAIN CALC DUP for the same record. The numbers in the program
correspond to the numbered comments following the program.

 infile empss01 idms func=funct record=recname
 ikey=ckey keyoff=key0 errstat=stat
 sequence=seq ikeylen=klen;
 .
 .
 .
1 funct = 'FIND';
2 recname = 'EMPLOYEE';
3 ckey = '0101';
4 key0 = 0;
5 klen = 4;
6 input;
 .
 .
 .
7 funct = 'OBTAIN';
8 seq = 'DUP';
 if stat eq '0000' then do
9 input @1 employee_id 4.0
 @5 firstname $char10.
 @15 lastname $char15.
 @30 street $char20.
 @50 city $char15.
 @65 state $char2.
 @67 zip $char9.
 @76 phone 10.0

18 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

 @86 status $char2.
 @88 ssnumber $char9.
 @97 startdate 6.0
 @103 termdate 6.0
 @109 birthdate 6.0;
 .
 .
 .

1 FUNCT is assigned the value of FIND.

2 RECNAME is assigned the name of the record that you want to access. In this
example, the record is the EMPLOYEE record.

3 CKEY is assigned the character value of '0101', which is the value of the CALC key
of the EMPLOYEE record that you want to access. Upon successful execution of the
FIND CALC function call, currency is set to the EMPLOYEE record with the
employee ID number of 0101. The CALC key for the employee record is the
employee ID.

4 KEYO is set to zero because the employee ID or the CALC key is at offset zero in
the employee record. In other words, the employee ID is the first element in the
employee record.

5 KLEN is set to 4, which is the length of the CALC key, the employee ID.

6 This INPUT statement generates and submits the FIND CALC function call to CA-
IDMS. No SAS variables are created. The FIND function establishes currency but
does not retrieve data.

7 FUNCT is set to OBTAIN to generate an OBTAIN CALC function call to CA-
IDMS.

8 SEQ is set to DUP so that the code generates an OBTAIN CALC DUP function call.
RECNAME, CKEY, KLEN, and KEYO are still set from the previous FIND CALC
function call and do not have to be set.

9 This INPUT statement contains SAS variables because the OBTAIN function call
causes CA-IDMS to locate the specified record and move the data associated with
the record to the record buffer.

The INPUT keyword submits the generated function call, which, if successful,
returns a record to the buffer. The remaining portion of the INPUT statement maps
fields from the buffer to the program data vector.

FIND/OBTAIN CURRENT Function
The FIND/OBTAIN CURRENT function accesses records by using established
currencies. You can FIND or OBTAIN records that are current of the record type, set, or
area. You can also use this form of the FIND or OBTAIN function call to establish the
appropriate record as current of the run unit.

To generate the FIND | OBTAIN CURRENT OF <record | set | area> function call,
specify these options:

• FUNC= FIND or OBTAIN

• SEQUENCE= CURRENT

And if needed, use one of the following options:

• RECORD= an IDMS record name

Specifying DML Function Calls 19

• SET= an IDMS set name

• AREA= the area in which the record is a participant

The following example shows a FIND CURRENT function call for the DEPARTMENT
record. The numbers in the program correspond to the numbered comments following
the program.

 infile empss01 idms func=funct record=recname
 errstat=stat sequence=seq;
 .
 .
 .
1 funct = 'FIND';
2 seq = 'CURRENT';
3 recname = 'DEPARTMENT';
4 input;
 .
 .
 .

1 FUNCT is assigned the value of FIND.

2 SEQ is assigned CURRENT so that the function call to CA-IDMS will locate the
current record of the specified record type, set, or area. In this example, the code is
looking for the current record of the record type DEPARTMENT.

3 RECNAME specifies the name of the record type that is to be accessed. In this
example, the record is the DEPARTMENT record.

You can use the AREA option or the SET option instead of the RECORD option
with the FIND/OBTAIN CURRENT function to locate the current record of the
named area or set, respectively.

4 This INPUT statement generates and submits the FIND CURRENT function call to
CA-IDMS.

FIND/OBTAIN DBKEY Function
The FIND/OBTAIN DBKEY function locates a record directly using a db-key that has
been stored previously by your DATA step program. The ACCEPT function is used to
acquire the record's db-key. Any record in the subschema can be accessed directly using
the db-key, regardless of its location mode.

To generate the FIND | OBTAIN DBKEY function call, specify these options:

• FUNC= FIND or OBTAIN

• DBKEY= a db-key value

And specify the following option:

• RECORD= the IDMS record name

The following example shows an ACCEPT NEXT function call, which acquires the db-
key of a record. It is followed by an OBTAIN DBKEY function call, which uses the db-
key acquired by the ACCEPT NEXT function call. The numbers in the program
correspond to the numbered comments following the program.

 infile empss01 idms func=funct dbkey=dkey
 errstat=stat sequence=seq;
 .

20 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

 .
 .
1 funct = 'ACCEPT';
 seq = 'NEXT';
2 dkey = ' ';
 input;
 .
 .
 .
 funct = 'OBTAIN';
3 seq = ' ';
4 input @1 department_id 4.0
 @5 department_name $char45.
 @50 department_head 4.0;
 .
 .
 .

1 FUNCT is assigned the value of ACCEPT to get the db-key for the next record,
based on currency.

2 DKEY is set to blanks to receive the new db-key.

After the ACCEPT function call has successfully executed, the db-key is returned to
the DATA step in the DKEY variable. The db-key can be saved and used later to
access the record directly.

3 The SEQ option is set to blanks because it is not used with the OBTAIN DBKEY
function call.

If the RECORD option is used with FIND/OBTAIN DBKEY, the db-key value must
contain a db-key of the named record type.

4 The INPUT statement generates and submits the OBTAIN DBKEY function call. If
successful, data returned to the buffer is mapped to the named variables.

FIND/OBTAIN OWNER Function
The FIND/OBTAIN OWNER function locates the owner record of the current set. This
function call can be used to return the owner record of any set, whether the set has been
assigned owner pointers.

To generate the FIND | OBTAIN OWNER function call, specify these options:

• FUNC= FIND or OBTAIN

• SET= an IDMS set name

• SEQUENCE= OWNER

The following example shows an OBTAIN OWNER function call. This example
assumes that currency is on an employee record occurrence. The numbers in the program
correspond to the numbered comments following the program.

 infile empss01 idms func=funct set=inset
 errstat=stat sequence=seq;
 .
 .
 .
1 funct = 'OBTAIN';
2 seq = 'OWNER';

Specifying DML Function Calls 21

3 inset = 'DEPT-EMPLOYEE';
4 input @1 department_id 4.0
 @5 department_name $char45.
 @50 department_head 4.0;
 .
 .
 .

1 FUNCT is assigned the value of OBTAIN so that the data for the owner record is
returned to the DATA step program.

2 SEQ is assigned OWNER to generate an OBTAIN OWNER function call.

3 INSET specifies the set whose owner record is to be retrieved.

4 The INPUT statement generates and submits the OBTAIN OWNER function call. If
successful, data returned to the buffer are mapped to the named variables.

FIND/OBTAIN SORT KEY Function
The FIND/OBTAIN SORT KEY function locates a member record in a sorted set.
Sorted sets are ordered in ascending and descending sequence based on the sort field
value. The search for member records begins with either the current record of the set or
the owner of the set. The record that is retrieved is the first record that has a sort field
value that is equal to the value in the SORTFLD SAS variable. If no record matches the
SORTFLD value, currencies to the next and prior records of the set are maintained so
that the DATA step program can traverse the set using the SORTFLD value to perform a
generic search.

To generate the FIND | OBTAIN record WITHIN set | record USING sortfield function
call, specify these options:

• FUNC= FIND or OBTAIN

• SORTFLD= a valid sort field value

• RECORD= an IDMS record name

• SET= an IDMS set name

To generate the FIND | OBTAIN record WITHIN set | record CURRENT USING
sortfield function call, include the following option:

• SEQUENCE= CURRENT

The following example shows an OBTAIN record WITHIN CURRENT set USING
sortfield function call. The numbers in the program correspond to the numbered
comments following the program.

 infile empss01 idms func=funct record+recname
 errstat=stat sequence=seq set=inset
 sortfld=skey;
 .
 .
 .
1 funct = 'OBTAIN';
2 seq = 'CURRENT';
3 skey = 'GARFIELD' || 'JENNIFER';
4 recname = 'EMPLOYEE';
5 inset = 'EMP-NAME-NDX';
6 input @1 employee_id 4.0

22 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

 @5 firstname $char10.
 @15 lastname $char15.
 @30 street $char20.
 @50 city $char15.
 @65 state $char2.
 @67 zip $char9.
 @76 phone 10.0
 @86 status $char2.
 @88 ssnumber $char9.
 @97 startdate 6.0
 @103 termdate 6.0
 @109 birthdate 6.0
 @115 filler01 $char2. ;
 .
 .
 .

1 FUNCT is assigned the value of OBTAIN to retrieve the data for the employee
record with the sort key of JENNIFER GARFIELD.

2 SEQ is set to CURRENT to indicate that the search begins with the current record of
the set specified in INSET.

3 SKEY contains the value of the sort control element to be used in searching the
sorted set. In this example, SKEY is set to the last and first name value of the
employee name sort control element in the EMP-NAME-NDX set where you want to
begin the search.

4 RECNAME is set to the name of the record to retrieve. In this example, you are
looking for the EMPLOYEE record.

5 INSET is assigned the name of a sorted set

6 The INPUT statement generates and submits the OBTAIN SORTFLD WITHIN
CURRENT set function call. If successful, data is mapped from the buffer to the
named variables.

FIND/OBTAIN WITHIN SET or AREA Function
The FIND/OBTAIN WITHIN function locates a record either logically, based on set
relationships, or physically, based on database location. Using various options with
FIND/OBTAIN WITHIN, you can either access each record sequentially in a set or area,
or select specific occurrences of a given record within a set or area.

Follow these rules when selecting members within a set::

• Currency must be established on a set before attempting to access records in the set.

• The next or prior records in the set are determined by the record that is current for
the set named in the SET= option. The set must have prior pointers defined in order
to retrieve records using the SEQUENCE= option of PRIOR.

• The first or last record in a set is the first or last member in the logical order of the
set. The last record in a set can be accessed only if prior pointers have been
established for the set.

• The nth record in a set is the set member in the nth position of the set. The search for
the nth member begins with the owner of the current set and continues until the nth
record is located or until an end-of-set condition occurs. If the nth number is

Specifying DML Function Calls 23

negative, the search uses prior pointers. To use negative numbers, prior pointers must
have been established for the set.

• When an end-of-set occurs, the owner of the set becomes the current record of the
run-unit, the record type, its area, and its set.

Follow these rules when selecting records within an area:

• The first record within an area is the record with the lowest db-key. The last record
within an area is the record with the highest db-key.

• The next record within an area is the record with the next highest db-key in
relationship to the record that is current of the named area. The prior record works
the same way, except the prior record is the record with the next lowest db-key.

• Before the next or prior record within an area can be requested, the first, last, or nth
record within an area must be accessed to correctly establish a starting position
within the area.

To generate the FIND | OBTAIN NEXT | PRIOR | FIRST | LAST | nth record>
WITHIN set | area function call, specify this option:

• FUNC= FIND or OBTAIN

And specify one of these options:

• SET= an IDMS set name

• AREA= the area that the record participates in

• SEQUENCE= NEXT | PRIOR | FIRST | LAST | nth

If needed, specify this option:

• RECORD= an IDMS record name

The following example shows an OBTAIN PRIOR record WITHIN AREA function
call. Currency has already been established on an EMPLOYEE record. The numbers in
the program correspond to the numbered comments following the program.

 infile empss01 idms func=funct area=subarea record=recname errstat=stat
 sequence=seq;
 .
 .
 .
1 funct = 'OBTAIN';
2 seq = 'PRIOR';
3 subarea = 'EMP-DEMO-REGION';
 recname = 'EMPLOYEE'
4 input @1 employee_id 4.0
 @5 firstname $char10.
 @15 lastname $char15.
 @30 street $char20.
 @50 city $char15.
 @65 state $char2.
 @67 zip $char9.
 @76 phone 10.0
 @86 status $char2.
 @88 ssnumber $char9.
 @97 startdate 6.0
 @103 termdate 6.0
 @109 birthdate 6.0
 @115 filler01 $char2. ;

24 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

 .
 .
 .

1 FUNCT is assigned the function of OBTAIN to retrieve the data for the
EMPLOYEE record.

2 SEQ is set to PRIOR to indicate that the prior EMPLOYEE record is requested.

3 SUBAREA contains the name of the current area from which to retrieve the
EMPLOYEE record.

4 The INPUT statement generates and submits the OBTAIN PRIOR function call. If
successful, data is mapped from the buffer to the named variables.

GET Function Call
The GET statement moves the record that is current of the run unit into the input buffer.
The GET function is used in conjunction with the FIND function. The FIND function
locates records in the database without moving the data associated with the record to the
record buffer.

To generate the GET <record-name> function call, specify the following option:

• FUNC= GET

If needed, specify the following option:

• RECORD= the IDMS record name

The following example shows the GET function call with no other options:

 infile empss01 idms func=func1 record=rec1
 errstat=err;
 .
 .
 .
1 func1 = 'GET';
2 input @1 department_id 4.0
 @5 department_name $char45.
 @50 department_head 4.0;
 .
 .
 .

1 FUNC1 is assigned the value of GET.

2 The record that is current of the run unit is moved into the input buffer. Currency
must be established before issuing the GET function.

The following example shows the GET function call for the DEPARTMENT record:

 infile empss01 idms func=func1 record=rec1
 errstat=err;
 .
 .
 .
 func1 = 'GET';
1 rec1 = 'DEPARTMENT';
 input @1 department_id 4.0
 @5 department_name $char45.

Specifying DML Function Calls 25

 @50 department_head 4.0;
 .
 .
 .

1 The difference between this GET function call and the previous GET call is the use
of the SAS variable REC1. This variable is set to the name of the specific record to
move into the record buffer. In this example, the data associated with the
DEPARTMENT record is moved. Currency must be established on the
DEPARTMENT record before a GET call can be made for the record.

IF Function Call
The DML IF statement tests for the existence or membership of a record occurrence in a
named set occurrence, and returns the result in the ERRSTAT variable.

There are two formats for the DML IF statement:

• IF SET <NOT> EMPTY tests for the existence of a record occurrence and returns a
status value of 0000 if the set occurrence is empty, and a status value of 1601 if the
set occurrence is not empty.

• IF <NOT> SET MEMBER checks the membership of the current record occurrence
and returns a status value of 0000 if the record occurrence is a member of the named
set occurrence, and a status value of 1608 if the record occurrence is a non-member.

To issue the DML IF statement, specify these options:

• FUNC= IF

• INSET= an IDMS set name

• SEQUENCE= EMPTY | NEMPTY | MEMBER | NMEMBER

The following is an example of a DML IF function call:

 infile empss01 idms func=funct record=recname
 area=subarea errstat=stat sequence=seq
 set=inset;

 1 funct = 'FIND';
 seq = 'FIRST';
 recname = 'DEPARTMENT';
 subarea = 'ORG-DEMO-REGION';
 input;
 if (stat ^= '0000') then go to staterr;

 2 funct = 'IF';
 3 seq = 'NEMPTY';
 4 inset = 'DEPT-EMPLOYEE';
 recname = ' ';
 subarea = ' ';
 input;

 5 if (stat = '1601') then do;
 put @1 'Set ' @5 inset @14 'is not empty';
 stat = '0000';
 error = 0;
 end;

26 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

 6 else if (stat = '0000') then
 put @1 'Set' @5 inset @14 'is empty';
 else go to staterr;
 stop;

1 Run-unit currency for the DML IF statement is established by the previous function
call. A FIND function call establishes run-unit currency on the record
DEPARTMENT for the DML IF statement, but does not retrieve the record.

2 FUNCT is assigned the value of IF to indicate that a test is performed. Set currency
is determined by the owner of the current record in the set named in INSET.

3 SEQ is set to NEMPTY to indicate the type of test.

4 INSET names the set to test.

5 The first SAS IF statement directs the DATA step to write a message to the log if the
value of STAT is 1601, which means that the set is not empty.

6 The second SAS IF statement directs the DATA step to stop if the value of STAT is
0000, which means the set is empty.

RETURN Function Call
The RETURN function retrieves the db-key and the symbolic key for an indexed record
without retrieving the record's data. This function establishes currency on the index set.

There are two formats for the RETURN function:

• The RETURN CURRENCY function retrieves the db-key and symbolic key for an
index entry based on established currencies or its position in the index set.

• The RETURN USING SORTKEY function retrieves the db-key and symbolic key
associated with a specific index key entry.

To generate the RETURN CURRENCY <set> NEXT | PRIOR | FIRST | LAST INTO
DBKEY key INTO SORTKEY skey function call, specify these options:

• FUNC= RETURN.

• SET= an IDMS index set name.

• SEQUENCE= FIRST | LAST | NEXT | PRIOR.

• SORTFLD= upon successful completion of the function call, this SAS variable
contains the current record's symbolic key.

• DBKEY= upon successful completion of the function call, this SAS variable
contains the current record's db-key.

The following example shows the RETURN FIRST function call:.

 infile empss01 idms func=func1 errstat=err
 sequence=seq set=inset sortkey=skey dbkey=dkey;

 .
 .
1 func1 = 'RETURN';
2 seq = 'FIRST';
3 inset = 'EMP-NAME-NDX';
 input;
4 put @1 'DBKEY OF RECORD = ' @19 dkey;
 put @1 'SKEY OF RECORD = ' @19 skey;

Specifying DML Function Calls 27

 .
 .
 .

1 FUNC1 is assigned the function of RETURN.

2 SEQ is assigned the value of FIRST. FIRST returns the db-key for the first index
entry in the set EMP-NAME-NDX. You could also request the db-key from the
PRIOR, NEXT, or LAST index entry in the set by assigning these values to the
SEQUENCE= option.

3 SET is assigned the name of the index set (INSET) from which the specified db-key
is to be returned.

4 DKEY contains the db-key for the first entry in EMP-NAME-NDX. SKEY contains
the symbolic key for the entry. The PUT statements print the db-key and the
symbolic key on the SAS log.

To generate the RETURN USING SORTKEY <set> INTO DBKEY key INTO
SORTKEY skey function call, specify these options:

• FUNC= RETURN.

• SEQUENCE= USING.

• SET= an IDMS set name.

• SORTKEY= the index key entry to search for. After successful completion of the
function call, this SAS variable will contain the record's symbolic key.

• DBKEY= upon successful completion of the function call, this SAS variable
contains the record's db-key.

The following example shows the RETURN USING function call:

 infile empss01 idms func=func1 record=recname
 ikeylen=keyl errstat=err sequence=seq
 set=inset dbkey=dkey sortkey=skey;
 .
 .
 .
 1 func1 = 'RETURN';
 2 seq = 'USING';
 3 inset = 'EMP-NAME-NDX';
 4 skey = 'GARFIELD JENNIFER';
 5 keyl = 25;
 6 dkey = ' ';
 input;
 .
 .
 .

1 FUNC1 is assigned the function of RETURN.

2 SEQ is set to USING to indicate that the index key entry in SKEY is used to locate
the db-key. In this example, SKEY is set to the last name and first name GARFIELD
JENNIFER. The call returns the db-key and symbolic key of the first record that it
encounters that contains the name GARFIELD JENNIFER.

3 INSET is the name of the index set to be searched.

4 SKEY specifies the index key value to search for.

5 KEYL specifies the length of index key value.

28 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

6 DKEY is set to blanks to receive the db-key.

After the RETURN function call has successfully executed, the db-key is returned to
the DATA step in the DKEY variable.

Summary of Options Needed to Generate CA-IDMS Function Calls
The following table outlines the SAS INFILE parameters that are required to generate
each of the CA-IDMS function calls for COBOL DML.

Table 2.2 Options Needed to Generate CA-IDMS Function Calls for COBOL DML

COBOL DML Call* INFILE Statement Options

ACCEPT db-key FROM CURRENCY FUNC=ACCEPT

SEQUENCE=CURRENT

DBKEY=Required

ACCEPT db-key FROM record-name
CURRENCY

FUNC=ACCEPT

SEQUENCE=CURRENT

RECORD=Required

DBKEY=Required

ACCEPT db-key FROM set-name
CURRENCY

FUNC=ACCEPT

SEQUENCE=CURRENT

SET=Required

DBKEY=Required

ACCEPT db-key FROM area-name
CURRENCY

FUNC=ACCEPT

SEQUENCE=CURRENT

AREA=Required

DBKEY=Required

ACCEPT db-key FROM set-name NEXT |
PRIOR | OWNER CURRENCY

FUNC=ACCEPT

SEQUENCE=NEXT | PRIOR | OWNER

SET=Required

DBKEY=Required

Specifying DML Function Calls 29

COBOL DML Call* INFILE Statement Options

BIND record-name SEQUENCE=BIND

SET=Required

FIND/OBTAIN CALC* record-name FUNC=FIND | OBTAIN

RECORD=Required

IKEY=Required

IKEYLEN=Required

FIND/OBTAIN DUPLICATE* record-name FUNC=FIND | OBTAIN

SEQUENCE=DUP

RECORD=Required

IKEY=Required

IKEYLEN=Required

FIND/OBTAIN CURRENT FUNC=FIND | OBTAIN

SEQUENCE=CURRENT

FIND/OBTAIN CURRENT record-name FUNC=FIND | OBTAIN

SEQUENCE=CURRENT

RECORD=Required

FIND/OBTAIN CURRENT | NEXT |
PRIOR | FIRST | LAST | Nth WITHIN set-
name

FUNC=FIND | OBTAIN

SEQUENCE=NEXT | PRIOR | FIRST | LAST |
Nth

RECORD=Optional

SET=Required

FIND/OBTAIN CURRENT | NEXT |
PRIOR | FIRST | LAST | Nth WITHIN area-
name

FUNC=FIND | OBTAIN

SEQUENCE=NEXT | PRIOR | FIRST | LAST |
Nth

RECORD=Optional

AREA=Required

30 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

COBOL DML Call* INFILE Statement Options

FIND/OBTAIN OWNER WITHIN set-
name

FUNC=FIND | OBTAIN

SEQUENCE=OWNER

SET=Required

FIND/OBTAIN record-name WITHIN set-
name USING sort-key

FUNC=FIND | OBTAIN

RECORD=Required

SET=Required

FIND/OBTAIN record-name WITHIN set-
name CURRENT USING sort-key

FUNC=FIND | OBTAIN

SEQUENCE=CURRENT

RECORD=Required

SET=Required

FIND/OBTAIN DBKEY db-key FUNC=FIND | OBTAIN

DBKEY=Required

FIND/OBTAINrecord-name DB-KEY IS
db-key

FUNC=FIND | OBTAIN

RECORD=Required

DBKEY=Required

GET record-name SEQUENCE=GET

SET=Required

RETURN db-key FROM index-set-name
CURRENT | FIRST | LAST | NEXT |
PRIOR KEY INTO symbolic-key

FUNC=RETURN

SEQUENCE=CURRENT | FIRST | LAST |
NEXT | PRIOR

SET=Required

DBKEY=Required

SORTFLD=Required

Specifying DML Function Calls 31

COBOL DML Call* INFILE Statement Options

RETURN db-key FROM index-set-name
USING index-key-value KEY INTO
symbolic-key

FUNC=RETURN

SEQUENCE=USING

SET=Required

DBKEY=Required

SORTFLD=Required

* KEYOFF= INFILE statement option required for these calls

How the CA-IDMS Function Call Is Generated
To determine which type of DML function call you want to generate, the CA-IDMS
DATA step access method must make some assumptions from the various options that
you specify. The access method first determines what value is specified in the FUNC
option.

• If the FUNC option contains BIND, GET, ACCEPT, or RETURN, the required
options are checked for a value, then the optional options are checked, and the
appropriate function call is generated.

• If the FUNC option contains FIND or OBTAIN, the access method checks whether a
value was entered for the following options:

SORTFLD
If the SORTFLD option was entered, the required and optional options for the
OBTAIN or FIND with the SORTFLD are verified before a function call is
generated. If the SORTFLD option was not entered, the access method then
determines whether the IKEY option was entered to generate a function call
using the CALC key.

IKEY
If the IKEY option was entered, then all of the required and optional options are
verified for a function call using the CALC key. If the IKEY option was not
entered, the access method then looks to see whether the DBKEY option was
entered.

DBKEY
If the DBKEY was entered, the same verification is done for the options as
before and a function call is generated. If DBKEY was not entered, then the
access method looks to see whether the SEQUENCE option was entered.

SEQUENCE
If a value was entered for the SEQUENCE option, the value is examined. If the
value is

CURRENT
The other options are checked to determine what type of currency call to
generate.

OWNER
An OBTAIN or FIND OWNER or a FIND DUP OWNER function call is
generated.

32 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

NEXT, PRIOR, FIRST, LAST, or nth
The access method tries to generate an OBTAIN or FIND WITHIN function call
by using the other options that were entered.

If the access method cannot generate a function call from the options that you entered or
if the options for a particular function call are incorrect, an error message is returned, the
automatic variable _ERROR_ is set to 1, and the CA-IDMS call status is set to 9999.
Your DATA step program should check for these conditions after each function call to
the database.

Using Multiple Sources of Input
You can have more than one input source in a DATA step. For example, you can read
from a CA-IDMS database and a SAS data set in the same DATA step. You cannot,
however, read from more than one subschema in a single DATA step. If you want to use
several external files (z/OS data sets) in a DATA step, use separate INFILE statements
for each source.

The input source is set (or reset) when an INFILE statement is executed. The file or CA-
IDMS subschema referenced in the most recently executed INFILE statement is the
current input source for INPUT statements. The current input source does not change
until a different INFILE statement executes, regardless of the number of INPUT
statements executed.

If after you change input sources by executing multiple INFILE statements that you want
to return to an earlier input source, it is not necessary to repeat all options specified in
the original INFILE statement. SAS remembers options from the first INFILE statement
with the same fileref or subschema name. In a standard INFILE statement, you need
only specify the fileref. In a CA-IDMS INFILE statement, specify the subschema and
IDMS. Options specified in a previous INFILE statement with the same fileref or
subschema name cannot be altered.

Note: The subschema name cannot be the same name as a fileref on a JCL DD
statement, a TSO ALLOC statement, or a filename's fileref for the current execution
of SAS.

Using the CA-IDMS INPUT Statement

Definition of the CA-IDMS INPUT Statement
If you are unfamiliar with the INPUT statement, see SAS Statements: Reference for more
information.

An INPUT statement reads from the file specified by the most recently executed INFILE
statement. If the INFILE statement is a CA-IDMS INFILE statement, the INPUT
statement issues a CA-IDMS function call as formatted by variables specified in the
INFILE statement.

There are no special options for the CA-IDMS INPUT statement as there are for the CA-
IDMS INFILE statement. The form of the CA-IDMS INPUT statement is the same as
that of the standard INPUT statement:

INPUT <specification-1 > <…specification-n > <@ | @@ >;

For example, suppose you issue an OBTAIN function call for the EMPLOYEE record.
The CA-IDMS INPUT statement might be coded as follows:

Using the CA-IDMS INPUT Statement 33

input
@1 employee_id 4.0
 @5 firstname $char10.
 @15 lastname $char15.
 @30 street $char20.
 @50 city $char15.
 @65 state $char2.
 @67 zip $char9.
 @76 phone 10.0
 @86 status $char2.
 @88 ssnumber $char9.
 @97 startdate 8.0
 @105 termdate 8.0
 @113 birthdate 8.0;

When this CA-IDMS INPUT statement executes, the DATA step interface generates and
submits a function call from the options that you entered in the CA-IDMS INFILE
statement. If the FUNC= variable specified in the INFILE statement is assigned a value
of GET or OBTAIN, an EMPLOYEE record is retrieved and placed in the input buffer.
Data for the variables specified in the CA-IDMS INPUT statement are then moved from
the input buffer to SAS variables in the program data vector.

Depending on which options you specify in the CA-IDMS INFILE statement and which
form of the CA-IDMS INPUT statement you use, the INPUT statement does one of the
following:

• retrieve a record from the database, place it into the input buffer without moving any
variables into the program data vector, and possibly hold the record for the next
INPUT statement. If the FUNC= variable specifies GET or OBTAIN, but the INPUT
statement does not list any variables, then data is placed into the input buffer without
being moved into the program data vector. If the INPUT statement specifies a
trailing @ or @@, the record is held for processing by the next INPUT statement.
See “The Null INPUT Statement” on page 35 and “Holding Records in the Input
Buffer” on page 35 for more information.

• retrieve a record from the database, place it into the input buffer, move data from the
input buffer into variables in the program data vector, and possibly hold the record
for the next INPUT statement. If the FUNC= variable specifies GET or OBTAIN,
and the INPUT statement specifies one or more variables, then data is placed into the
input buffer and mapped into variables in the program data vector. If the INPUT
statement specifies a trailing @ or @@, the record is held for processing by the next
INPUT statement. See “Holding Records in the Input Buffer” on page 35 for more
information.

• submit a DBMS request without retrieving a record. If the FUNC= variable specifies
BIND, FIND, ACCEPT, or RETURN, then no record data is retrieved from the
database. These functions are described in “Specifying DML Function Calls” on
page 15. See “The Null INPUT Statement” on page 35 for more information.

• release a previously held record from the input buffer. If the previous INPUT
statement specified a trailing @ or @@, and the current INPUT statement is a null
INPUT statement (input;), then the previously held record is released. See
“Holding Records in the Input Buffer” on page 35 for more information.

Note: Every time SAS encounters a CA-IDMS INPUT statement, it increments by one
an internal counter that keeps track of how many function calls are issued from the
input data set. The count is printed to the SAS log as a NOTE. Because you can code

34 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

several CA-IDMS INPUT statements that do not retrieve data, this count might not
accurately reflect the actual number of records retrieved from the database.

Although the syntax of the CA-IDMS INPUT statement and the standard INPUT
statement are the same, your use of the CA-IDMS INPUT statement is often different.
Suggested uses of the CA-IDMS INPUT statement are described in the following
sections.

The Null INPUT Statement
When an INPUT statement does not specify any variable names or options, it is called a
null INPUT statement:

input;

A null INPUT statement serves three purposes:

• A null CA-IDMS INPUT statement generates and submits a CA-IDMS function call
to the database. To issue a CA-IDMS function call that does not retrieve data (FIND,
ACCEPT, RETURN, and BIND), use a null INPUT statement.

• A null CA-IDMS INPUT statement retrieves a record from the database and places it
in the input buffer, but does not move data values to the program data vector. When
you want to issue an OBTAIN or GET function call, you can use the INPUT
statement with a trailing '@' or '@@' to retrieve a record from the database, check
the status code returned from CA-IDMS before moving data values to the program
data vector.

• If the previous INPUT statement was input @; or input var1 var2 var3
@;, a null INPUT statement releases the previously held record. See “Holding
Records in the Input Buffer” on page 35 for information.

Holding Records in the Input Buffer
The trailing @ and @@ pointer controls tell SAS to hold the current record in the input
buffer so that it can be processed by a subsequent INPUT statement. The trailing @ tells
SAS to hold the record for the next INPUT statement in the same iteration of the DATA
step. The double trailing @ tells SAS to hold the record for the next INPUT statement
across iterations of the DATA step.

Assuming the FUNC= variable in your INFILE statement specifies GET or OBTAIN,
the following INPUT statement submits a function call to the database, retrieves a record
from the database, places it in the input buffer, and places a hold on the buffer:

input @;

The next INPUT statement that is executed does not issue another function call and does
not place a new record in the input buffer. Instead, the second INPUT statement uses the
data placed in the input buffer by the first INPUT statement.

If your INPUT statement also specifies variable names, then that statement issues a
function call to the database, retrieves a record, places the record into the input buffer,
and moves data values for the named variables into the program data vector:

input ssnumber $char11. @;

SAS holds the record in the input buffer for use with the next INPUT statement.

If you have used an INPUT statement with a trailing @ or @@, and you now want to
release the record from the input buffer, use a null INPUT statement as described in
“The Null INPUT Statement” on page 35.

Using the CA-IDMS INPUT Statement 35

Call Status Codes

Checking Call Status Codes
For each function call issued, CA-IDMS returns a call status code that indicates whether
the function call was successful. Because the success of a function call can affect the
remainder of the program, you should check call status codes after every call to CA-
IDMS. SAS provides the automatic SAS variable _ERROR_, whose values indicate the
success of a function call.

The following table shows the _ERROR_ values and their meaning.

Table 2.3 Summary of _ERROR_ Values

Value of _ERROR_

Possible
Corresponding
Status Codes Description

0 CA-IDMS 0000 Function call executed successfully.

1 All CA-IDMS status
codes except 0000

CA-IDMS error code returned. Contents of the input buffer and
the program data vector are printed in the SAS log with the next
INPUT statement or when control returns to the beginning of
the DATA step, whichever comes first.

SAS status 9999 Program cannot perform function call from options specified.

Obtaining the Value of _ERROR_
Check the SAS log to see the value of _ERROR_. If _ERROR_=1, it is printed in the
SAS log along with the contents of the input buffer and the program data vector.

Obtaining the CA-IDMS Error Codes
You can obtain the status code returned by CA-IDMS by specifying a variable name
with the ERRSTAT= option of the CA-IDMS INFILE statement. This variable will be
assigned the CA-IDMS status after each function call to the database.

See your CA-IDMS documentation for explanations of CA-IDMS error status codes.

Checking for Non-Error Conditions and Resetting _ERROR_
Some of the CA-IDMS status codes that set _ERROR_ to 1 might not represent errors in
your SAS program. When this happens in your application, you should check the actual
error status code returned by CA-IDMS as well as the value of _ERROR_ by the
methods stated in the above sections, and possibly reset _ERROR_ to 0.

For example, suppose you are writing a program that accesses all the DEPARTMENT
and EMPLOYEE records from all the DEPT-EMPLOYEE set occurrences. When an
end-of-set condition (CA-IDMS status code 0307) occurs on the EMPLOYEE record,
ERROR is set to 1. However, you do not consider the end-of-set condition to be an
error. Instead, you want your application to obtain the next owner record or
DEPARTMENT record from the next DEPT-EMPLOYEE set occurrence.

If a status code sets _ERROR_ but you do not consider the condition to be an error, you
should reset _ERROR_ to 0 before executing another INPUT statement or returning to
the beginning of the DATA step. Otherwise, the contents of the input buffer and

36 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

program data vector are printed on the SAS log. See number 6 in “Example: Traversing
a Set” on page 38 for an example of how to reset _ERROR_ to 0.

Catching Errors Before Moving Data
In all programs it is important to check the values of either the _ERROR_ or
ERRSTAT= variables before moving data from the input buffer into the program data
vector. For example, if a GET or OBTAIN function call fails to retrieve the expected
record, the input buffer might still contain data from a previous GET or OBTAIN call or
be filled with missing values. You might not want to move these values to SAS
variables. By checking either the ERRSTAT= or _ERROR_ variable, you can determine
whether the function call was successful and decide whether to move the input buffer
data to SAS variables.

When you need to issue a retrieval call but you want to check either _ERROR_ or
ERRSTAT= values before moving data to SAS variables, use a CA-IDMS INPUT
statement with no variables specified, but with a trailing @, to issue the call:

input @;

Because no variables are specified, no data is moved to the program data vector. The
statement contains a trailing @, so the record remains in the input buffer, and your
application can check the values in one of both of _ERROR_ and ERRSTAT= before
determining what action to take. For more information, see “Holding Records in the
Input Buffer” on page 35.

For example, suppose you have specified ERRSTAT=ERR and FUNC=FUNC1 on your
INFILE statement, and you have assigned FUNC1= 'GET' or 'OBTAIN'. You can use the
following code to check the error status before moving data:

1 input @;
2 if (err ne '0000' and err ne '0307')
 then
 go to staterr;
3 if err eq '0307' then do;
4 _error_ = 0;
 /* No more DEPT records so STOP */
 stop;
 end;
5 input @1 department_id 4.0
 @5 department_name $char45.
 @50 department_head 4.0;

1 The INPUT statement retrieves a record from the database and places a hold on the
input buffer but does not move data to the program data vector.

2 A SAS IF statement checks to see whether ERR is not equal to 0000 or 0307. If not,
the program branches to the STATERR routine, which issues an error message and
stops the DATA step.

3 If the INPUT statement encountered the end-of-set, then the _ERROR_ variable is
reset to 0.

4 Prevents the contents of the input buffer and program data vector from being printed
on the SAS log, and the DATA step stops.

5 If the first INPUT statement in number 1 was successful, then the second INPUT
statement moves the data from the record being held in the input buffer to the
program data vector and releases the hold.

Using the CA-IDMS INPUT Statement 37

Handling End of File
Because of the nature and design of a network database, the concept of an end of file
does not exist. Consequently, the SAS option EOF= should not be used in a CA-IDMS
INFILE statement. Instead, you should either write your DATA step code to stop
processing when you have retrieved all the records that you need or set up your code to
loop, stopping only when it reaches a desired condition.

Example: Traversing a Set
The following DATA step shows how to traverse the DEPT-EMPLOYEE set using the
CA-IDMS INFILE and CA-IDMS INPUT statements. The numbers in the program
correspond to the numbered comments following the program.

1 data work.dept_employee;
2 infile empss01 idms func=func1 record=recname
 area=iarea sequence=iseq errstat=err
 set=iset;

 /* BIND the DEPARTMENT and EMPLOYEE */
 /* records in the first data set */
 /* iteration; if successful, then */
 /* OBTAIN FIRST DEPARTMENT WITHIN AREA */
3 if _n_ = 1 then do;
 func1 = 'BIND';
 recname = 'DEPARTMENT';
4 input;
 if (err ne '0000') then go to staterr;
 recname = 'EMPLOYEE';
 input;
 if (err ne '0000') then go to staterr;

 /* Get a DEPARTMENT record */

 iseq = 'FIRST';
 func1 = 'OBTAIN';
 recname = 'DEPARTMENT';
 iarea = 'ORG-DEMO-REGION';
 end;

 else do;
 func1 = 'FIND';
 iseq = 'OWNER';
 input;
 if (err ne '0000') then go to staterr;
 func1 = 'OBTAIN';
 iseq = 'NEXT';
 recname = 'DEPARTMENT';
 iarea = 'ORG-DEMO-REGION';
 iset = ' ';
 end;

38 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

 /* OBTAIN DEPT record and test */
 /* for success */
5 input @;
6 if (err ne '0000' and err ne '0307') then
 go to staterr;
 if err eq '0307' then do;
 error = 0;
 /* No more DEPT records so STOP */
 stop;
 end;
7 input @1 department_id 4.0
 @5 department_name $char45.
 @50 department_head 4.0;

 /* Get the EMPLOYEE records for this DEPT */
 /* record */

 iseq = 'FIRST';
 recname = 'EMPLOYEE';
 iset = 'DEPT-EMPLOYEE';
 iarea = ' ';
 do until (err = '0307');

 /* OBTAIN EMPLOYEE records and test for */
 /* SUCCESS */

 input @;
 if (err ne '0000' and err ne '0307') then
 go to staterr;
 if err = '0000' then do;
 input @1 employee_id 4.0
 @5 firstname $char10.
 @15 lastname $char15.
 @30 street $char20.
 @50 city $char15.
 @65 state $char2.
 @67 zip $char9.
 @75 phone 10.0
 @85 status $char2.
 @87 ssnumber $char9.
 @96 startdate 8.0
 @104 termdate 8.0
 @112 birthdate 8.0;
8 output;
9 iseq = 'next';
 end;
 end;
 error = 0;
 return;

 staterr:
 put @1 'WARNING: ' @10 func1 @17
 'RETURNED ERR ='@37 err;
 stop;
 run;

Example: Traversing a Set 39

10 proc print data=work.dept_employee;
 title1 'This is an Area Sweep of the
 DEPT-EMPLOYEE Set';
 title2 'The Area Sweep is from the Beginning to End';
 run;

1 The DATA statement references a temporary SAS data set called Dept_Employee,
which is to be opened for output.

2 The INFILE statement tells SAS to use the EMPSS01 subschema. The IDMS option
tells SAS that EMPSS01 is a CA-IDMS subschema instead of a fileref. The
statement also tells the DATA step interface to use the SAS variables as follows:

• FUNC1 to contain the function type

• RECNAME to contain the record name

• IAREA to contain the area name

• ISEQ to contain the function call sequence information

• ISET to contain the set name.

The statement also tells the interface to store the call status in ERR.

3 All record types to be retrieved must first be bound to CA-IDMS. The BIND
function call needs to be issued only once per record type before retrieval. The
automatic SAS variable _N_ is used to indicate the first iteration of the DATA step
code.

4 The INPUT statements generate and submit the function call to CA-IDMS requesting
that a BIND be performed for the record type specified in RECNAME. In this
example, the DEPARTMENT record type is bound first, then the EMPLOYEE
record type is bound.

5 This INPUT statement also uses the values in the SAS variables FUNC1 and
RECNAME, along with the values in ISEQ and IAREA to generate an OBTAIN
FIRST DEPARTMENT RECORD IN AREA ORG-DEMO-REGION DML call.
However, no data is moved into the program data vector because no variables are
defined on the INPUT @; statement. This function call enables the DATA step to
check the status that is returned from CA-IDMS before moving data into the program
data vector. This function call is issued only on the first iteration of the DATA step.
On subsequent iterations, the values in these SAS variables are used to generate an
OBTAIN NEXT DEPARTMENT RECORD IN AREA ORG-DEMO-REGION
DML call.

6 The program examines the status code returned by CA-IDMS. If CA-IDMS returns
0000, then the program proceeds to the next statement. If CA-IDMS returns 0307
(end of set), then there are no more department records and the DATA step stops.

7 When this INPUT statement executes, DEPARTMENT RECORD data is moved
from the SAS buffer into the program data vector.

8 As the DATA step executes, EMPLOYEE records that are members of the DEPT-
EMPLOYEE set are retrieved, and observations that contain the EMPLOYEE data is
written to the Dept_Employee data set.

9 The ISEQ value is changed to NEXT to generate an OBTAIN NEXT EMPLOYEE
RECORD IN SET DEPT-EMPLOYEE DML call.

10 The PRINT procedure prints the list of DEPARTMENT and EMPLOYEE records.

The following output shows the SAS log for this example.

40 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

Log 2.1 SAS Log for Traversing a Set

 1 data work.dept_employee(drop=filler);
 2 infile empss01 idms func=func1
 3 record=recname
 4 area=iarea
 5 sequence=iseq
 6 errstat=err
 7 set=iset;
 .
 .
 .
 91 run;
 NOTE: The infile EMPSS01 is:
 Subschema=EMPSS01
 NOTE: 86 records were read from the infile EMPSS01.
 The minimum record length was 0.
 The maximum record length was 116.
 NOTE: The data set WORK.DEPT_EMPLOYEES has 56
 observations and 16 variables.
 NOTE: The DATA statement used 0.37 CPU seconds
 and 2709K.
 92 proc print data=work.dept_employees;
 93 title1 'This is an Area Sweep of the
 DEPT-EMPLOYEE Set';
 94 title2 'The Area Sweep is from the
 Beginning to End';
 95 run;
 NOTE: The PROCEDURE PRINT printed pages 1-3.

The following output shows a portion of the results of this example.

Example: Traversing a Set 41

Output 2.3 Traversing a Set

 This is an Area Sweep of the DEPT-EMPLOYEE Set

 The Area Sweep is from the Beginning to End

 department_ department_ employee_

 Obs id department_name head id firstname lastname street

 1 2000 ACCOUNTING AND PAYROLL 11 69 JUNE BLOOMER 14 ZITHER TERR

 2 2000 ACCOUNTING AND PAYROLL 11 100 EDWARD HUTTON 781 CROSS ST

 3 2000 ACCOUNTING AND PAYROLL 11 11 RUPERT JENSON 999 HARVEY ST

 24 5100 BRAINSTORMING 15 15 RENE MAKER 10 DROVER DR

 25 5100 BRAINSTORMING 15 341 RICHARD MUNYON 17 BLACKHILL DR

 26 5100 BRAINSTORMING 1 458 RICHARD WAGNER 677 GERMANY LN

 Obs city state zip phone status ssnumber startdate termdate birthdate

 1 LEXINGTON MA 01675 617555554 40 103955781 880050 500000 60042

 2 MELROSE MA 02176 617665101 00 101122333 377090 700000 41030

 3 MELROSE MA 02176 617665555 60 102234789 180092 900000 48081

 24 BOSTON MA 02123 617452141 40 101067334 378010 200000 45052

 25 WESTWOOD MA 02090 617329001 70 111100208 180111 400000 50121

 26 NATICK MA 02178 617432110 90 101177666 378060 700000 34030

 This is an Area Sweep of the DEPT-EMPLOYEE Set

 The Area Sweep is from the Beginning to End

 department_ department_ employee_

 Obs id department_name head id firstname lastname street

 27 1000 PERSONNEL 13 81 TOM FITZHUGH 450 THRUWAY ST

 28 1000 PERSONNEL 13 51 CYNTHIA JOHNSON 17 MANIFESTO DR

 29 1000 PERSONNEL 13 91 MADELINE ORGRATZI 67 RAINBOW DR

 50 3100 INTERNAL SOFTWARE 3 35 LARRY LITERATA 123 SATURDAY TERR

 51 3100 INTERNAL SOFTWARE 3 23 KATHERINE O'HEARN 12 EAST SPEEN ST

 52 3100 INTERNAL SOFTWARE 3 21 RALPH TYRO 888 FORTITHE ST

 Obs city state zip phone status ssnumber startdate termdate birthdate

 27 MANSFIELD MA 03458 617882012 30 111234567 881091 900000 56021

 28 WALPOLE MA 02546 617777888 80 501134787 877032 300000 45010

 29 KENDON MA 06182 617431191 90 123106787 880101 0 51101

 50 WILMINGTON MA 02476 617591232 30 102356783 180090 900000 55043

 51 NATICK MA 02364 617889713 40 101955671 278050 400000 54040

 52 SINGER MA 02254 617445919 10 101989345 680122 100000 55122

42 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

Example: Using the Trailing @ and the INPUT
Statement with No Arguments

This example shows the use of the trailing @ and the INPUT statement with no
arguments. This DATA step creates a SAS data set, DEPT5100, from data in the
EMPLOYEE records in department number 5100. The subschema that is used defines
the DEPARTMENT and the EMPLOYEE record with all their elements.

The example starts by issuing a BIND on the DEPARTMENT record and the
EMPLOYEE record. This CA-IDMS call is required for each record that is to be
retrieved, but the BIND function itself does not retrieve any data. To generate these
calls, a null INPUT statement is used. The same thing is done with the FIND CALC
DEPARTMENT call. Once again, this call does not retrieve any data so that the null
INPUT statement is used.

Each OBTAIN call is issued by a CA-IDMS INPUT statement with a trailing @, so the
retrieved record is placed in the buffer and held there. The ERR variable is checked. If a
call results in an error, the job terminates. If a call is successful, another CA-IDMS
INPUT statement moves the data to SAS variables in the program data vector, and the
observation is written to the appropriate SAS data set. Output 2.4 on page 45 shows
the output of this example.

data work.dept5100(drop=filler);
infile empss01 idms func=func1 record=recname
 sequence=iseq errstat=err ikey=ckey
 ikeylen=keylen keyoff=offset set=iset;

/* BIND the DEPARTMENT and EMPLOYEE */
/* records; then, if successful */
/* OBTAIN FIRST DEPARTMENT WITHIN AREA */

func1 = 'BIND';
recname = 'DEPARTMENT';
input;
if (err ne '0000') then go to staterr;
recname = 'EMPLOYEE';
input;
if (err ne '0000') then go to staterr;

/* FIND DEPT record with CALC key 5100 */

func1 = 'FIND';
recname = 'DEPARTMENT';
ckey = '5100';
keylen = 4;
offset = 0;
input;
if (err ne '0000') then go to staterr;

/* Reset the options for the next call */

func1 = 'OBTAIN';

Example: Using the Trailing @ and the INPUT Statement with No Arguments 43

recname = 'EMPLOYEE';
ckey = ' ';
keylen = 0;
offset = 0;
iseq = 'FIRST';
iset = 'DEPT-EMPLOYEE';

do while (err = '0000');

 /* OBTAIN EMPLOYEE records and test */
 /* for success */

 input @;
 if (err ne '0307' and err ne '0000') then
 go to staterr;
 if (err eq '0307') then do;
 error = 0;
 stop;
 end;
 input @1 employee_id 4.0
 @5 firstname $char10.
 @15 lastname $char15.
 @30 street $char20.
 @50 city $char15.
 @65 state $char2.
 @67 zip $char9.
 @75 phone 10.0
 @85 status $char2.
 @87 ssnumber 9.0
 @96 startdate 8.0
 @104 termdate 8.0
 @112 birthdate 8.0;
 output;
 iseq = 'NEXT';
end;
staterr:
 put @1 'ERROR: ' @10 func1 @17
 'returned err =' @37 err ;
 stop;
run;
proc print data=work.dept5100;
title1 'All the EMPLOYEES in the BRAINSTORMING
 Department';
run;

44 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

Output 2.4 Using the Trailing @ and Null INPUT Statement

 All the EMPLOYEES in the BRAINSTORMING Department

 employee_

Obs id firstname lastname street city state zip phone status ssnumber startdate termdate birthdate

 1 466 ROY ANDALE 44 TRIGGER RD FRAMINGHAM MA 03461 617554110 80 302760111 578061 500000 60030

 2 457 HARRY ARM 77 SUNSET STRIP NATICK MA 02178 617432092 30 502877014 777120 100000 34040

 3 467 C. BREEZE 200 NIGHTINGALE ST FRAMINGHAM MA 03461 617554238 70 111155669 279060 200000 34050

 4 334 CAROLYN CROW 891 SUMMER ST WESTWOOD MA 02090 617329177 60 102398011 79061 700000 44040

 5 301 BURT LANCHESTER 45 PINKERTON AVE WALTHAM MA 01476 617534110 90 112904050 675020 300000 32041

 6 15 RENE MAKER 10 DROVER DR BOSTON MA 02123 617452141 40 101067334 378010 200000 45052

 7 341 RICHARD MUNYON 17 BLACKHILL DR WESTWOOD MA 02090 617329001 70 111100208 180111 400000 50121

 8 458 RICHARD WAGNER 677 GERMANY LN NATICK MA 02178 617432110 90 101177666 378060 700000 34030

Example: Using the Trailing @ and the INPUT Statement with No Arguments 45

46 Chapter 2 • Using the SAS/ACCESS Interface to CA-IDMS

Chapter 3

Examples of SAS/ACCESS DATA
Step Programs

Introduction to Examples of SAS/ACCESS DATA Step Programs 47

Statements Common to All SAS/ACCESS DATA Step Examples 47

Performing an Area Sweep . 48

Navigating Multiple Set Relationships . 52

Using a SAS Data Set as a Transaction File . 58

Using Information in a SAS Data Set to Locate Records . 63

Supplying Transaction Information and Navigating Set Occurrences 67

Reestablishing Currency on a Record . 71

Using RETURN and GET across Executions of the DATA Step 77

Introduction to Examples of SAS/ACCESS DATA
Step Programs

This section contains several example programs designed to introduce and illustrate the
SAS/ACCESS DATA step interface to CA-IDMS.

All of the examples in this section can be executed using the sample EMPLOYEE
database provided by Computer Associates. These examples illustrate syntax and call
formats as well as logic tips for sequential and direct access of DBMS records and
transaction-oriented applications. Each example is described using numbered comments
that correspond to numbered lines of code. The output is shown for each example, but
the log files are not included. For an example of a log file, see “Introductory Example of
a DATA Step Program” on page 5. All of the examples have several statements in
common, as described in the following section.

Statements Common to All SAS/ACCESS DATA
Step Examples

All of the examples in this section contain or generate the following statements:

47

OPTIONS
The $IDMDBUG system option tells SAS to write information to the SAS log
regarding call parameter values and the formatted calls submitted to CA-IDMS. You
can use this information to debug your application and to inspect or verify the DML
calls generated by the DATA step interface. Each of the examples in this section
begin with an OPTIONS statement that specifies the $IDMDBUG option, but these
OPTIONS statements are commented out with an asterisk. To execute the OPTIONS
statement (and activate the $IDMDBUG system option), remove the asterisk.

INFILE
The INFILE statements used in these examples specify a subschema and the IDMS
keyword, which indicates that the task will be accessing CA-IDMS records. The
parameters in the INFILE statements create SAS variables whose values are used to
format DML calls and check error status codes after those calls have been issued.
None of the parameters have default values. Therefore, each variable must be
assigned a valid value or blank before each call. None of the defined variables are
included in the output data set. For specific information about each INFILE
parameter, see “Using the CA-IDMS INFILE Statement” on page 10.

BIND RECORD
A BIND function call must be issued for each record whose data is retrieved during
execution of the DATA step. The BIND RECORD statement establishes
addressability for a named record. In each of these examples, a null INPUT
statement issues a BIND RECORD statement for each record. After the call is
issued, the programs check the status code returned by CA-IDMS to be sure the call
was successful. If the call is successful, the DATA step continues. If the call is
unsuccessful, execution branches to the STATERR label, error information is written
to the SAS log, and the DATA step terminates.

STATERR statements
For each call to CA-IDMS, the examples in this section check the status code that is
returned by CA-IDMS. When CA-IDMS returns an unexpected status code, these
examples execute the statements associated with the STATERR label. These
statements do the following actions:

• issue an ERROR message to the SAS log describing the unexpected condition

• reset _ERROR_ to 0 to prevent the contents of the PDV (program data vector)
from being written to the SAS log

• issue a STOP statement to immediately terminate the DATA step.

For more information about dealing with status codes, see “Call Status Codes” on
page 36.

Performing an Area Sweep
This example performs an area sweep of all DEPARTMENT records in the ORG-
DEMO-REGION, and for each DEPARTMENT record, obtains all the EMPLOYEE
records within the DEPT-EMPLOYEE set. An area sweep makes a sequential pass based
on the physical location of a defined area for a specified record type. Records are
accessed using the OBTAIN FIRST and OBTAIN NEXT DML calls. The example
illustrates the concept of flattening out network record occurrences in an owner-member
relationship. Owner (DEPARTMENT) information is repeated for each member
(EMPLOYEE) in the set for observations written to the output SAS data set. The
numbers in the program correspond to the numbered comments following the program.

48 Chapter 3 • Examples of SAS/ACCESS DATA Step Programs

1 *options $idmdbug;
 data work.dept_employee;
2 infile empss01 idms func=func
 record=recname area=iarea sequence=seq
 errstat=stat set=inset;

 /* BIND records to be accessed */

 if _n_ = 1 then do;
3 func = 'BIND';
 recname = 'DEPARTMENT';
 input;
 if stat ne '0000' then go to staterr;

 recname = 'EMPLOYEE';
 input;
 if stat ne '0000' then go to staterr;

 /* OBTAIN FIRST DEPARTMENT record */
4 seq = 'FIRST';
 func = 'OBTAIN';
 recname = 'DEPARTMENT';
 iarea = 'ORG-DEMO-REGION';
 end;

 /* FIND and OBTAIN NEXT DEPARTMENT record */
5 if _n_ ge 2 then do;
 func = 'FIND';
 seq = 'OWNER';
 input;
 if stat ne '0000' then go to staterr;

 func = 'OBTAIN';
 seq = 'NEXT';
 recname = 'DEPARTMENT';
 iarea = 'ORG-DEMO-REGION';
 inset = ' ';
 end;

6 input @;
 if stat not in ('0000', '0307') then go
 to staterr;

 /* Stop DATA step when all DEPARTMENT records */
 /* have been accessed */

 if stat = '0307' then do;
 error = 0;
 stop;
 end;

Performing an Area Sweep 49

 input @1 department_id 4.0
 @5 department_name $char45.
 @50 department_head 4.0;

 /* OBTAIN EMPLOYEE records in set DEPT- */
 /* EMPLOYEE for CURRENT DEPARTMENT */
7 seq = 'FIRST';
 recname = 'EMPLOYEE';
 inset = 'DEPT-EMPLOYEE';
 iarea = ' ';

 do until (stat ne '0000');
 input @;
 if stat not in ('0000', '0307') then go
 to staterr;
 if stat = '0000' then do;
 input @1 employee_id 4.0
 @5 firstname $char10.
 @15 lastname $char15.
 @30 street $char20.
 @50 city $char15.
 @65 state $char2.
 @67 zip $char9.
 @75 phone 10.0
 @85 status $char2.
 @87 ssnumber 9.0
 @96 startdate yymmdd6.
 @102 termdate 6.0
 @108 birthdate yymmdd6.;
 output;
 seq = 'NEXT';
 end;
 end;
8 _error_ = 0;
 return;

9 staterr:
 put @1 'ERROR: ' @10 func @17 'RETURNED
 STATUS =' @37 stat ;
 put @1 'ERROR: INFILE parameter values are: ';
 put @1 'ERROR: ' recname= iarea= seq=
 inset=;
 put @1 'ERROR: DATA step execution
 terminating.';
 error = 0;
 stop;
 run;

 proc print data=work.dept_employee;
 format startdate birthdate date9.;
 title1 'This is an Area Sweep of the DEPT-
 EMPLOYEE Set';
 run;

50 Chapter 3 • Examples of SAS/ACCESS DATA Step Programs

1 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the OPTIONS statement.

2 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the INFILE statement.

3 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the BIND RECORD statement.

4 For the first iteration of the DATA step, initialize the call parameters to obtain the
FIRST DEPARTMENT record in the ORG-DEMO-REGION area.

5 For subsequent iterations of the DATA step, initialize the call parameters to find the
OWNER of the current EMPLOYEE record so that the program can obtain the
NEXT DEPARTMENT record in the area. The null INPUT statement forces the call
to be generated and submitted, but no data is returned to the input buffer. The status
code returned by the FIND call is checked before proceeding to the next call.

6 The INPUT @; statement holds the contents of the input buffer so the program can
check the status code returned by CA-IDMS. For a successful call, the next INPUT
statement moves DEPARTMENT information from the input buffer to the named
variables in the PDV.

When all records in the area have been accessed, CA-IDMS returns a 0307 status
code (end-of-area). The program then issues a STOP statement to terminate the
DATA step. Because there is no other end-of-file condition to normally terminate the
DATA step, the STOP statement must be issued to avoid a looping condition.
Because non-blank status codes set the automatic DATA step variable _ERROR_ to
1, _ERROR_ is reset to 0 to prevent the contents of the PDV from being written to
the SAS log.

7 After a DEPARTMENT record has been obtained, issue an OBTAIN for all
EMPLOYEES that occur within the current DEPT-EMPLOYEE set. The DO
UNTIL loop issues OBTAIN calls, verifies the status code, and moves employee
information from the input buffer to the named variables in the PDV. For each
successful OBTAIN, the INPUT @; statement holds onto the current input buffer
contents until the status code is checked. After all EMPLOYEE records in the set
have been accessed, CA-IDMS returns a status code of 0307, which terminates the
DO UNTIL loop.

8 At this point, the STAT variable must have a value of 0307. Because this code is
nonzero, _ERROR_ is reset to 0, which prevents the contents of the PDV from being
written to the SAS log.

9 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the STATERR statements.

The following output shows a portion of the output from this program.

Performing an Area Sweep 51

Output 3.1 Performing an Area Sweep

 This is an Area Sweep of the DEPT-EMPLOYEE Set

 department_ department_ employee_
 Obs id department_name head id firstname

 1 2000 ACCOUNTING AND PAYROLL 11 69 JUNE
 2 2000 ACCOUNTING AND PAYROLL 11 100 EDWARD
 3 2000 ACCOUNTING AND PAYROLL 11 11 RUPERT
 4 2000 ACCOUNTING AND PAYROLL 11 67 MARIANNE
 5 2000 ACCOUNTING AND PAYROLL 11 106 DORIS
 6 2000 ACCOUNTING AND PAYROLL 11 101 BRIAN
 7 3200 COMPUTER OPERATIONS 4 4 HERBERT
 8 3200 COMPUTER OPERATIONS 4 32 JANE

 Obs lastname street city state zip phone

 1 BLOOMER 14 ZITHER TERR LEXINGTON MA 01675 617555554
 2 HUTTON 781 CROSS ST MELROSE MA 02176 617665101
 3 JENSON 999 HARVEY ST MELROSE MA 02176 617665555
 4 KIMBALL 561 LEXINGTON AVE LITTLETON MA 01239 617492121
 5 KING 716 MORRIS ST MELROSE MA 02176 617665616
 6 NICEMAN 60 FLORENCE AVE MELROSE MA 02176 617665431
 7 CRANE 30 HERON AVE KINGSTON NJ 21341 201334143
 8 FERNDALE 60 FOREST AVE NEWTON MA 02576 617888811

 Obs status ssnumber startdate termdate birthdate

 1 40 103955781 880050 500000 60042
 2 00 101122333 377090 700000 41030
 3 60 102234789 180092 900000 48081
 4 20 102277887 878091 900000 49042
 5 10 106784551 680081 600000 60091
 6 50 103345611 80050 600000 55121
 7 30 101677745 177051 400000 42032
 8 20 103456789 179090 900000 58011

Navigating Multiple Set Relationships
This example shows how to navigate multiple set relationships and use direct access
methods involving database record keys. The output consists of observations containing
related employee, office, and dental claim information. Observations are only output for
employees that have dental claim record occurrences. To gather the information, the
program performs an area sweep for the DEPARTMENT records and uses the FIND
command to establish currency and navigate the DEPT-EMPLOYEE, OFFICE-
EMPLOYEE, EMP-COVERAGE, and COVERAGE-CLAIMS sets. By accepting and
storing database keys, currency can be re-established on the EMPLOYEE record after
obtaining OFFICE information and before gathering COVERAGE and DENTAL
CLAIM information. The numbers in the program correspond to the numbered
comments following the program.

52 Chapter 3 • Examples of SAS/ACCESS DATA Step Programs

1 *options $idmdbug;
 data work.dental_records;
 drop tempkey;
2 infile empss01 idms func=func record=recname
 dbkey=dkey errstat=stat sequence=seq
 set=inset area=subarea;

 /* BIND the records to be accessed */
3 if _n_ = 1 then do;
 func = 'BIND';
 recname = 'EMPLOYEE';
 input;
 if stat ne '0000' then go to staterr;

 recname = 'DEPARTMENT';
 input;
 if stat ne '0000' then go to staterr;

 recname = 'COVERAGE';
 input;
 if stat ne '0000' then go to staterr;

 recname = 'DENTAL-CLAIM';
 input;
 if stat ne '0000' then go to staterr;

 recname = 'OFFICE';
 input;
 if stat ne '0000' then go to staterr;
 end;

 /* FIND FIRST/NEXT DEPARTMENT record in */
 /* area ORG-DEMO-REGION */
4 seq = 'NEXT';
 if _n_ = 1 then seq = 'FIRST';
 func = 'FIND';
 recname = 'DEPARTMENT';
 subarea = 'ORG-DEMO-REGION';
 inset = ' ';
 input;
 if stat not in ('0000', '0307') then go to
 staterr;

 /* STOP DATA step execution if no more */
 /* DEPARTMENT records */
5 if stat = '0307' then do;
 error = 0;
 stop;
 end;

6 do until (stat ne '0000');

Navigating Multiple Set Relationships 53

 /* OBTAIN NEXT EMPLOYEE record */

 func = 'OBTAIN';
 seq = 'NEXT';
 recname = 'EMPLOYEE';
 inset = 'DEPT-EMPLOYEE';
 input @;
 if stat not in ('0000','0307') then go to
 staterr;
 if stat = '0000' then do;
 input @1 employee_id 4.0
 @5 firstname $char10.
 @15 lastname $char15.
 @30 street $char20.
 @50 city $char15.
 @65 state $char2.
 @67 zip $char9.
 @76 phone 10.0
 @86 status $char2.
 @88 ssnumber $char9.
 @109 birthdate yymmdd6.;

 /* ACCEPT DBKEY for current EMPLOYEE and */
 /* store in tempkey */
7 func = 'ACCEPT';
 seq = 'CURRENT';
 dkey = ' ';
 inset = ' ';
 input;
 if stat ne '0000' then go to staterr;
 tempkey=dkey;

 /* OBTAIN OFFICE record for current */
 /* EMPLOYEE */
8 func = 'OBTAIN';
 seq = 'OWNER';
 dkey = ' ';
 inset = 'OFFICE-EMPLOYEE';
 input @;
 if stat ne '0000' then go to staterr;
 input @1 office_code $char3.
 @4 office_street $char20.
 @24 office_city $char15.
 @39 office_state $char2.
 @41 office_zip $char9.;

 /* FIND EMPLOYEE using DBKEY stored in */
 /* tempkey */
9 func = 'FIND';
 recname = ' ';
 dkey = tempkey;
 seq = ' ';
 inset = ' ';

54 Chapter 3 • Examples of SAS/ACCESS DATA Step Programs

 input;
 if stat ne '0000' then go to staterr;

 /* FIND FIRST COVERAGE record for */
 /* current EMPLOYEE */
10 func = 'FIND';
 recname = 'COVERAGE';
 dkey = ' ';
 seq = 'FIRST';
 inset = 'EMP-COVERAGE';
 input;
 if stat ne '0000' then go to staterr;

 /* OBTAIN LAST DENTAL-CLAIM record */
 /* within COVERAGE-CLAIMS */
 /* Observations are only OUTPUT for */
 /* employees with dental claim records */

11 func = 'OBTAIN';
 recname = 'DENTAL-CLAIM';
 seq = 'LAST';
 inset = 'COVERAGE-CLAIMS';
 input @;
 if stat not in ('0000','0307') then go to
 staterr;
 do while (stat eq '0000');
 input @1 claim_year $2.
 @3 claim_month $2.
 @5 claim_day $2.
 @7 claim_firstname $10.
 @17 claim_lastname $15.
 @32 birthyear $2.
 @34 birthmonth $2.
 @36 birthday $2.
 @38 sex $1.
 @39 relation $10.
 @49 dds_firstname $10.
 @59 dds_lastname $15.
 @74 ddsstreet $20.
 @94 ddscity $15.
 @109 ddsstate $2.
 @111 ddszip $9.
 @120 license $6.
 @126 num_procedure ib2.
 @131 tooth_number $2.
 @133 service_year $2.
 @135 service_month $2.
 @137 service_day $2.
 @139 procedure_code $4.
 @143 descservice $60.
 @203 fee pd5.2;
 output;

 /* OBTAIN PRIOR DENTAL-CLAIM record */

Navigating Multiple Set Relationships 55

 seq = 'PRIOR';
 input @;
 end;

 /* When DENTAL-CLAIM records have been */
 /* processed, release INPUT buffer and */
 /* reset STAT to OBTAIN NEXT EMPLOYEE */
12 if stat = '0307' then do;
 stat = '0000';
 input;
 end;
 else go to staterr;
 end;
 end;

 /* When all EMPLOYEEs have been processed, */
 /* reset ERROR flag and continue with next */
 /* DEPARTMENT */

13 _error_ = 0;
 return;

14 STATERR:
 put @1 'ERROR: ' @10 func @17 'RETURNED
 STATUS =' @37 stat;
 put @1 'ERROR: INFILE parameter values are: ';
 put @1 'ERROR: ' recname= seq= inset= dkey=
 subarea=;
 put @1 'ERROR: DATA step execution
 terminating.';
 error = 0;
 stop;
 run;

 proc print data=work.dental_records;
 format birthdate date9.;
 title1 'Dental Claim Information';
 run;

1 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the OPTIONS statement.

2 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the INFILE statement.

3 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the BIND RECORD statement.

4 The first time the DATA step executes, the FIND command locates the FIRST
DEPARTMENT record in the area. For subsequent DATA step iterations, initialize
the call parameters to find the NEXT DEPARTMENT record in the area. The null
INPUT statement generates and submits the call, but no data is returned to the input
buffer. A SAS IF statement checks the status code returned by the FIND call.

5 As DEPARTMENT records are located, the program checks the status code returned
by CA-IDMS. When all records in the area have been accessed, CA-IDMS returns a

56 Chapter 3 • Examples of SAS/ACCESS DATA Step Programs

0307 status code (end-of-area). The program then issues a STOP statement to
terminate the DATA step. Since there is no other end-of-file condition to normally
terminate the DATA step, the STOP statement must be issued to avoid a looping
condition. Also, non-blank status codes set the automatic DATA step variable
ERROR to 1, so _ERROR_ is reset to 0, which prevents the contents of the PDV
from being written to the SAS log.

6 For the current DEPARTMENT, the program must access all EMPLOYEE records
in the DEPT-EMPLOYEE set. The DO UNTIL loop executes until the status code
that is returned from CA-IDMS is not equal to 0000. For unexpected status codes,
the statements associated with the STATERR label are executed, and the loop
terminates when the end-of-set status code (0307) is encountered. An OBTAIN is
used to retrieve the EMPLOYEE records. After the status code is verified to be
successful, data is moved from the input buffer to the PDV by executing the INPUT
statement. The first INPUT @; statement forces the call to be submitted and enables
a returned status code to be checked before any attempt to move data from the input
buffer to the PDV. This process eliminates any possibility of moving invalid data
into the PDV and avoids unnecessary data conversions when the call fails.

7 After an EMPLOYEE record has been obtained, the ACCEPT command takes the
record's database key and stores it in DKEY, the variable defined by the DBKEY=
INFILE parameter. The value is then stored in a variable called TEMPKEY because
the DKEY variable must be set to blanks to generate the next call correctly. By
saving the record's database key, the program can re-establish currency on the
EMPLOYEE record after obtaining OWNER information from the OFFICE record
in the OFFICE-EMPLOYEE set.

8 OFFICE records are retrieved by issuing an OBTAIN OWNER within the OFFICE-
EMPLOYEE set. The INPUT @; statement generates and submits the call. For a
successful OBTAIN, OFFICE information is moved from the held input buffer to the
PDV.

9 The program is now ready to establish currency back to the EMPLOYEE record
current in the DEPT-EMPLOYEE set. The database key value stored in TEMPKEY
is used to format a FIND DBKEY command. The null INPUT statement submits the
call and the status code is checked to be sure it was successful. Any status code other
than 0000 routes execution to the STATERR label.

10 Now current on EMPLOYEE, a FIND is issued to locate the FIRST COVERAGE
record in the EMP-COVERAGE set. For any status code not equal to 0000,
execution is routed to the STATERR label.

11 The goal is to process all the DENTAL-CLAIM records in the COVERAGE-
CLAIMS set for the current COVERAGE record. An OBTAIN LAST is submitted
by the INPUT @; statement, and if DENTAL-CLAIM records exist in the set, then
the subsequent INPUT statement maps the returned data from the input buffer to the
PDV. At this point, a complete observation--one containing EMPLOYEE, OFFICE,
and DENTAL-CLAIM data--is output to the SAS data set. The sequence variable
SEQ is assigned a value of PRIOR so that subsequent iterations of the DO WHILE
loop submit an OBTAIN PRIOR call. The DO WHILE continues executing until the
OBTAIN PRIOR returns a status code not equal to 0000.

12 If the status code indicates end-of-set (0307), then the status variable is reset to 0000.
The assignment is done to enable the DO UNTIL loop (see number 6) to continue
executing and issuing OBTAIN calls for employees in the current department. The
null INPUT statement is issued to release the buffer held by the INPUT @;
statement within the DO WHILE loop. In this example, because there was a held
buffer, the null INPUT statement does not attempt to generate and submit a DML
call. The buffer must be released so that the next DML call, the OBTAIN NEXT

Navigating Multiple Set Relationships 57

EMPLOYEE WITHIN DEPT-EMPLOYEE, can be generated. For any other status
code, execution branches to the STATERR label.

13 At this point, the STAT variable must have a value of 0307. Since this code is
nonzero, _ERROR_ is reset to 0, which prevents the contents of the PDV from being
written to the SAS log.

14 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the STATERR statements.

The following output shows a portion of the output from this program.

Output 3.2 Navigating Multiple Set Relationships

 Dental Claim Information

 employee_
 Obs id firstname lastname street city state zip

 1 4 HERBERT CRANE 30 HERON AVE KINGSTON NJ 21341
 2 30 HENRIETTA HENDON 16 HENDON DR WELLESLEY MA 02198

 office_
 Obs phone status ssnumber birthdate code office_street

 1 2013341433 01 016777451 420321 001 20 W BLOOMFIELD ST
 2 6178881212 01 011334444 331006 002 567 BOYLSTON ST

 office_ office_ claim_ claim_ claim_ claim_ claim_
 Obs office_city state zip year month day firstname lastname

 1 SPRINGFIELD MA 02076 80 10 04 JESSICA CRANE
 2 BOSTON MA 02243 77 05 23 HELOISE HENDON

 dds_ dds_
 Obs birthyear birthmonth birthday sex relation firstname lastname

 1 57 01 11 F WIFE DR PEPPER
 2 68 03 15 F DAUGHTER SAL SARDONICUS

 num_ tooth_
 Obs ddsstreet ddscity ddsstate ddszip license procedure number

 1 78 COLA RD PRINCETON NJ 01762 877073 2 08
 2 402 NATURE'S WAY NEEDHAM MA 02243 459631 1 14

 service_ service_ service_ procedure_
 Obs year month day code descservice fee

 1 80 09 16 0076 FILLING 14
 2 77 05 02 0076 FILLING 14

Using a SAS Data Set as a Transaction File
This example illustrates how to use an input SAS data set as a transaction file to supply
parameter values for direct access DML calls. These calls obtain CA-IDMS records
using CALC key values. The transaction data set Work.Emp supplies CALC key values
for EMPLOYEE records. The program then accesses EMPOSITION records in the

58 Chapter 3 • Examples of SAS/ACCESS DATA Step Programs

EMP-EMPOSITION set to create an output SAS data set that contains all of the position
information for the employees named in Work.Emp The DATA step terminates after all
observations from Work.Emp have been read. The numbers in the program correspond
to the numbered comments following the program.

1 *options $idmdbug;
2 data work.emp;
 input id $4.;

 datalines;
 0471
 0301
 0004
 0091
 1002
 ;
 data work.emp_empos;
 drop id chkrec nxtrec;
 length chkrec $ 29;
3 infile empss01 idms func=func record=recname
 ikeylen=keyl errstat=stat sequence=seq
 set=inset ikey=ckey dbkey=dkey;

 /* BIND the records to be accessed */
4 if _n_ = 1 then do;
 func = 'BIND';
 recname = 'EMPLOYEE';
 input;
 if stat ne '0000' then go to staterr;

 recname = 'EMPOSITION';
 input;
 if stat ne '0000' then go to staterr;
 end;

 /* OBTAIN EMPLOYEE records using CALC key */
 /* from EMP data set */
5 set work.emp;
 func = 'OBTAIN';
 ckey = id;
 keyl = 4;
 recname = 'EMPLOYEE';
 input @;
 if stat not in ('0000', '0326') then go to
 staterr;
 if stat = '0000' then do;
 input @1 employee_id 4.0
 @5 firstname $char10.
 @15 lastname $char15.
 @30 street $char20.
 @50 city $char15.
 @65 state $char2.
 @67 zip $char9.
 @76 phone 10.0

Using a SAS Data Set as a Transaction File 59

 @86 status $char2.
 @88 ssnumber $char9.
 @97 emp_start yymmdd6.
 @103 emp_term 6.0
 @109 birthdate yymmdd6.;

 /* OBTAIN LAST EMPOSITION record in */
 /* EMP-EMPOSITION set */
6 func = 'OBTAIN';
 seq = 'LAST';
 ckey = ' ';
 keyl = 0;
 dkey = ' ';
 recname = 'EMPOSITION';
 inset = 'EMP-EMPOSITION';
 input @;
 if stat not in ('0000', '0326') then go to
 staterr;
 if stat = '0000' then do;
 chkrec = put(employee_id,z4.) ||firstname ||
 lastname;

 /* Process all EMPOSITION records for */
 /* current EMPLOYEE */
7 do until (nxtrec = chkrec);
 input @1 pos_start yymmdd6.
 @7 pos_finish 6.0
 @13 salarygrade 2.0
 @15 salary pd5.2
 @20 bonus pd2.0
 @22 commission pd2.0
 @24 overtime pd2.0;
 output;

 /* ACCEPT CURRENCY for PRIOR record in */
 /* EMP-EMPOSITION set */
8 func = 'ACCEPT';
 dkey = ' ';
 seq = 'PRIOR ';
 recname = ' ';
 inset = 'EMP-EMPOSITION';
 input;
 if stat eq '0000' then do;

 /* OBTAIN current record using the DBKEY */
9 func = 'OBTAIN';
 seq = ' ';
 inset = ' ';
 input @1 nxtrec $29. @;
 if stat ne '0000' then go to staterr;
 end;
 end;

60 Chapter 3 • Examples of SAS/ACCESS DATA Step Programs

 end;
10 else do;
 put 'WARNING: No EMPOSITION record for
 EMPID= ' id;
 put 'WARNING: Execution continues with
 next EMPID.';
 error = 0;
 end;
 end;
 else do;
 put 'WARNING: No EMPLOYEE record for EMPID= '
 id;
 put 'WARNING: Execution continues with next
 EMPID.';
 error = 0;
 end;
 return;

11 staterr:
 put @1 'ERROR: ' @10 func @17 'RETURNED
 STATUS =' @37 stat;
 put @1 'ERROR: INFILE parameter values are: ';
 put @1 'ERROR: ' recname= ckey= seq= inset=
 keyl= dkey=;
 put @1 'ERROR: DATA step execution
 terminating.';
 error = 0;
 stop;
 run;

 proc print data=work.emp_empos;
 format emp_start birthdate pos_start
 date9. salary dollar12.2
 title1 'Positions Held by Specified
 Employees';
 title2 'Listed in Ascending Order by
 Initdate/Termdate';
 run;

1 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the OPTIONS statement.

2 This DATA step execution creates the transaction data set Work.Emp The 4-byte
character variable ID contains CALC key values that are used to access EMPLOYEE
records directly by employee ID.

3 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the INFILE statement.

4 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the BIND RECORD statement.

5 An observation is read from Work.Emp, and the current ID value is used as a CALC
key for obtaining the EMPLOYEE. The length of the CALC key is specified with the
IKEYLEN= variable KEYL. The INPUT @; statement submits the call and places a
hold on the input buffer so that the status code can be checked. For any unexpected
status code, execution branches to the STATERR label. A status code of 0000 directs

Using a SAS Data Set as a Transaction File 61

execution to the INPUT statement that maps data from the held input buffer to the
PDV and then releases the buffer.

6 The program now attempts to obtain EMPOSITION records in the order of oldest
(LAST) to most current (FIRST). First, an OBTAIN LAST call is issued for the
EMPOSITION record in set EMP-EMPOSITION. The INPUT @; statement
submits the call and holds the buffer so that the status code can be checked.
Execution branches to the STATERR label for any unexpected status code. For
status code 0000, a variable called CHKREC is assigned a value that consists of the
current employee's CALC key, first name, and last name. CHKREC is used in the
condition of the DO UNTIL loop described in the next step.

7 The DO UNTIL loop navigates the EMP-EMPOSITION set occurrences in reverse
order. The condition on a DO UNTIL loop is evaluated at the bottom of the loop
after the statements in the loop have been executed. See number 9.

The input buffer already contains an EMPOSITION record. The INPUT statement
maps EMPOSITION data from the held buffer into the variables in the PDV. At this
point, a complete observation exists and is output to the Work.Emp_Empos data set.
No observation is written when no EMPOSITION records exist for a specified
employee.

8 To move in reverse order, the ACCEPT PRIOR call is generated and issued within
the EMP-EMPOSITION set to return the database key of the prior record in the
current set occurrence. The database key is stored in the variable defined by the
DBKEY= parameter in the INFILE statement, DKEY. The null INPUT statement
submits the call. For any status code not equal to 0000, execution branches to the
STATERR label.

9 For a successful ACCEPT call, an OBTAIN is issued using the database key stored
in DKEY. Using this method to navigate the set implies that no end-of-set status
code is set. To determine whether an end-of-set condition exists, the INPUT
statement submits the OBTAIN, moves the first 29 bytes of data into a character
variable called NXTREC and places a hold on the buffer contents. For a successful
OBTAIN, execution resumes with the evaluation of the DO UNTIL condition. If
CHKREC equals NXTREC, then the program is current on the EMPLOYEE (owner
of the set) so that the loop terminates. If the variables are not equal, then the record
in the buffer is an EMPOSITION record, so data is moved into the PDV from the
input buffer, and another observation is output for the current employee.

10 This group of statements enables execution to continue when either no
EMPOSITION records exist for the specified employee or no EMPLOYEE record
exists for the CALC value specified in the transaction data set. In both cases,
informative WARNING messages are written to the SAS log, and _ERROR_ is reset
to 0. This resetting prevents the contents of the PDV from being written to the SAS
log.

11 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the STATERR statements.

The following output shows a portion of the output from this program.

62 Chapter 3 • Examples of SAS/ACCESS DATA Step Programs

Output 3.3 Using a SAS Data Set as a Transaction File

 Positions Held by Specified Employees
 Listed in Ascending Order by Initdate/Termdate
 employee_
 Obs id firstname lastname street city state

 1 471 THEMIS PAPAZEUS 234 TRANSWORLD ST NORTHBORO MA
 2 471 THEMIS PAPAZEUS 234 TRANSWORLD ST NORTHBORO MA
 3 301 BURT LANCHESTER 45 PINKERTON AVE WALTHAM MA
 4 301 BURT LANCHESTER 45 PINKERTON AVE WALTHAM MA
 5 301 BURT LANCHESTER 45 PINKERTON AVE WALTHAM MA
 6 4 HERBERT CRANE 30 HERON AVE KINGSTON NJ
 7 4 HERBERT CRANE 30 HERON AVE KINGSTON NJ
 8 4 HERBERT CRANE 30 HERON AVE KINGSTON NJ
 9 91 MADELINE ORGRATZI 67 RAINBOW DR KENDON MA

 Obs zip phone status ssnumber emp_start emp_term birthdate pos_start

 1 03256 6174561277 01 022887770 07SEP1978 0 04MAR1935 07SEP1978
 2 03256 6174561277 01 022887770 07SEP1978 0 04MAR1935 01JAN1982
 3 01476 6175341109 01 129040506 03FEB1975 0 19APR1932 03FEB1975
 4 01476 6175341109 01 129040506 03FEB1975 0 19APR1932 03FEB1977
 5 01476 6175341109 01 129040506 03FEB1975 0 19APR1932 03FEB1980
 6 21341 2013341433 01 016777451 14MAY1977 0 21MAR1942 14MAY1977
 7 21341 2013341433 01 016777451 14MAY1977 0 21MAR1942 15NOV1979
 8 21341 2013341433 01 016777451 14MAY1977 0 21MAR1942 14MAY1982
 9 06182 6174311919 01 231067878 10OCT1980 0 16OCT1951 10OCT1980

 pos_
 Obs finish salarygrade salary bonus commission overtime

 1 811231 72 $90,000.00 10 0 0
 2 0 82 $100,000.00 10 0 0
 3 770202 52 $39,000.00 7 0 0
 4 800202 52 $45,000.00 7 0 0
 5 0 53 $54,500.00 7 0 0
 6 791114 71 $60,000.00 10 0 0
 7 820513 71 $70,000.00 10 0 0
 8 0 71 $75,000.00 10 0 0
 9 0 43 $39,000.00 7 0 0

Using Information in a SAS Data Set to Locate
Records

This example, like the previous example, uses the information stored in a SAS data set to
locate records in the CA-IDMS database. In this case, not only do the observations in the
transaction data set Work.Office provide CALC information for the OFFICE record,
they supply sort key information as well for the EMPLOYEE record. Therefore, the
program uses both pieces of information to locate a specific occurrence of the OFFICE
record, followed by a specific occurrence of the EMPLOYEE record in the OFFICE-
EMPLOYEE set occurrence. If any of the transaction information is incorrect, a
WARNING message is issued and no observation is output to Work.Emp. The numbers
in the program correspond to the numbered comments following the program.

Using Information in a SAS Data Set to Locate Records 63

1 *options $idmdbug;
2 data work.office;
 input offkey $3. emp $25.;
 datalines;
 001GARFIELD JENNIFER
 002BLOOMER JUNE
 005JOE SMITH
 008WAGNER RICHARD
 010ANDALE ROY
 ;
 data work.emp;
 drop offkey emp;

3 infile empss01 idms func=func record=recname
 ikey=ckey ikeylen=keyl errstat=stat
 sequence=seq set=inset sortfld=skey;

 /* BIND the records to be accessed */

4 if _n_ = 1 then do;
 func = 'BIND';
 recname = 'EMPLOYEE';
 input;
 if stat ne '0000' then go to staterr;

 recname = 'OFFICE';
 input;
 if stat ne '0000' then go to staterr;
 end;

 /* OBTAIN OFFICE record based on CALC key */

5 set work.office;
 func = 'OBTAIN';
 ckey = offkey;
 keyl = 3;
 recname = 'OFFICE';
 inset = ' ';
 skey = ' ';
 input @;
 if stat not in ('0000', '0326') then go to
 staterr;
 if stat = '0000' then do;
 input @1 office_code $char3.
 @4 office_street $char20.
 @24 office_city $char15.
 @39 office_state $char2.
 @41 office_zip $char9.
 @50 officephone1 9.0
 @59 officephone2 9.0
 @68 officephone3 9.0
 @77 areacode $char3.
 @80 speeddial $char3.;

64 Chapter 3 • Examples of SAS/ACCESS DATA Step Programs

 /* FIND EMPLOYEE record within set */
 /* using SORT key */

6 func = 'FIND';
 skey = emp;
 ckey = ' ';
 keyl = 25;
 recname = 'EMPLOYEE';
 inset = 'OFFICE-EMPLOYEE ';
 input;
 if stat not in ('0000', '0326') then
 go to staterr;
 if stat = '0000' then do;

 /* OBTAIN CURRENT record */

7 func = 'OBTAIN';
 seq = 'CURRENT';
 skey = ' ';
 keyl = 0;
 inset = ' ';
 input @;
 if stat ne '0000' then go to staterr;
 input @1 employee_id 4.0
 @5 firstname $char10.
 @15 lastname $char15.
 @30 street $char20.
 @50 city $char15.
 @65 state $char2.
 @67 zip $char9.
 @76 phone 10.0
 @86 status $char2.
 @88 ssnumber $char9.
 @97 startdate yymmdd6.
 @103 termdate 6.0
 @109 birthdate yymmdd6.;
 output;
 end;

8 else do;
 put 'WARNING: No EMPLOYEE record for
 SORT key= ' emp '.';
 put 'WARNING: Execution continues with
 next OFFICE CALC.';
 put;
 error = 0;
 end;
 end;
 else do;
 put 'WARNING: No OFFICE record for CALC
 key= 'offkey '.';
 put 'WARNING: Execution continues with
 next OFFICE CALC.';
 put;

Using Information in a SAS Data Set to Locate Records 65

 error = 0;
 end;
 return;

9 STATERR:
 put @1 'ERROR: ' @10 func @17 'RETURNED
 STATUS =' @37 stat;
 put @1 'ERROR: INFILE parameter values are: ';
 put @1 'ERROR: ' recname= ckey= keyl= seq=
 inset= skey=;
 put @1 'ERROR: DATA step execution
 terminating.';
 error = 0;
 stop;
 run;

 proc print data=work.emp;
 format startdate birthdate date9.;
 title1 'Office and Employee Information';
 title2 'as Specified in Transaction Data Set';
 run;

1 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the OPTIONS statement.

2 This DATA step execution creates the transaction data set Work.Office. The 3-byte
character variable OFFKEY contains CALC key values that are used to access
OFFICE records directly by office code. The 25-byte character variable EMP
contains SORT key values that are used to access EMPLOYEE records directly in
the EMP-NAME-NDX.

3 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the INFILE statement.

4 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the BIND RECORD statement.

5 An observation is read from Work.Office, and the current OFFKEY value is used as
a CALC value to obtain the OFFICE record. The length of the CALC key is
specified by the IKEYLEN= variable KEYL. The INPUT @; statement submits the
call and places a hold on the input buffer so that the status code can be checked. Any
unexpected status code branches execution to the STATERR label. A status code of
0000 directs execution to the INPUT statement, which maps data from the held input
buffer to the PDV, and releases the buffer.

6 The program must now locate a specific occurrence of EMPLOYEE within the
current OFFICE-EMPLOYEE set. A FIND EMPLOYEE WITHIN OFFICE-
EMPLOYEE call is generated using the sort key information in the EMP variable
read from Work.Office. The sort key length is set to 25. (The previous length of 3
applied to the OFFICE CALC key.) The null INPUT statement submits the call but
does not place a hold on the buffer. FIND does not return any data. For any
unexpected status code, execution branches to the STATERR label. If the FIND is
successful, execution continues with the next DML call.

7 Having successfully located the EMPLOYEE using the supplied index value, an
OBTAIN CURRENT call is generated so that EMPLOYEE record information can
be accessed by the program. SKEY is set to blank and KEYL is set to 0 so that their
values are not used for the OBTAIN call. The INPUT @; statement submits the
generated call and places a hold on the input buffer so that the status code can be

66 Chapter 3 • Examples of SAS/ACCESS DATA Step Programs

checked. Any status code not equal to 0000 routes execution to the STATERR label.
For a successful OBTAIN, the INPUT statement maps EMPLOYEE record data
from the input buffer to the specified variables in the PDV and releases the input
buffer. At this point, the OUTPUT statement writes an observation to the output data
set. Only observations that contain both office and employee information are output.

8 This group of statements enables execution to continue when either no EMPLOYEE
record exists for the specified sort key value or no OFFICE record exists for the
specified CALC value from Work.Office. In both cases, informative WARNING
messages are written to the SAS log and _ERROR_ is reset to 0, which prevents the
contents of the PDV from being written to the SAS log.

9 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the STATERR statements.

The following output shows a portion of the output from this program.

Output 3.4 Using a Data Set to Locate Records

 Office and Employee Information
 as Specified in Transaction Data Set

 office_ office_ office_
 Obs code office_street office_city state zip officephone1

 1 001 20 W BLOOMFIELD ST SPRINGFIELD MA 02076 369772100
 2 002 567 BOYLSTON ST BOSTON MA 02243 956237795
 3 008 910 E NORTHSOUTH AVE WESTON MA 02371 367919136

 employee_
 Obs officephone2 officephone3 areacode speeddial id firstname

 1 0 0 3 JENNIFER
 2 625719562 398000000 69 JUNE
 3 792923671 327000000 458 RICHARD

 Obs lastname street city state zip phone status

 1 GARFIELD 110A FIRTH ST STONEHAM MA 02928 6173321967 01
 2 BLOOMER 14 ZITHER TERR LEXINGTON MA 01675 6175555544 01
 3 WAGNER 677 GERMANY LN NATICK MA 02178 6174321109 01

 Obs ssnumber startdate termdate birthdate

 1 021994516 21JAN1977 0 18AUG1945
 2 039557818 05MAY1980 0 25APR1960
 3 011776663 07JUN1978 0 04MAR1934

Supplying Transaction Information and
Navigating Set Occurrences

This example introduces alternate techniques for supplying transaction information and
for navigating set occurrences. It also uses program logic to subset records that are
accessed to produce output that meets specified criteria. A macro variable supplies the

Supplying Transaction Information and Navigating Set Occurrences 67

transaction information that produces the subset of employee data. An OBTAIN Nth
EMPLOYEE WITHIN DEPT-EMPLOYEE call is used to navigate the current set
occurrence.

Using macro variables is one tool for providing transaction information. SAS data set
variables have been used in previous examples; another method might make use of an
SCL variable. The numbers in the program correspond to the numbered comments
following the program.

1 *options $idmdbug;
2 %let hireyear = 1977;

 data work.emp;
 format initdate date9.;
 drop i;
3 infile empss01 idms func=func record=recname
 area=subarea errstat=stat sequence=seq
 set=inset;

 /* BIND records to be accessed */
4 if _n_ = 1 then do;
 func = 'BIND';
 recname = 'EMPLOYEE';
 input;
 if stat ne '0000' then go to staterr;

 recname = 'DEPARTMENT';
 input;
 if stat ne '0000' then go to staterr;
 end;

 /* FIND FIRST/NEXT DEPARTMENT record in AREA */
5 seq = 'NEXT';
 if _n_ = 1 then seq = 'FIRST';
 func = 'FIND';
 recname = 'DEPARTMENT';
 subarea = 'ORG-DEMO-REGION';
 inset = ' ';
 input;
 if stat not in ('0000', '0307') then go
 to staterr;

 /* STOP DATA step execution if no more */
 /* DEPARTMENT records */
6 if stat = '0307' then do;
 error = 0;
 stop;
 end;

 /* OBTAIN nth EMPLOYEE within
 DEPT-EMPLOYEE */
7 i=0;
 do until (stat ne '0000');

68 Chapter 3 • Examples of SAS/ACCESS DATA Step Programs

 i + 1;
 func = 'OBTAIN';
 seq = trim(left(put(i,8.)));
 recname = 'EMPLOYEE';
 inset = 'DEPT-EMPLOYEE';
 subarea = ' ';
 input @;
 if stat not in ('0000', '0307') then
 go to staterr;
 if stat = '0000' then do;
 input @1 employee_id 4.0
 @5 firstname $char10.
 @15 lastname $char15.
 @97 initdate yymmdd6.;

 /* For employees hired in 1977 FIND */
 /* CURRENT DEPARTMENT */
8 if year(initdate) = &hireyear then do;
 func = 'FIND';
 seq = 'CURRENT';
 recname = 'DEPARTMENT';
 inset = ' ';
 input;
 if stat ne '0000' then go to staterr;

 /* OBTAIN CURRENT DEPARTMENT info */
 /* and OUTPUT */
9 func = 'OBTAIN';
 seq = 'CURRENT';
 recname = ' ';
 input @;
 if stat ne '0000' then go to staterr;
 input @1 department_id 4.0
 @5 department_name $char45.;
 output;
 end;
 end;
 end;
10 _error_ = 0;
 return;
11 staterr:
 put @1 'ERROR: ' @10 func @17 'RETURNED
 STATUS =' @37 stat;
 put @1 'ERROR: INFILE parameter values are: ';
 put @1 'ERROR: ' recname= subarea= seq=
 inset=;
 put @1 'ERROR: DATA step execution
 terminating.';
 error = 0;
 stop;
 run;

 proc print data=work.emp;
 title "Departments that Hired Employees in

Supplying Transaction Information and Navigating Set Occurrences 69

 &hireyear";
 run;

1 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the OPTIONS statement.

2 The %LET statement assigns the value 1977 to a newly defined macro variable
called HIREYEAR. This macro variable is used to supply subset criteria as part of
the condition in the IF statement in step 7.

3 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the INFILE statement.

4 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the BIND RECORD statement.

5 On the first DATA step iteration, the FIND command locates the FIRST
DEPARTMENT record in the area. For subsequent DATA step iterations, initialize
the call parameters to find the NEXT DEPARTMENT record in the area. The null
INPUT statement generates and submits the call, but no data is returned to the input
buffer. The IF statement checks the status code returned by the FIND call.

6 As DEPARTMENT records are located, the program checks the status code returned
by CA-IDMS. When all records in the area have been accessed, CA-IDMS returns a
0307 status code (end-of-area). The program then issues a STOP statement to
terminate the DATA step. Since there is no other end-of-file condition to normally
terminate the DATA step, the STOP statement must be issued to avoid a looping
condition. Also, non-blank status codes set the automatic DATA step variable
ERROR to 1. _ERROR_ is reset to 0, which prevents the contents of the PDV
from being written to the SAS log.

7 At this point, the program has currency on a DEPARTMENT record and needs to
navigate the current occurrence of the DEPT-EMPLOYEE set. The DO UNTIL loop
generates an OBTAIN Nth EMPLOYEE call for each EMPLOYEE record in the set.
Valid N values are generated using the loop counter variable i and the PUT, LEFT,
and TRIM functions. The N values are stored in the variable SEQ.

The INPUT @; statement submits the call and places a hold on the input buffer
while the status code is checked. For any unexpected status codes, execution
branches to the STATERR label. For a successful OBTAIN Nth call, the INPUT
statement maps employee information from the input buffer to the specified variables
in the PDV and releases the input buffer.

The DO UNTIL loop terminates when CA-IDMS returns an end-of-set status code
(0307).

8 The program now evaluates the condition in the IF statement and enters the DO-
END block of code only if the employee INITDATE indicates a hire year of 1977.
The %LET statement assigned the value 1977 to macro variable &HIREYEAR
before the DATA step executed. (See number 2.) This variable was resolved when
the DATA step was compiled. If the year portion of the employee INITDATE is
1977, then a FIND CURRENT DEPARTMENT is generated to obtain the owner of
the current EMPLOYEE record. The null INPUT statement submits the call but does
not place a hold on the input buffer because FIND does not return any data. If the
FIND returns any status code other than 0000, execution branches to label
STATERR.

9 After the owner DEPARTMENT record is located, an OBTAIN CURRENT is
generated to request that the DEPARTMENT record be placed into the input buffer.
The INPUT @; statement submits the call and places a hold on the input buffer
while the status is checked. For any status code other than 0000, execution branches

70 Chapter 3 • Examples of SAS/ACCESS DATA Step Programs

to the STATERR label. For a successful OBTAIN call, the INPUT statement maps
department information from the input buffer to the specified variables in the PDV
and releases the input buffer. The OUTPUT statement writes the current observation
to data set Work.Emp. To avoid unnecessary input/output for departments that
contain no employees with a hire year of 1977, the program postpones the OBTAIN
of DEPARTMENT until the EMPLOYEE qualification criteria have been met. If
you anticipate that many employees across multiple departments were hired in
&HIREYEAR, then you could either OBTAIN DEPARTMENT before navigating
the DEPT-EMPLOYEE set or add additional logic to OBTAIN CURRENT only
once for the current set occurrence.

10 At this point, the STAT variable must have a value of 0307. Since this code is
nonzero, _ERROR_ is reset to 0, which prevents the contents of the PDV from being
written to the SAS log.

11 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the STATERR statements.

The following output shows a portion of the output from this program.

Output 3.5 Supplying Transaction Information

 Departments that Hired Employees in 1977

 d
 e
 d p
 e a
 e p r
 m a t
 p f r m
 i l i l t e
 n o r a m n
 i y s s e t
 t e t t n _
 d e n n t n
 O a _ a a _ a
 b t i m m i m
 s e d e e d e

 1 07SEP1977 100 EDWARD HUTTON 2000 ACCOUNTING AND PAYROLL
 2 14MAY1977 4 HERBERT CRANE 3200 COMPUTER OPERATIONS
 3 04MAR1977 371 BETH CLOUD 5300 BLUE SKIES
 4 01DEC1977 457 HARRY ARM 5100 BRAINSTORMING
 5 23MAR1977 51 CYNTHIA JOHNSON 1000 PERSONNEL
 6 14DEC1977 119 CHARLES BOWER 4000 PUBLIC RELATIONS
 7 07JUL1977 158 JOCK JACKSON 4000 PUBLIC RELATIONS
 8 08SEP1977 149 LAURA PENMAN 4000 PUBLIC RELATIONS
 9 21JAN1977 3 JENNIFER GARFIELD 3100 INTERNAL SOFTWARE

Reestablishing Currency on a Record
This example illustrates how a program can reestablish currency on a record to complete
set navigation after accessing a record that is not contained in the current set occurrence.

In this example, a transaction SAS data set, Work.Employee, supplies a CALC key value
for the OBTAIN of an EMPLOYEE record. COVERAGE records are then obtained

Reestablishing Currency on a Record 71

within the current EMP-COVERAGE set occurrence. PLANCODE values from
employee COVERAGE records provide links to INSURANCE-PLAN records through a
CALC key. Once current on INSURANCE-PLAN, the program gathers data and uses a
stored database key to return to the current COVERAGE record. At that point, the next
COVERAGE record in the current set occurrence of EMP-COVERAGE can be
obtained. The output data set consists of observations that contain employee, coverage,
and related insurance plan data. The numbers in the program correspond to the
numbered comments following the program.

1 *options $idmdbug;
2 data work.employee;
 input empnum $4.;
 datalines;
 0007
 0471
 0000
 0301
 0004
 ;

 data work.empplan;
 drop covdbkey empnum;
3 infile empss01 idms func=func record=recname
 ikey=ckey ikeylen=keyl errstat=stat
 sequence=seq set=inset area=subarea
 dbkey=dkey;

 /* BIND records to be accessed */
4 if _n_ = 1 then do;
 func = 'BIND';
 recname = 'EMPLOYEE';
 input;
 if stat ne '0000' then go to staterr;

 recname = 'INSURANCE-PLAN';
 input;
 if stat ne '0000' then go to staterr;

 recname = 'COVERAGE ;
 input;
 if stat ne '0000' then go to staterr;
 end;

 /* OBTAIN EMPLOYEE record using CALC key */
 /* value */
5 set work.employee;
 func = 'OBTAIN';
 seq = ' ';
 inset = ' ';
 ckey = empnum;
 keyl = 4;
 recname = 'EMPLOYEE';
 input @;

72 Chapter 3 • Examples of SAS/ACCESS DATA Step Programs

 if stat not in ('0000', '0326') then go to
 staterr;
 if stat = '0000' then do;
 input @1 employee_id 4.0
 @5 firstname $char10.
 @15 lastname $char15.;

 /* OBTAIN COVERAGE records for EMPLOYEE */
6 seq = 'FIRST';
 do while (stat = '0000');
 func = 'OBTAIN';
 keyl = 0;
 ckey = ' ';
 dkey = ' ';
 recname = 'COVERAGE';
 inset = 'EMP-COVERAGE';
 input @;
 if stat not in ('0000', '0307') then go
 to staterr;
 if stat = '0000' then do;
 input @13 type $1.
 @14 plancode $3.;

 /* ACCEPT CURRENT database key */
7 func = 'ACCEPT';
 seq = 'CURRENT';
 dkey = ' ';
 input;
 if stat ne '0000' then go to staterr;
 covdbkey = dkey;

 /* FIND INSURANCE-PLAN using CALC */
8 func = 'FIND';
 ckey = plancode;
 keyl = 3;
 seq = ' ';
 recname = 'INSURANCE-PLAN';
 inset = ' ';
 dkey = ' ';
 input;
 if stat ne '0000' then go to
 staterr;

 /* OBTAIN CURRENT INSURANCE-PLAN */
 /* record */
9 func = 'OBTAIN';
 seq = 'CURRENT';
 ckey = ' ';
 keyl = 0;
 recname = ' ';
 subarea = ' ';
 input @;

Reestablishing Currency on a Record 73

 if stat ne '0000' then go to staterr;
 input @4 company_name $45.
 @105 group_number 6.0
 @111 plndeduc PD5.2
 @116 maxlfcst PD5.2
 @121 famlycst PD5.2
 @126 depcost PD5.2;
 output;

 /* FIND COVERAGE using stored */
 /* database key */
10 func = 'FIND';
 seq = ' ';
 recname = 'COVERAGE';
 dkey = covdbkey;
 input;
 if stat ne '0000' then go to staterr;
 seq = 'NEXT';
 end;
 end;
 end;

11 else do;
 put 'WARNING: No EMPLOYEE record for CALC=
 'ckey;
 put 'WARNING: Execution continues with next
 EMPLOYEE.';
 error = 0;
 end;
12 _error_ = 0;
 return;
13 staterr:
 put @1 'ERROR: ' @10 func @17 'RETURNED
 STATUS =' @37 stat;
 put @1 'ERROR: INFILE parameter values are: ';
 put @1 'ERROR: ' recname= ckey= keyl= seq=
 inset= subarea= dkey=;
 put @1 'ERROR: DATA step execution
 terminating.';
 error = 0;
 stop;
 run;

 proc print data=work.empplan;
 title 'Employee Coverage and Plan Record
 Information';
 run;

1 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the OPTIONS statement.

2 This DATA step execution creates the transaction data set Work.Employee. The 4-
byte character variable EMPNUM contains CALC key values that are used to access
EMPLOYEE records directly by employee ID.

74 Chapter 3 • Examples of SAS/ACCESS DATA Step Programs

3 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the INFILE statement.

4 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the BIND RECORD statement.

5 The current EMPNUM value from Work.Employee is used as a CALC key to obtain
an EMPLOYEE record from the database. KEYL specifies the length of the CALC
key. The INPUT @; statement submits the call and places a hold on the input buffer
so that the status code can be checked. For any unexpected status code, execution
branches to the STATERR label. If the status code is 0000, the INPUT statement
maps data from the input buffer to the PDV and then releases the buffer.

6 The DO WHILE loop obtains COVERAGE records for the current employee in the
EMP-COVERAGE set. When all COVERAGE records in the set have been
obtained, the status code is set to 0307, and the loop terminates. At that point, the
DATA step obtains the next EMPLOYEE as specified by the CALC value read from
Work.Employee. The INPUT @; statement submits the OBTAIN FIRST/NEXT call
and places a hold on the input buffer while the status code is checked. For any
unexpected status codes, execution branches to the STATERR label. For a successful
OBTAIN call, the INPUT statement maps coverage information from the input
buffer to the specified variables in the PDV and releases the input buffer. The
PLANCODE variable now contains a CALC key value that can be used to directly
access related INSURANCE-PLAN record information.

7 The next DML call generated is an ACCEPT CURRENT, which takes the current
database key of the COVERAGE record and stores it in the variable defined by the
DBKEY= INFILE parameter, DKEY. The null INPUT statement submits the
ACCEPT call but does not place a hold on the input buffer because ACCEPT returns
no data. For any status code other than 0000, execution branches to the STATERR
label. For a successful ACCEPT call, the value returned to DKEY is moved into
variable COVDBKEY to be used in a later call. By storing the database key of this
record for later use, the program can regain currency on the record.

8 Now that the database key of the COVERAGE record is stored, a FIND call is
generated to locate and establish currency on the related INSURANCE-PLAN
record. The FIND call uses the CALC value stored in PLANCODE. To issue this
call, the DKEY field is set to blank. The null INPUT statement submits the call to
CA-IDMS but no hold is placed on the input buffer because FIND does not return
data. For any status code other than 0000, execution branches to the STATERR
label.

9 After the INSURANCE-PLAN record has been successfully located, an OBTAIN
CURRENT call is generated to request that the record be retrieved. The INPUT @;
statement submits the generated call and places a hold on the input buffer so that the
returned status code can be checked. For any status code other than 0000, execution
branches to the STATERR label. For a successful OBTAIN, the INPUT statement
maps INSURANCE-PLAN data from the input buffer to the specified variables in
the PDV. At this point, an observation is written to output data set Work.EmpPlan
that contains related EMPLOYEE, COVERAGE, and INSURANCE-PLAN
information.

10 Currency must be re-established on the COVERAGE record so that the DO WHILE
loop can obtain the NEXT COVERAGE record in the current set occurrence of
EMP-COVERAGE. A FIND call is generated using the stored database key in
COVDBKEY. This call locates the correct COVERAGE record occurrence. The null
INPUT statement submits the generated call, but no hold is placed on the input
buffer since FIND establishes a position in the database rather than returning data.
For any status code other than 0000, execution branches to the STATERR label. If

Reestablishing Currency on a Record 75

the FIND is successful, currency has been re-established, and SEQ is assigned a
value of NEXT to generate OBTAIN NEXT COVERAGE.

11 This group of statements enables execution to continue when no EMPLOYEE record
exists for the CALC value specified in the transaction data set. In this case, an
informative WARNING message is written to the SAS log and _ERROR_ is reset to
0, which prevents the contents of the PDV from being written to the SAS log.

12 At this point, the STAT variable must have a value of 0307, which indicates that all
COVERAGE records for the specified EMPLOYEE have been accessed. Since this
code is nonzero, _ERROR_ is reset to 0, which prevents the contents of the PDV
from being written to the SAS log.

13 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the STATERR statements.

The following output shows a portion of the output from this program.

76 Chapter 3 • Examples of SAS/ACCESS DATA Step Programs

Output 3.6 Re-establishing Currency on a Record

 Employee Coverage and Plan Record Information

 employee_
 Obs id firstname lastname type plancode

 1 7 MONTE BANK F 004
 2 471 THEMIS PAPAZEUS F 003
 3 471 THEMIS PAPAZEUS F 002
 4 471 THEMIS PAPAZEUS M 001
 5 301 BURT LANCHESTER D 004
 6 301 BURT LANCHESTER F 003
 7 301 BURT LANCHESTER F 002
 8 301 BURT LANCHESTER M 001
 9 4 HERBERT CRANE F 004
 10 4 HERBERT CRANE F 003
 11 4 HERBERT CRANE M 001

 group_
 Obs company_name number

 1 TEETH R US 545598
 2 HOLISTIC GROUP HEALTH ASSOCIATION 329471
 3 HOMOSTASIS HEALTH MAINTENANCE PROGRAM 952867
 4 PROVIDENTIAL LIFE INSURANCE 347815
 5 TEETH R US 545598
 6 HOLISTIC GROUP HEALTH ASSOCIATION 329471
 7 HOMOSTASIS HEALTH MAINTENANCE PROGRAM 952867
 8 PROVIDENTIAL LIFE INSURANCE 347815
 9 TEETH R US 545598
 10 HOLISTIC GROUP HEALTH ASSOCIATION 329471
 11 PROVIDENTIAL LIFE INSURANCE 347815

 Obs plndeduc maxlfcst famlycst depcost

 1 50 0 5000 1000
 2 200 0 200 200
 3 0 0 900000 100000
 4 0 100000 0 0
 5 50 0 5000 1000
 6 200 0 200 200
 7 0 0 900000 100000
 8 0 100000 0 0
 9 50 0 5000 1000
 10 200 0 200 200
 11 0 100000 0 0

Using RETURN and GET across Executions of the
DATA Step

This example contains two separate DATA steps and demonstrates the use of the
RETURN and GET calls across executions of the DATA step. The first DATA step
creates an output data set containing index values from EMP-NAME-NDX. The
RETURN command is used to navigate the index set. The index values stored in
Work.EmpSrtKy are used to locate EMPLOYEE records in the second DATA step.

Using RETURN and GET across Executions of the DATA Step 77

Once a record is located, a GET call moves the record data to the input buffer. The
numbers in the program correspond to the numbered comments following the program.

1 *options $idmdbug;
 data work.empsrtky;
 length namekey $ 25;
 keep namekey;
2 infile empss01 idms func=func sequence=seq
 dbkey=dkey sortfld=skey errstat=stat
 set=inset;

 /* RETURN EMP-NAME-NDX key values to store */
 /* in EMPSRTKY data set */
3 func = 'RETURN';
 seq = 'FIRST';
 inset = 'EMP-NAME-NDX';
 skey = ' ';
 dkey = ' ';
4 do until (stat ne '0000');
 input;
 if stat not in ('0000', '1707') then go to
 staterr;
 if stat = '0000' then do;
 namekey = skey;
 output;
 dkey = ' ';
 skey = ' ';
 seq = 'NEXT';
 end;
 end;
5 _error_ = 0;
 stop;
6 staterr:
 put @1 'ERROR: ' @10 func @17 'RETURNED
 STATUS =' @37 stat ;
 put @1 'ERROR: INFILE parameter values are: ';
 put @1 'ERROR: ' seq= inset= dkey= skey=;
 put @1 'ERROR: DATA step execution
 terminating.';
 error = 0;
 stop;
 run;

 proc print data=work.empsrtky;
 title1 'This is a List of Index Entries from
 EMP-NAME-NDX';
 run;

 data work.employee;
 drop namekey;
7 infile empss01 idms func=func sortfld=skey
 ikeylen=keyl errstat=stat set=inset
 record=recname;

78 Chapter 3 • Examples of SAS/ACCESS DATA Step Programs

 /* BIND the record to be accessed */
8 if _n_ = 1 then do;
 func = 'BIND';
 recname = 'EMPLOYEE';
 input;
 if stat ne '0000' then go to staterr;
 end;

 /* Read NAMEKEY values from EMPSRTKY and */
 /* FIND EMPLOYEE using the EMP-NAME-NDX */
9 set work.empsrtky;
 func = 'FIND';
 recname = 'EMPLOYEE';
 inset = 'EMP-NAME-NDX';
 skey = namekey;
 keyl = 25;
 input;
 if stat not in ('0000', '0326') then go to
 staterr;
 if stat = '0000' then do;
 func = 'GET';
 recname = ' ';
 inset = ' ';
 skey = ' ';
 keyl = 0;
 input @;
 if stat ne '0000' then go to staterr;
 input @1 employee_id 4.0
 @5 firstname $char10.
 @15 lastname $char15.
 @30 street $char20.
 @50 city $char15.
 @65 state $char2.
 @67 zip $char9.
 @76 phone 10.0
 @86 status $char2.
 @88 ssnumber $char9.
 @97 startdate yymmdd6.
 @103 termdate 6.0
 @109 birthdate yymmdd6.;
 output;
 end;
10 else do;
 put @1 'WARNING: No EMPLOYEE record with
 name = ' namekey;
 put @1 'WARNING: Execution continues with
 next NAMEKEY';
 error = 0;
 end;
 return;
11 staterr:
 put @1 'ERROR: ' @10 func @17 'RETURNED
 STATUS =' @37 stat ;
 put @1 'ERROR: INFILE parameter values are: ';

Using RETURN and GET across Executions of the DATA Step 79

 put @1 'ERROR: ' inset= skey= keyl= recname=;
 put @1 'ERROR: DATA step execution
 terminating.';
 error = 0;
 stop;
 run;

 proc print data=work.employee;
 format startdate birthdate date9.
 title1 'This is a List of Employee Information
 Obtained';
 title2 'Using a Transaction Data Set
 Containing Name Index Values';
 run;

1 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the OPTIONS statement.

2 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the INFILE statement.

3 Parameter values are initialized to generate the RETURN CURRENCY SET call for
the entries in the EMP-NAME-NDX index set. The SKEY and DKEY variables are
set to blank and are assigned the sort key and database key values returned from the
call.

4 In the DO UNTIL loop, the null INPUT statement submits the generated RETURN
CURRENCY SET FIRST/NEXT call. The call returns sort key and database key
values to the SKEY and DKEY variables. For any unexpected status code, execution
branches to the STATERR label. For a successful call, the SKEY value is assigned
to NAMEKEY, the current NAMEKEY is written to Work.EmpSrtKy, SKEY and
DKEY variables are reset to blank, and SEQ is set to NEXT. The next iteration of
the DO UNTIL loop returns the next index entry.

The DO UNTIL loop executes as long as STAT equals 0000. When the index set has
been traversed and all sort values returned and stored in output data set
Work.EmpSrtKy, CA-IDMS returns a 1707 status code, which terminates the loop.

5 When the DO UNTIL loop terminates, _ERROR_ is reset to 0. This resetting
prevents the contents of the PDV from being written to the SAS log. The index set is
traversed in the DO UNTIL loop during the first DATA step iteration, so a STOP
statement is used to prevent the DATA step from executing again. Without the STOP
statement, the DATA step would loop endlessly, traversing the same index set once
for each iteration.

6 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the STATERR statements.

7 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the INFILE statement.

8 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the BIND RECORD statement.

9 The Work.EmpSrtKy data set, which was created in the first DATA step, serves as a
transaction data set. Each iteration of this DATA step reads a new sort key value,
NAMEKEY, and uses it to locate an EMPLOYEE record via the EMP-NAME-
NDX. The DATA step terminates when all observations have been read from
Work.EmpSrtKy. To gather employee information, INFILE parameter variables are
initialized to generate the FIND EMPLOYEE WITHIN EMP-NAME-NDX call
using the supplied sort key from NAMEKEY. The IKEYLEN= parameter variable

80 Chapter 3 • Examples of SAS/ACCESS DATA Step Programs

KEYL is set to 25 to indicate the sort key length. The null INPUT statement submits
the FIND call but places no hold on the input buffer because no record data is
returned. For any unexpected status code, execution branches to the STATERR
label. For a successful FIND, a GET call is generated to request that the record data
be retrieved. The INPUT @; statement submits the GET call and places a hold on
the input buffer so that the status code can be checked. Any status code not equal to
0000 branches execution to the STATERR label. If the GET call is successful, the
INPUT statement maps EMPLOYEE data from the input buffer to the specified
variables in the PDV. The contents of the PDV are then written as an observation to
output data set Work.Employee.

10 This group of statements enables execution to continue when no EMPLOYEE record
exists for the sort key value specified in the transaction data set. In this case, an
informative WARNING message is written to the SAS log and _ERROR_ is reset to
0, which prevents the contents of the PDV from being written to the SAS log.

11 See “Statements Common to All SAS/ACCESS DATA Step Examples” on page 47
for a description of the STATERR statements.

The following output shows a portion of the output from this program.

Using RETURN and GET across Executions of the DATA Step 81

Output 3.7 Using RETURN and GET

 This is a List of Index Entries from EMP-NAME-NDX

 Obs namekey

 1 ANDALE ROY
 2 ANGELO MICHAEL
 3 ARM HARRY
 4 BANK MONTE
 5 BLOOMER JUNE
 6 BOWER CHARLES
 7 BREEZE C.
 8 CLOTH TERRY
 9 CLOUD BETH
 10 CRANE HERBERT
 11 CROW CAROLYN
 12 DONOVAN ALAN
 13 DOUGH JANE
 14 FERNDALE JANE

 This is a List of Employee Information Obtained
 Using a Transaction Data Set Containing Name Index Values

 employee_
 Obs id firstname lastname street city state

 1 466 ROY ANDALE 44 TRIGGER RD FRAMINGHAM MA
 2 120 MICHAEL ANGELO 507 CISTINE DR WELLESLEY MA
 3 457 HARRY ARM 77 SUNSET STRIP NATICK MA
 4 7 MONTE BANK 45 EAST GROVE DR HANIBAL MA
 5 69 JUNE BLOOMER 14 ZITHER TERR LEXINGTON MA
 6 119 CHARLES BOWER 30 RALPH ST WELLESLEY MA
 7 467 C. BREEZE 200 NIGHTINGALE ST FRAMINGHAM MA
 8 479 TERRY CLOTH 5 ASPHALT ST EASTON MA
 9 371 BETH CLOUD 3456 PINKY LN NATICK MA
 10 4 HERBERT CRANE 30 HERON AVE KINGSTON NJ
 11 334 CAROLYN CROW 891 SUMMER ST WESTWOOD MA
 12 366 ALAN DONOVAN 6781 CORNWALL AVE MELROSE MA
 13 24 JANE DOUGH 15 LOCATION DR NEWTON MA
 14 32 JANE FERNDALE 60 FOREST AVE NEWTON MA

 Obs zip phone status ssnumber startdate termdate birthdate

 1 03461 6175541108 03 027601115 15JUN1978 0 04MAR1960
 2 01568 6178870235 01 127675593 08SEP1979 0 05APR1957
 3 02178 6174320923 05 028770147 01DEC1977 0 05APR1934
 4 02415 6173321933 01 022446676 30APR1978 0 01JAN1950
 5 01675 6175555544 01 039557818 05MAY1980 0 25APR1960
 6 01568 6178841212 01 092345812 14DEC1977 0 04MAR1939
 7 03461 6175542387 01 111556692 02JUN1979 0 04MAY1934
 8 05491 6177738398 01 028701666 02NOV1979 0 04MAR1945
 9 02178 6174321212 01 326710472 04MAR1977 0 09SEP1945
 10 21341 2013341433 01 016777451 14MAY1977 0 21MAR1942
 11 02090 6173291776 01 023980110 17JUN1979 0 03APR1944
 12 02176 6176655412 01 025503622 10OCT1981 0 17NOV1951
 13 02456 6174458155 01 022337878 08AUG1976 0 29MAR1951
 14 02576 6178888112 01 034567891 09SEP1979 0 17JAN1958

82 Chapter 3 • Examples of SAS/ACCESS DATA Step Programs

Appendix 1

CA-IDMS Essentials

Introduction to IDMS Essentials . 83

Data Dictionaries and the DDS . 83

CA-IDMS Networks and Sets . 84

CA-IDMS Documentation . 85

Introduction to IDMS Essentials
This appendix introduces SAS users to Computer Associates Integrated Database
Management System (CA-IDMS). It focuses on the terms and concepts that help you
access CA-IDMS files with SAS/ACCESS software.

If you want more information about a CA-IDMS concept or term, see the documents
listed in “CA-IDMS Documentation” on page 85.

Data Dictionaries and the DDS
CA-IDMS enables you to build one or more databases using a data dictionary. A data
dictionary is itself a CA-IDMS database that contains all the data and system definitions
for one or more databases.

A data dictionary is divided logically into areas. The information is organized into entity
types, which correspond to the main data processing components, such as elements,
records, files, programs, and users. Data dictionaries monitor most aspects of the
database environment, from tracking the status of terminals, systems, and users to being
a central resource of information about the system and providing security. Some large
information systems use multiple dictionaries; for example, a system might have one
dictionary for each division of a company.

A database administrator (DBA) manages and maintains the data dictionaries and the
entire CA-IDMS system. DBA duties often include programming systems, managing
resources, monitoring the system's performance, and overseeing its security. The DBA
has a key role in the SAS/ACCESS interface to CA-IDMS, which is explained in more
detail in this section.

Within a CA-IDMS data dictionary are the definitions for a database's schema and
subschema. A schema describes the contents and structure of a single database,

83

including all of the records and sets that are necessary to define its data elements and
data relationships.

A subschema is a subset of a schema that is used by programs at run time. It consists of
all the data elements, records, sets, and areas that are defined in the schema or a subset
thereof. It includes database records and can include logical records as well as logical-
record paths (defined below). The DBA defines logical records and their paths in the
subschema before application programs are coded and executed.

The following figure illustrates the relationships among the data dictionary, schemas,
and subschemas.

Figure A1.1 Data Dictionary, Schemas, and Subschemas

CA-IDMS provides two operating environments, or modes, for accessing data
dictionaries and databases. In the central version, multiple concurrently executing
programs access the database(s) through one shared copy of the database management
system (DBMS). The central version controls concurrent updating of the database by
multiple users in order to maintain database integrity.

In local mode, one program at a time accesses the database through a dedicated copy of
the DBMS. You cannot run local mode against a database at the same time that the
central version is accessing it.

A Distributed Database System (DDS) distributes data storage and processing functions
among several systems. These systems can execute on one or more computers and at one
or more sites. Each system is a node in the DDS configuration. A central version
specifies which node within the DDS system to access.

CA-IDMS Networks and Sets
Each CA-IDMS database consists of database records that are grouped into record types.
A record type consists of the record's name, all of its elements, and the elements'

84 Appendix 1 • CA-IDMS Essentials

attributes, such as data types and sizes. These record types are linked together through
different logical groups called sets. Sets are defined to the schema.

A set is a logical relationship established between two or more named record types. One
record type is the owner of the set and the other record types are members. Record types
can belong to more than one set, so a record type can be both an owner of one set and a
member of another. That same record type can also be a member of more than one set.
These sets and their interweaving relationships make up a network and give CA-IDMS
its network capabilities.

To move through the database, each record type contains pointers to other record types
in its set or sets. Pointers identify the next record in the set and link the records together
in a chain. There are three types of pointers:

Next pointer (required pointer)
points to the next record type in the set, regardless of whether the record type is an
owner or a member of the set.

Prior pointer
works the same way as the Next pointer except that it points to the prior record type.

Owner pointer
points from a member record type to the owner record type.

Through these pointers, a program can navigate through the network and travel a
specific path through one or many sets.

The database administrator is responsible for defining record types and sets in the
schema.

CA-IDMS Documentation
You might find the following Computer Associates Release 12.0 CA-IDMS
documentation helpful while you are using the SAS/ACCESS interface to CA-IDMS.
See these manuals for information about your CA-IDMS system and DML application
programming.

• System Operations

• Database Administration

• Security Administration

• System Generation

• Features Summary

• Messages and Codes

• System Tasks and Operator Commands

• Utilities

• Database Design

• Quick Reference

• Programming Quick Reference

• Master Index

• Glossary

• Navigational DML Programming

CA-IDMS Documentation 85

86 Appendix 1 • CA-IDMS Essentials

Index

Special Characters
ERROR values

obtaining 36
resetting 36
summary of 36

A
ACCEPT function call 15
access descriptors 1
addressability, of database records 17
area sweeps (example) 48
AREA= option, CA-IDMS INFILE

statement 11
at sign, trailing 35

example 43

B
BIND function call 17

C
CA-IDMS error codes, obtaining 36
CA-IDMS INFILE statement 4

See also DML function calls
accessing CA-IDMS records 14
AREA= option 11
DANAME= option 11
DANODE= option 11
DBKEY= option 11
DCNAME= option 11
DCNODE= option 11
ERRSTAT= option 11
FUNC= option 11
IKEYLEN= option 12
KEY= option 12
KEYOFF= option 12
LRECL= option 12
OBS= option 13
options summary 13

purpose 10
RECORD= option 12
SEQUENCE= option 12
SET= option 12
SORTFLD= option 12
STOPOVER option 13

CA-IDMS input buffer 5
CA-IDMS INPUT statement 4

null INPUT statements 35
reading external files 33
trailing at sign, definition 35
trailing at sign, example 43

CA-IDMS record currency 5
re-establishing 71
reading records by 19

CA-IDMS records, accessing 14
CALC option, DML function calls 18
call status codes

ERROR values, obtaining 36
ERROR values, resetting 36
ERROR values, summary of 36
CA-IDMS error codes, obtaining 36
checking 36
end of file, handling 38
errors, catching before moving data 37
non-error conditions, checking 36

central version mode 84
currency 5

re-establishing 71
reading records by 19

current input source 33
CURRENT option, DML function calls

19

D
DANAME= option, CA-IDMS INFILE

statement 11
DANODE= option, CA-IDMS INFILE

statement 11
data dictionaries 83

87

DATA step interface 1
current input source 33
features of 1
multiple input sources 33
read-only access 1

DATA step program (example) 5
DATA step statement extensions 4

See also CA-IDMS INFILE statement
See also CA-IDMS INPUT statement
CA-IDMS input buffer 5
CA-IDMS record currency 5
DATA step program (example) 5

DATA step views, creating
example 8
fileref names 8

database administrators (DBAs) 83
DB-KEY option, DML function calls 20
db-keys

accepting 15
reading database records 20
retrieving 27

DBKEY option
DML function calls 32

DBKEY= option, CA-IDMS INFILE
statement 11

DCNAME= option, CA-IDMS INFILE
statement 11

DCNODE= option, CA-IDMS INFILE
statement 11

DDS (Distributed Database System) 84
descriptors 1
Distributed Database System (DDS) 84
DML function calls 14

See also CA-IDMS INFILE statement
ACCEPT 15
BIND 17
DBKEY option 32
determining type of 32
FIND, CALC option 18
FIND, CURRENT option 19
FIND, DB-KEY option 20
FIND, OWNER option 21
FIND, SORT KEY option 22
FIND, WITHIN option 23
FUNC option 32
GET 25, 77
IF 26
IKEY option 32
INFILE statement parameters for 29
OBTAIN, CALC option 18
OBTAIN, CURRENT option 19
OBTAIN, DB-KEY option 20
OBTAIN, OWNER option 21
OBTAIN, SORT KEY option 22
OBTAIN, WITHIN option 23
RETURN 27, 77

SEQUENCE option 33
SORTFLD option 32
tracking 34

E
end of file, handling 38
error codes, CA-IDMS 36
errors, catching before moving data 37
ERRSTAT= option, CA-IDMS INFILE

statement 11
examples 2

area sweeps 48
DATA step program 5
DATA step views, creating 8
navigating multiple set relationships 52
record occurrences, reading 5
SAS data sets, creating 5
trailing at sign 43

examples, reading database records
area sweep 48
navigating multiple set relationships 52
physically 48
traversing a set 38
within an area 48

external files, reading 4, 33

F
fileref names

creating DATA step views 8
limitations 2

FIND function call
CALC option 18
CURRENT option 19
DB-KEY option 20
OWNER option 21
SORT KEY option 22
WITHIN option 23

FUNC option, DML function calls 32
FUNC= option, CA-IDMS INFILE

statement 11
function calls

See DML function calls

G
GET function call 25

example 77

I
IF function call 26
IKEY option, DML function calls 32
IKEYLEN= option, CA-IDMS INFILE

statement 12

88 Index

INFILE statement 29
See also CA-IDMS INFILE statement
options supported by CA-IDMS INFILE

statement 13
parameters for DML function calls 29

input buffer 5
reading database records into 25

input sources
current 33
multiple 33

INPUT statement 4
See also CA-IDMS INPUT statement

K
KEY= option, CA-IDMS INFILE

statement 12
KEYOFF= option, CA-IDMS INFILE

statement 12

L
local mode 84
Logical Record Facility (LRF) 1
LRECL= option, CA-IDMS INFILE

statement 12
LRF (Logical Record Facility) 1

M
multiple input sources 33
multiple set relationships, navigating 52

N
navigating multiple set relationships 52
navigating set occurrences 67
networks 85
next pointer 85
non-error conditions, checking 36
null INPUT statements 35

example 81

O
OBS= option, CA-IDMS INFILE

statement 13
OBTAIN function call

CALC option 18
CURRENT option 19
DB-KEY option 20
OWNER option 21
SORT KEY option 22
WITHIN option 23

OWNER option, DML function calls 21
owner pointer 85

owner records, locating 21

P
pointers 85
prior pointer 85

R
re-establishing currency on a record 71
read-only access 1
reading database records 48

across DATA steps 77
area sweep (example) 48
by CALC key value 18
by currency 19
by db-key 20
establishing addressability 17
into the input buffer 25
logically 23
navigating multiple set relationships

(example) 52
navigating set occurrences 67
owner records, locating 21
physically 23, 48
re-establishing currency on a record 71
SAS data sets, as transaction files 58
SAS data sets, locating records 63
transaction information, specifying 67
traversing a set (example) 38
within a set 23
within a sorted set 22
within an area 23, 48

reading external files 4, 33
record currency, CA-IDMS 5

re-establishing 71
reading records by 19

record occurrences
reading 5
testing for 26

record types 84
RECORD= option, CA-IDMS INFILE

statement 12
records, accessing 14
RETURN function

example 77
RETURN function call 27

S
SAS data sets

as transaction files 58
creating 5
locating records 63

schemas 83

Index 89

SEQUENCE option, DML function calls
33

SEQUENCE= option, CA-IDMS INFILE
statement 12

SET= option, CA-IDMS INFILE
statement 12

sets 85
navigating multiple set relationships 52
navigating set occurrences 67
reading records within a set 23
reading records within a sorted set 22
traversing 38

SORT KEY option, DML function calls
22

SORTFLD option, DML function calls
32

SORTFLD= option, CA-IDMS INFILE
statement 12

STOPOVER option, CA-IDMS INFILE
statement 13

subschemas 84

symbolic keys, retrieving 27

T
tracking DML function calls 34
trailing at sign 35

example 43
transaction files

SAS data sets as 58
transaction information, specifying 67

V
view descriptors 1
views, creating

example 8
fileref names 8

W
WITHIN option, DML function calls 23

90 Index

	Contents
	Recommended Reading
	Overview of the SAS/ACCESS Interface to CA-IDMS
	Introduction to SAS/ACCESS DATA Step Interface to CA-IDMS
	Features of the DATA Step Interface
	Prerequisites for Using This Document
	Example Data in the Interface to CA-IDMS Document

	Using the SAS/ACCESS Interface to CA-IDMS
	Overview of the DATA Step Statement Extensions
	Introduction to the CA-IDMS INFILE and CA-IDMS INPUT Statements
	CA-IDMS Record Currency
	CA-IDMS Input Buffer
	Introductory Example of a DATA Step Program

	Creating DATA Step Views
	Using the CA-IDMS INFILE Statement
	Definition of the CA-IDMS INFILE STATEMENT
	CA-IDMS Environment Options
	Other CA-IDMS Options
	Standard INFILE Statement Options
	Summary of CA-IDMS INFILE Statement Options

	Guidelines for Using the CA-IDMS INFILE Statement and DML Function
Calls
	Specifying DML Function Calls
	Options for CA-IDMS Function Calls
	ACCEPT Function Call
	BIND Function Call
	FIND and OBTAIN Function Calls
	FIND/OBTAIN CALC Function
	FIND/OBTAIN CURRENT Function
	FIND/OBTAIN DBKEY Function
	FIND/OBTAIN OWNER Function
	FIND/OBTAIN SORT KEY Function
	FIND/OBTAIN WITHIN SET or AREA Function
	GET Function Call
	IF Function Call
	RETURN Function Call
	Summary of Options Needed to Generate CA-IDMS Function Calls
	How the CA-IDMS Function Call Is Generated
	Using Multiple Sources of Input

	Using the CA-IDMS INPUT Statement
	Definition of the CA-IDMS INPUT Statement
	The Null INPUT Statement
	Holding Records in the Input Buffer
	Call Status Codes
	Handling End of File

	Example: Traversing a Set
	Example: Using the Trailing @ and the INPUT Statement with
No Arguments

	Examples of SAS/ACCESS DATA Step Programs
	Introduction to Examples of SAS/ACCESS DATA Step Programs
	Statements Common to All SAS/ACCESS DATA Step Examples
	Performing an Area Sweep
	Navigating Multiple Set Relationships
	Using a SAS Data Set as a Transaction File
	Using Information in a SAS Data Set to Locate Records
	Supplying Transaction Information and Navigating Set Occurrences
	Reestablishing Currency on a Record
	Using RETURN and GET across Executions of the DATA Step

	 CA-IDMS Essentials
	Introduction to IDMS Essentials
	Data Dictionaries and the DDS
	CA-IDMS Networks and Sets
	CA-IDMS Documentation

	Index

